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We explore the effects of an imposed potential with both oscillatory and quadratic components on
the dynamics of walking droplets. We first conduct an experimental investigation of droplets walking
on a bath with a central circular well. The well acts as a source of Faraday waves, which may trap
walking droplets on circular orbits. The observed orbits are stable and quantized, with preferred radii
aligning with the extrema of the well-induced Faraday wave pattern. We use the stroboscopic model
of Oza et al. [J. Fluid Mech. 737, 552–570 (2013)] with an added potential to examine the interac-
tion of the droplet with the underlying well-induced wavefield. We show that all quantized orbits are
stable for low vibrational accelerations. Smaller orbits may become unstable at higher forcing accel-
erations and transition to chaos through a path reminiscent of the Ruelle-Takens-Newhouse scenario.
We proceed by considering a generalized pilot-wave system in which the relative magnitudes of the
pilot-wave force and drop inertia may be tuned. When the drop inertia is dominated by the pilot-
wave force, all circular orbits may become unstable, with the drop chaotically switching between
them. In this chaotic regime, the statistically stationary probability distribution of the drop’s posi-
tion reflects the relative instability of the unstable circular orbits. We compute the mean wavefield
from a chaotic trajectory and confirm its predicted relationship with the particle’s probability density
function. Published by AIP Publishing. https://doi.org/10.1063/1.5033962

A pilot-wave system consists of a particle guided by its
own wavefield. Walking droplets are the first macroscopic
realization of a pilot-wave system, displaying features once
thought to be peculiar to quantum mechanics, includ-
ing quantized orbits. Here, we explore how quantized
orbits may arise when the droplet interacts with a back-
ground wavefield. We show experimentally that a well at
the center of a vibrating fluid bath excites a circularly-
symmetric Faraday wavefield, which may serve to trap
a walking drop. The stable quantized radii correspond to
the extrema of the Faraday wavefield induced by the well.
We proceed to explore this trapping theoretically, using
the stroboscopic model of Oza et al.1 Modeling the under-
lying wave as an external potential, we characterize the
stability of the resulting quantized orbits and character-
ize the transition to chaos for unstable orbits. We then
consider a generalized pilot-wave system in which the rel-
ative magnitudes of the drop inertia and pilot-wave force
may be tuned, allowing us to explore parameter regimes
characterized by the stable orbits observed experimen-
tally, as well as unstable orbits between which walkers
switch chaotically. In this chaotic regime, we explore the
relationship between the drop’s statistics and its mean
wavefield.

I. INTRODUCTION

The vertical and horizontal dynamics of a droplet walking
on a vibrating fluid bath have been a subject of consider-
able recent interest.2,3 The walking droplet system is the

a)Electronic mail: bush@math.mit.edu

first macroscopic realization of a pilot-wave system of the
form envisioned by Louis de Broglie,4 displaying various
quantum-like features, including quantized orbits,5,6 double
quantization,7,8 tunneling,9,10 and the emergence of multi-
modal statistics in confined geometries.11,12 In this hydrody-
namic pilot-wave system, walking droplets generate a wave
at impact with the bath surface and are, in turn, piloted by the
resulting superposition of waves. The temporal decay time of
the waves TM increases monotonically with vibrational accel-
eration γ , provided γ is less than γF , the Faraday threshold
above which waves form on the surface in the absence of a
drop. The horizontal motion of the droplet depends on the
gradient of the pilot wave at the impact position, and a time-
averaged drag term proportional to the droplet’s velocity.1,13

A drop’s trajectory may be further affected by an external
force acting on the drop, such as a Coriolis force, which
arises on a rotating bath,5,6,14,15 or a linear spring force as
generated from a magnetic field acting on a drop with encap-
sulated ferrofluid.7,8,16,17 These scenarios may be modeled by
incorporating an additional force term into the stroboscopic
trajectory equation of Oza et al.1

The majority of walker studies have been undertaken
in the deep-water limit, in which the walker wavefield
decays in amplitude nearly to zero before reaching the lower
boundary of the bath, so the walker dynamics is unin-
fluenced by bottom topography. In their study of walker
motion in elliptical corrals, Sáenz et al. demonstrated the
viability of pilot-wave hydrodynamics in shallow water.12

Furthermore, they demonstrated that, in this shallow-water
regime, bottom topography can be used to serve as effec-
tive potentials. Specifically, they demonstrated that sub-
merged circular wells act to attract walkers and so play
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a role analogous to magnetic impurities in the quantum
corrals.18 Motivated by their insights, we here examine the
interaction of a walker with a submerged circular well in an
otherwise open system.

