18.357: Lecture 8

Capillary rise continued

Marangoni Flows I: Thermocapillarity

John W. M. Bush

Department of Mathematics MIT

Governing Equations

Navier-Stokes equations:

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{u} \quad , \qquad \nabla \cdot \mathbf{u} = 0$$

Boundary Conditions

Normal stress: $\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{n} = \sigma \nabla \cdot \mathbf{n}$ Tangential stress: $\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{s} = \nabla_s \sigma$

$$\mathbf{T} = -p\mathbf{I} + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$$

Marangoni Flows

- flows dominated by the influence of surface tension gradients Recall tangential stress BC: $\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{s} = \nabla \sigma$
- $\nabla \sigma$ may arise due to dependence of $\sigma(T, c, \Gamma)$

Thermocapillary flows

• Marangoni flows induced by temperature gradients $\sigma(T)$

• surface tension decreases at higher temperature since gas phase then has more liquid phase molecules

Thermocapillary Flows

- Marangoni flows induced by temperature gradients $\sigma(T)$
- Navier-Stokes coupled to heat equation through BCs

$$\frac{\partial T}{\partial t} + u \cdot \nabla T = \kappa \nabla^2 T$$

e.g. thermocapillary drop motion: drops migrate toward heat source

Young, Goldstein & Block (1962)

Thermal convection in a plane layer

Thermal convection in a plane layer

THERMAL CONVECTION

Rayleigh-Benard
$$\rho(T) = \rho_0 [1 + \alpha (T - T_0)]$$

Stability prescribed by:

$$Ra = \frac{g\alpha\Delta Td^3}{\kappa\nu}$$

Rayleigh number

Marangoni-Benard $\sigma(T) = \sigma_0 - \Gamma(T - T_0)$

Note: Marangoni convection dominates for thin films