We are motivated by an experiment in which a walking
droplet interacts with the wavefield produced by a circu-
lar well at the center of the bath. In the deep region, the
vibrational acceleration γ exceeds the Faraday threshold γF .
Outside the well, γ < γF ; thus, the well excites a circu-
larly symmetric Faraday wave across the bath that decays
beyond the well. Tambasco et al.19 showed that an unsta-
ble checkerboard Faraday wave pattern may trap walking
droplets, causing them to bounce in place. We investigate here
how the well-induced circularly-symmetric Faraday pattern
may trap the droplet onto circular orbits.

The stability of circular orbits in a rotating frame14 and in
a harmonic potential8,16 have been characterized theoretically
using the stroboscopic model of Oza et al.1 In both settings,
an increase in forcing acceleration destabilized circular orbits
into wobbling and eventually chaotic orbits.20 Tambasco
et al.21 characterized the transition to chaos for both these
external forces, as well as for a 2-dimensional Coulomb force.
Walking drops acted upon by a Coriolis or Coulomb force
underwent a period-doubling cascade, while drops in a har-
monic potential became chaotic via a path reminiscent of the
Ruelle-Takens-Newhouse scenario.22,23 Here, we characterize
the transition to chaos for a particle in a circular orbit over
a well-induced wavefield. We model the well-induced wave
as an oscillatory force field with characteristic wavelength
λF and a spatial decay rate corresponding to that of a Bessel
function.

When the vibrational forcing acceleration is sufficiently
high, a droplet will explore the domain of a uniform bath
erratically. Provided the memory time is larger than the cross-
ing time of the bath, coherent statistics will emerge in the

drop’s position probability density function.11,12 Durey et al.24

derived that the mean wavefield η̄ is related to the droplet’s
stationary probability distribution μ(x) via a convolution with
the bouncer wavefield ηB (Theorem 1). Here, we validate this
relationship between mean wavefield and position distribu-
tion in the case of a particle interacting with a well-induced
wavefield. We further characterize numerically the timescale
of convergence to this asymptotic result.

In Sec. II, we describe the experimental methods and
present trajectories of a droplet walking on a bath with a
well-induced wavefield. In Sec. III, we present the integro-
differential equation used to simulate drop trajectories and
discuss the numerical methods used. In Sec. IV, we present
a generalized pilot-wave framework in which tuning the rela-
tive magnitudes of the inertia and wave force terms renders all
circular orbits unstable. We investigate the manner in which
small circular orbits destabilize for sufficiently high vibra-
tional acceleration and characterize their transition to chaos.
We also examine the relationship between the drop’s mean
wavefield and its statistics. We discuss the implications of
these results and future directions in Sec. V.

II. EXPERIMENTS

The experimental setup is shown in Fig. 1(a). Silicone
oil with viscosity ν = 20 cS, surface tension σ = 20.9 ×
10−3 N/m, and density ρ = 949 kg/m3 fills a circular con-
tainer with a central well of radius d = 12 mm. The fluid
depth is h1 = 6.5 ± 0.1 mm inside the well and h0 = 5.5 ±
0.1 mm outside. The bath is vibrated vertically with frequency
f = 80 Hz, amplitude A, and acceleration �(t) = γ cos(2π ft),
where γ = A(2π f )2. When the vibrational acceleration of the
bath γ exceeds a critical value, the Faraday threshold γF , the
surface of the bath becomes unstable, and subharmonic waves
(with Faraday period TF = 2/f ) appear throughout the bath.25

FIG. 1. (a) Experimental setup. A droplet of radius R bounces on a bath vibrating vertically with frequency f = 80 Hz and vibrational acceleration γ , with a
central circular well of depth h1 = 6.5 mm. The depth elsewhere is h0 = 5.5 mm. The experiment is imaged from above, illuminated by diffused light via a
semi-reflective mirror. (b) Top view of the most unstable circularly-symmetric Faraday mode induced by the well for γ = 4.0 g. The boundary of the well is
delineated by a dashed line. The Faraday threshold has been crossed only in the region directly above the well so that γ d

F < γ < γ s
F , where γ d

F and γ s
F are the

Faraday thresholds in the deep and shallow regions, respectively.
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We note that the Faraday threshold decreases with depth of
the fluid bath. Denoting the Faraday thresholds in the deep
and shallow regions by γ d

F and γ s
F , we operate in a regime

such that γ d
F < γ < γ s

F . Consequently, the deep fluid serves
as a source of Faraday waves that decay beyond the well
[Fig. 1(b)].

The wave number of the most unstable Faraday mode, kF ,
is obtained from the standard water-wave dispersion relation,

ω2
F(k) =

(
gk + σ

ρ
k3

)
tanh(kh), (1)

where ωF = π f is the subharmonic angular frequency
and g the gravitational acceleration. Between the shallow
(h0 = 5.5 mm) and deep (h1 = 6.5 mm) regions, the Faraday
wavelength changes negligibly, taking the values of λF =
2π/kF = 4.75 ± .01 mm, within measurement errors.

A drop of radius R = 0.4 ± 0.01 mm deposited onto the
surface of a vibrating fluid bath bounces indefinitely, provided
the vibrational acceleration of the bath γ is sufficiently large.
At each impact, the drop generates a circularly symmetric
wave centered at its bouncing position. Provided that γ < γF ,
the amplitude of such waves decay in time, with a charac-
teristic time-scale TM = Td/(1 − γ /γF), where Td ∼ λ2

F/ν ≈
0.018 s is the decay time of waves in the absence of vibration.
As the vibrational acceleration is increased further, the bounc-
ing state destabilizes and the drop begins to walk in response
to the gradient of the underlying wavefield. A drop walking
below the Faraday threshold performs rectilinear motion in
the absence of boundaries and external forces at a free speed
prescribed by the balance of the propulsive wave force and a
linear drag.1,13

In the presence of the well, the walker interacts with a
well-induced wavefield. To characterize this interaction, we
track the position of droplets walking on the corrugated wave-
field (Fig. 2). For all initial conditions considered, droplets
lock onto stable circular orbits. Droplets initially placed in
unstable positions wobble until eventually settling onto a sta-
ble orbit. Circular orbits are separated by half the Faraday
wavelength λF/2. This spacing may be understood by consid-
ering the possibility of the drop bouncing in- or out-of-phase,
relative to the both vibration, and that a π -shift in its bounc-
ing phase will reverse the stability of its circular orbits. We
proceed by investigating the drop’s interaction with the well-
induced wavefield using the stroboscopic model of Oza et al.
with an additional topographically-induced potential.1,12

III. TRAJECTORY EQUATION

Building upon the model of Moláček & Bush,13 Oza
et al. developed an integro-differential trajectory equation to
describe the horizontal motion of a droplet of mass m walk-
ing on a vibrating fluid bath.1 The droplet’s trajectory, xp(t) =
[xp(t), yp(t)], is given by

mẍp + Dẋp = − mg∇h|x=xp(t) + F(
∣∣xp(t)

∣∣), (2)

where D is the time-averaged drag coefficient, g the gravita-
tional acceleration, and F(

∣∣xp(t)
∣∣) an externally applied radial

force to be specified. Provided the vertical bouncing timescale
TF is much smaller than the horizontal time scale λF/

∣∣ẋ∣∣,

FIG. 2. Preliminary experimental trajectories of droplets of radius R = 0.4 ±
0.01 mm walking in the Faraday wavefield shown in Fig. 1(b), with forcing
acceleration γ = 4.0 g. The droplets tend to stabilize onto quantized circular
orbits, with preferred radii corresponding roughly to half-integer multiples
of the Faraday wavelength λF . Each color corresponds to a different trajec-
tory, with white dashed lines indicating orbits of half-integer multiples of the
Faraday wavelength, r = n/2λF .

or equivalently, the drop’s vertical speed greatly exceeds its
horizontal speed, the wavefield h may be approximated as an
integral

h(x, t) = Ā

TF

∫ t

−∞
J0

(
kF

∣∣x − xp(s)
∣∣) e−(t−s)/TM ds, (3)

where Ā is the wave amplitude.
If we take the natural length and time scales to be the

Faraday wavelength λF and the memory time TM , we may
non-dimensionalize Eq. (2) via x̃ = kFx, t̃ = t/TM . Dropping
tildes, we obtain the dimensionless equation:

κ ẍp + ẋp = β

∫ t

−∞

J1
(∣∣xp(t) − xp(s)

∣∣)∣∣xp(t) − xp(s)
∣∣

× [
xp(t) − xp(s)

]
e−(t−s) ds + F̃(

∣∣xp(t)
∣∣), (4)

where

κ = m/DTM , β = FkFT2
M /DTF (5)

are, respectively, the non-dimensional drop inertia and
pilot-wave force parameters, with F = mgĀkF . F̃(x̃p) =
kFTM F(xp)/D is the externally applied force. We note that
this corresponds to the Generalized Pilot-wave Framework
(GPF) outlined by Bush,3 as will be further explored in
Sec. IV.

We proceed by specifying the imposed external force
F [

∣∣xp(t)
∣∣] whose form is chosen in order to best match the

influence of the well-induced wavefield. We model the well-
induced standing Faraday wave as a subharmonic, circularly-
symmetric Bessel function of the first kind, with wave-
length λF : hw(x, t) = AwJ0 (|kFx|) sin(π ft), where Aw is the
well-induced wave amplitude. A walking drop in the (2,1)
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mode13 resonant with the well-induced wave will feel a nor-
mal force prescribed by the gradient of the standing wave,
F(xp) = −mg ∇hw|x=xp(t). In non-dimensional terms, we
thus obtain

F̃(xp) = QJ1(
∣∣xp(t)

∣∣)r̂, (6)

where Q = mgAwk2
FTM sin(φ)/D is the dimensionless well-

induced wave force parameter, r̂ the unit radial vector, and
sin(φ) the vertical phase, selected to match the experimental
free walking speed.1 We solve the integro-differential sys-
tem [Eq. (4)] using a fourth-order Adams-Bashforth linear
multistep method.15

Circular orbits of radius r0 and orbital angular speed ω,
xp(t) = r0[cos(ωt), sin(ωt)], are solutions to Eq. (4) provided
they satisfy the following system of algebraic equations:

−κr0ω
2 = β

∫ ∞

0
J1

(
2r0 sin

(ωz

2

))
sin

ωz

2
e−z dz + QJ1(r0),

r0ω = β

∫ ∞

0
J1

(
2r0 sin

(ωz

2

))
cos

ωz

2
e−z dz. (7)

We solve Eq. (7) in order to obtain the values of ω and Q
corresponding to various initial radii r0. We initialize the sim-
ulations assuming circular orbits of radius r0 for time t < 0.
At t = 0, we impose an external force given by Eq. (6) and
solve the system using a non-dimensional time-step �t/TM =
2−8. Figure 3 displays trajectories simulated for γ /γF = 0.9,
superimposed on the wavefield observed experimentally. We
see that the radii of stable, quantized orbits deduced numeri-
cally correspond roughly to the extrema of the well-induced
Faraday wavefield, indicating that the external force pro-
posed in Eq. (6) is sufficient to capture the behavior observed
experimentally. We note that trajectories initialized at unsta-
ble radii wobble until eventually tending to a stable circular
orbit, as in experiments. For the forcing accelerations (0.85 <

γ/γF < 0.99) and initial radii (0.1 < r0/λF < 3) considered,
trajectories always settled into stable orbital solutions, cor-
responding approximately to the zeros of J1(r), where the
imposed force field vanishes. We note that the prevalence
of circular orbits at radii corresponding to the zeros of J0(r)
has been noted in a number of prior studies of orbital pilot-
wave dynamics.6,7,14,16,20,26 In our study, the imposed potential
evidently shifts the preferred orbits to zeros of J1(r).

IV. GENERALIZED PILOT-WAVE FRAMEWORK

One can imagine much richer system behavior, includ-
ing chaotic switching between unstable orbits, as has
been observed in a number of hydrodynamic quantum
analogs.6,8,11,12,20,26 In order to characterize such chaotic
switching states, we consider a combination of oscillatory and
harmonic potentials. Furthermore, with a view to characteriz-
ing transitions to unstable regimes, we proceed by exploring
a generalized pilot-wave framework, where the externally
applied force and system parameters β and κ may be altered
relative to those of the fluid system. Particular attention will
be given to characterizing how circular orbits destabilize and
quantum-like statistics emerge.

In order to destabilize the circular orbits observed in
simulations of droplets walking in an oscillatory potential

FIG. 3. Droplet trajectories calculated from the stroboscopic model [Eq. (2)]
with an additional oscillatory force prescribed by Eq. (6), superimposed on
the experimental wavefield from Fig. 1(b). Trajectories were initialized in cir-
cular orbits with various initial radii, indicated by colored arrows. After small
oscillations, all trajectories converged onto stable quantized orbits separated
by half-integer multiples of the Faraday wavelength λF .

(Fig. 3), we introduce an additional force term into the strobo-
scopic model [Eq. (4)]. Specifically, to the Bessel force [Eq.
(6)] we add a radial force arising from a harmonic potential,
F(xp) = −kxp, where k is the non-dimensional spring con-
stant. As we vary the relative magnitudes of the spring and
wave force parameters, k and Q, circular orbits may become
unstable. For a fixed value of the spring constant k = 0.1,
we note that lowering Q prompts a transition from stable to
wobbling, and eventually, chaotic orbits, as detailed in Fig. 4.

A. Transition to Chaos

We here detail the manner in which smaller circular
trajectories (r/λF ∼ 0.5) transition to chaos in this general-
ized pilot-wave system with both oscillatory and harmonic
potentials. We consider a fixed spring constant k = 0.1 and
well-induced wave force coefficient Q = 0.3. We vary non-
dimensional parameters β and κ according to the vibrational
forcing acceleration γ /γF in a manner prescribed by Eq. (5).
We increase the forcing acceleration gradually and analyze
the stability of the resulting orbits. The transition to chaos for
smaller orbits is summarized in Fig. 4, where columns corre-
spond, respectively, to the particle’s trajectory, the radius as a
function of time, and frequency decomposition of the radius
signal.

We initialize the drop in a stable circular orbit of radius
r/λF = 0.5 and γ /γF = 0.94 and introduce a small non-
dimensional perturbation δx/λF = 0.01 at t = 0. We track the
drop radius as a function of time; for stable circular orbits,
the initial perturbation decays exponentially and the drop
radius tends to a constant. As γ /γF is increased gradually,
the circular orbit destabilizes. For γ /γF > 0.945, the ini-
tial perturbation grows exponentially until eventually settling
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FIG. 4. The first column corresponds to the simulated trajectories of walking droplets in a generalized pilot-wave framework with Q = 0.3, k = 0.1. A few
orbital periods are highlighted in red. The second column shows the radius of the drop as a function of time, with corresponding frequency spectrum presented
in the third column. (a) The onset of wobbling at γ /γF = 0.945, where the wobbling frequency is approximately twice the orbital frequency, f1 ≈ 2f0. Since
the emergent frequency is slightly less than twice the orbital frequency, the periodic trajectory precesses. (b) A second, incommensurate frequency f2 appears at
γ /γF ∼ 0.963, corresponding to small-amplitude modulations in wobbling. (c) γ /γF = 0.9667. (d) The wobbling state destabilizes when γ /γF > 0.9668, being
replaced by a chaotic trajectory characterized by a broadband frequency spectrum. We note that the transition to chaos occurs over a narrow range of �γ/γF ,
requiring high numerical precision beyond that attainable experimentally.
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40 80 120

FIG. 5. An orbit initialized at an unstable radial position (r0/λF ∼ 1.5) wobbles until settling onto a larger stable radius. The most stable orbits correspond
closely to the zeros of the Bessel function J1(x). (a) Trajectory of a single drop with κ = 0.14, β = 252.8, simulated from Eq. (4) with γ /γF = 0.97, Q = 0.3,
and k = 0.1, with time step �t/TM = 2−8 and total time tmax/TM = 120. The trajectory is color-coded according to drop speed. (b) The corresponding radius as
a function of time and (c) the probability distribution, p(r). The transient state is short-lived, with the drop locking onto the next largest orbital state (r/λF ∼ 2.5).

onto a non-linear wobbling state [Fig. 4(a)]. The orbital
radius wobbles periodically between two values, with a wob-
bling frequency f1 ≈ 2f0, where f0 is the orbital frequency.
When γ /γF ∼ 0.963 [Fig. 4(b)], a second, incommensurate
frequency f2 emerges in the power spectrum, with f2/f1 ≈
0.24. The lower frequency corresponds to the slow modula-
tion in the radius signal. The amplitude of the modulation
increases with γ /γF , reaching its maximal value at γ /γF =
0.9667 [Fig. 4(c)]. Finally, for γ /γF > 0.9668, the orbit

becomes chaotic, as suggested by the broadband frequency
spectrum shown in Fig. 4(d).

B. Emerging statistics

We may further explore the generalized pilot-wave
framework by altering the dependence of the pilot-wave
force β and the inertial coefficient κ parameters rela-
tive to those arising in the fluid system (κ ∈ (0, 1.5],
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FIG. 6. Transient approach to a stable orbit deduced numerically from the generalized pilot-wave framework. (a) A single drop with κ = 0.14, β = 252.8,
simulated from Eq. (4) with γ /γF = 0.98, Q = 0.3, and k = 0.1, with time step �t/TM = 2−8 and total time tmax/TM = 250. The trajectory is color-coded
according to drop speed. (b) Corresponding radius as a function of time and (c) probability distribution. During its long transient, the drop explores 6 orbitals
before locking onto the second largest (r/λF ∼ 4.5).
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FIG. 7. (a) Trajectory of a walker switching chaotically between unstable orbits, as obtained from simulations of our generalized pilot-wave framework. The
non-dimensional inertia κ̃ = 0.042 and pilot-wave force β = 152.8 were tuned to render all circular orbits unstable for Q = 0.3. The trajectory is color-coded
according to drop speed. (b) Radial position of the droplet as a function of time displays no periodicity. (c) The probability distribution p(r) of the drop,
calculated as the number of times it was found at radius r, normalized by 2πr and the total number of time steps. This probability distribution indicates the
relative instability of the unstable circular orbits. We note that p(r) saturates after approximately t/TM ∼ 200; thereafter, there is no significant change in the
wave-like structure of the statistics.

β ∈ [2, 500] for γ /γF < 0.985). In particular, we seek a
parameter regime characterized by unstable orbits between
which walkers switch chaotically. We focus on a pilot-
wave system in the large-β, low-κ regime, where the non-
dimensional wave force is significantly larger than the
non-dimensional inertial term. Physically, this corresponds
to a particle with lower mass than the droplets generat-
ing a relatively high-amplitude wave. Although not real-
izable in a hydrodynamic setting, this regime is known
to exhibit additional quantum features. For example, Oza
et al.27 show that hydrodynamic spin states characterized by
a drop spontaneously orbiting in its own wavefield14,28 are
stable in this regime.

At low forcing acceleration γ /γF = 0.95, corresponding
to β = 40.5, κ = 0.35 via Eq. (5), all orbits are stable, like
those shown in Fig. 3. As the forcing acceleration is increased,
circular orbits tend to become unstable. We note that smaller
orbits destabilize more rapidly, as seen in Fig. 5. In this case,

an orbit is perturbed from an initial radius r0/λF ∼ 1.5 at
γ /γF = 0.97 and the drop begins to wobble, with an ampli-
tude that increases until the drop reaches the next-largest
stable radius, r/λF ∼ 2.5. The growth of the wobbling ampli-
tude and eventual stabilization at the next orbital radius are
evident in the time series of r(t) reported in Fig. 5(b). We note
that wave-like statistics begin to emerge in the drop’s radial
position probability density function [Fig. 5(c)]; however, a
steady state is never reached, due to the eventual convergence
to the stable outer orbit.

In Fig. 6(a), we see a trajectory simulated at γ /γF =
0.98 (β = 252.8, κ = 0.14) where a structure of concentric
rings appears in the drop’s trajectory, indicating the pre-
ferred orbital radii. We track the drop’s radial position as a
function of time [Fig. 6(b)], which indicates that this radius
does not change monotonically; rather, the drop jumps from
small to large orbits and back again. The droplet eventu-
ally settles into a stable circular orbit of radius r/λF ≈ 4.5,

FIG. 8. (a) Non-dimensionalized wavefield of a bouncer at the origin, ηB(x)/AB, computed from Eq. (3) with xp(t) = 0. (b) A stable circular trajectory with
radius r/λF ∼ 4.5 obtained following the transient state shown in Fig. 6(a) is superimposed onto the convolution of a bouncer wavefield and the steady pdf,
given by a radial δ-function. (c) A radial section comparing the mean wavefield computed numerically to the convolution result [Eq. (9)], for a stable circular
trajectory after a time t/TM ∼ 50.
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FIG. 9. The statistics and mean wavefield of the trajectory shown in Fig. 7(a). (a) Probability density function for droplet position, μ(x), generated from
simulations of the generalized pilot-wave system [Eq. (4)] with non-dimensional drop inertia κ = 0.042, pilot-wave force β = 152.8 and wave-force parameter
Q = 0.3. The peaks of the wave-like statistics correspond to extrema of the well-induced potential. In this parameter regime, all circular orbits are unstable and
the drop switches chaotically between them. (b) The convolution of bouncer wavefield and the drop’s p.d.f.,24 ηB(x) ∗ μ(x) after t/TM = 800 is computed from
Eq. (8). It is indistinguishable from the mean wavefield computed numerically.

after approximately t/TM ∼ 170. The preferred radial posi-
tions during the transient motion are evident in the drop’s
radial probability density function shown in Fig. 6(c). The
preferred radii are half-integer multiples of the Faraday wave-
length (n + 1/2)λF , which correspond to those of stable orbits
at lower forcing accelerations.

We then lower the inertial non-dimensional coefficient
κ̃ = 0.7κ , while maintaining the pilot-wave force β as that
obtained from fluid parameters with γ /γF = 0.98. Specifi-
cally, κ̃ = 0.042 and β = 252.8. The simulated trajectories
are shown in Fig. 7(a). Once again, the concentric-ring struc-
ture in the particle trajectory highlights the preferred orbital
radii. In this case, however, all orbits are unstable, and
the droplet switches chaotically between them. We record
the orbital radius as a function of time [Fig. 7(b)] and the
corresponding radial probability distribution [Fig. 7(c)]. In
this chaotic regime, wave-like statistics emerge in the prob-
ability density function. The probability density function
(p.d.f.) saturates after approximately t/TM ∼ 200 indicating
the timescale of approach to a statistically steady state. There-
after, the p.d.f. reflects the relative instability of the unstable
circular orbits.

C. Mean pilot-wave field

Durey et al.24 demonstrated that, for unbounded sys-
tems such as this, the mean wavefield, η̄(x) = limt→∞∫ t

0 h(x, τ) dτ/t, is related to the emerging statistics through the
convolution:

η̄(x) =
∫
R2

ηB(x − y)μ(y) dy, (8)

where ηB(x) is the wavefield of a bouncer at the origin
[Fig. 8(a)] and μ(x) is the steady probability density func-
tion for the drop’s position. We proceed by verifying this
relationship numerically for both periodic and chaotic orbits
in our generalized pilot-wave framework.

We first consider the steady-state circular orbit that
emerges following the transient behavior depicted in Fig. 6(a).
In the case of a stable periodic circular orbit of radius r0 ∼
4.5λF [Fig. 8(b)], the radial probability distribution is given by
μ(x) = δ(|x| − r0)/2πr0. Since both the steady probability
distribution and bouncer wavefield are radially symmetric, we
may perform the required convolution [Eq. (8)] analytically in
polar coordinates:

η̄(r)

AB
=

∫
R2

J0[
√

r2 + ρ2 − 2rρ cos(θ)]δ(ρ − r0)

2πr0
ρ dρ dθ ,

where AB is the wave amplitude of a stationary bouncer. Using
the identity29

J0[
√

r2 + ρ2 − 2rρ cos(θ)] =
∞∑

m=0

εmJm(r)Jm(ρ) cos(mθ),

with ε0 = 1, εm = 2 for m 	= 0 yields the simple result

η̄(r) = ABJ0(r)J0(r0). (9)

The mean wavefield has the form of J0(r) and an amplitude
prescribed by the orbital radius r0. The resulting convolu-
tion field along with the generating circular path are shown
in Fig. 8(b). In Fig. 8(c), we compare the analytical convo-
lution result with the mean wavefield computed numerically.
The two are indistinguishable. We note that the prevalence
of circular orbits on the zeros of J0(r) reported in previ-
ous studies of orbital pilot-wave systems,6,7,14,16,20 in con-
junction with Eq. (9), suggests that such systems may be
acting to minimize their mean wavefield and so the system
energy.

For the chaotically-switching trajectory shown in
Fig. 7(a), we consider a time greater than the statistical relax-
ation time t > τS ∼ 200TM so that μ(x) has converged to
a statistically steady state. The steady probability distribu-
tion, μ(x) [Fig. 9(a)], is then convolved with the wavefield
of a bouncer, ηB(x), resulting in the mean wavefield η̄(x).
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FIG. 10. First column: mean wavefield η̄(x, t) for the chaotically-switching trajectory (Fig. 7). Second column: convolution of probability density function
μ(x, t) with stationary wavefield of a bouncer ηB(x). Third column: absolute error |η̄(x, t) − μ(x, t) ∗ ηB(x)|. Fourth column: the trajectory and associated
probability density function of the drop μ(x, t). Bright spots correspond to peaks in μ(x, t), as arise at trajectory crossings and points of slow drop motion. Color
bars denote relative probabilities. We track the evolution of these quantities as a function of time for (a) t/TM = 3.5, (b) t/TM = 8.2, (c) t/TM = 22.3, and (d)
t/TM = 34.0.

The wavefield computed numerically and the convolution
of the bouncer wavefield [Fig. 8(a)] with the probability
density [Fig. 9(a)], shown in Fig. 9(b), are in accord: the root-
mean square deviation computed point-wise between the two
fields is RMSD = 2.2 × 10−4 and decreases monotonically in
time.

We now consider the evolution towards the statistical
steady state. Specifically, we calculate the wavefield for the
chaotically-switching trajectory via Eq. (3) and compute the
resulting average wavefield numerically:

η̄(x, t) = 1

t

∫ t

0
h(x, τ) dτ . (10)

The average wavefield in Eq. (10) converges to that from
Eq. (8) over a time-scale τS/TM ∼ 200, the timescale of

statistical relaxation. In Fig. 10(a), we show the computed
mean wavefield η̄(x, t), the convolution between the bouncer
wavefield with the particle’s probability density function, the
absolute error between the two quantities, and the particle’s
probability density function μ(x, t) at time t/TM = 3.5. At
early times, there are discrepancies between the two fields,
since the mean wavefield is dominated by the most recent
impacts, and the particle has not explored a significant portion
of the domain. At t/TM = 8.2 [Fig. 10(b)], the two quantities
are qualitatively similar, with minor wave-like traces evident
in the absolute error in the vicinity of the walker. As the drop
explores a larger portion of the domain, as seen at later times
t/TM = 22.3 [Fig. 10(c)] and t/TM = 34.0 [Fig. 10(d)], the
two fields η̄ and ηB ∗ μ are effectively identical, with the error
between them tending to zero globally.
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V. DISCUSSION

We have explored the horizontal dynamics of walking
droplets subject to an attractive oscillatory potential. Exper-
iments of a droplet walking on the surface of a bath with a
topographically-induced Faraday wavefield demonstrate the
existence of stable quantized orbits with intra-orbital spacing
λF/2. The radial quantization was also observed in simula-
tions using an integro-differential trajectory equation with an
imposed oscillatory potential applied to model the influence
of the underlying wavefield. Similar orbital stability charac-
teristics were observed numerically in the parameter regime
explored experimentally.

We then considered a generalized pilot-wave system
where the magnitudes of the drop’s inertia κ and pilot-wave
force β may be tuned independently and altered relative to
those appropriate for the fluid system. We also added an
applied harmonic potential in order to obtain unstable cir-
cular orbits and the resulting transition to chaos. Circular
orbits were shown to destabilize into wobbling, precess-
ing, and finally, chaotic orbits. The transition from stable
circular orbits to chaos is reminiscent of the Ruelle-Takens-
Newhouse scenario.22,23,30 In this generalized framework,
there are regions in parameter space (κ , β) where all circular
orbits become unstable. In this regime, drops switch chaoti-
cally between them, as has been observed in numerous orbital
pilot-wave systems6,11,15,16,20 The corresponding probability
density for the drop’s radial position shows the emergence
of wave-like statistics that assume a stationary form after a
time-scale τS/TM ∼ 200.

We also confirmed numerically the result of Durey
et al.24 that the drop’s mean wavefield is related to the emer-
gent statistics via a convolution of the drop histogram with
the wavefield of a stationary bouncer for both periodic and
chaotic trajectories. We note that the existence of a unique
stationary statistical distribution is not guaranteed. However,
in the system considered herein, we demonstrated that such a
statistically steady state emerges over the statistical relaxation
time-scale τs ∼ 200TM .
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