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We present the results of a theoretical investigation of hydrodynamic spin states, wherein a droplet
walking on a vertically vibrating fluid bath executes orbital motion despite the absence of an applied
external field. In this regime, the walker’s self-generated wave force is sufficiently strong to confine
the walker to a circular orbit. We use an integro-differential trajectory equation for the droplet’s hor-
izontal motion to specify the parameter regimes for which the innermost spin state can be stabilized.
Stable spin states are shown to exhibit an analog of the Zeeman effect from quantum mechanics when
they are placed in a rotating frame. Published by AIP Publishing. https://doi.org/10.1063/1.5034134

An oil droplet may walk on the surface of a vertically
vibrated fluid bath, propelled by its self-generated wave-
field. The resulting hydrodynamic pilot-wave system has
received considerable attention from the scientific com-
munity, as it exhibits features that were once thought to
be peculiar to the microscopic quantum realm. We here
present the results of a theoretical investigation of hydro-
dynamic spin states, in which the walker executes circular
orbits in the absence of an external field. While spin states
have not yet been observed in the laboratory, we specify
the parameter regimes in which they could be stabilized in
a generalized pilot-wave framework.

I. INTRODUCTION

Millimetric oil droplets bouncing on a vibrating fluid bath
exhibit behavior reminiscent of quantum phenomena, such as
tunneling,1 orbital quantization2 and level-splitting,3 double
quantization in a harmonic potential,4 and quantum corrals.5

These “walkers” have recently attracted considerable interest
from the scientific community, as they offer an intriguing visu-
alization of wave-particle coupling on a macroscopic scale,
and represent the first realization of the pilot-wave dynam-
ics envisioned by Louis de Broglie. The interested reader
is referred to comprehensive review articles concerning this
hydrodynamic pilot-wave system.6,7

The experiments of Fort et al.2 and then Harris and Bush8

showed that droplets walking on a rotating bath execute cir-
cular orbits in the rotating frame of reference. Provided the
vibrational forcing of the bath is sufficiently large, the orbital
radii are quantized on the half-Faraday wavelength λF/2, with
λF being the wavelength of the surface waves generated by
the walker. Since the Coriolis force −2m� × ẋ acting on a
particle of mass m in a frame rotating with angular frequency
� is analogous in form to the Lorentz force −qB × ẋ act-
ing on a particle of charge q in a uniform magnetic field B,
Fort et al.2 proposed an analogy between the walker’s quan-
tized orbits and quantum mechanical Landau levels.9 Eddi
et al.3 extended the analogy using pairs of walkers orbiting
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each other in a rotating frame. Specifically, they found that
orbits rotating in the same sense as the bath had slightly
larger radii than counterrotating ones, the discrepancy increas-
ing roughly linearly as the bath rotation rate was increased.
This phenomenon is analogous to the Zeeman effect9 in quan-
tum mechanics, wherein an electron’s degenerate energy level
splits in the presence of a uniform magnetic field. Circular
orbits were also found to be quantized when the walker is
subjected to a harmonic potential.4

Building on the theoretical developments of Moláček
and Bush,10,11 Oza et al.12 developed an integro-differential
trajectory equation for a walker’s horizontal motion, which
exhibited good agreement13 with experimental data on orbital
trajectories in a rotating frame8 and harmonic potential.14

Multiple stable orbital solutions were found to coexist for
identical values of the applied external field and were sep-
arated by unstable solutions, which provides rationale for
the observed quantization of orbits. Moreover, Oza et al.13

demonstrated the possibility of hydrodynamic spin states,
wherein a walker executes uniform circular motion in its self-
induced wavefield despite the absence of an external force.
Solutions corresponding to such states were found to arise at
relatively large values of the bath’s forcing acceleration, when
the wave force is sufficiently strong to confine the walker.
However, these spin states were found to be unstable in the
parameter regime explored experimentally by Fort et al.2 and
Harris and Bush.8

Labousse et al.15 studied the stability of spin states both
experimentally and numerically. In their experiments, the
authors placed a walker in a harmonic potential, causing the
walker to execute a circular orbit with radius r0/λF ≈ 0.37.
They slowly turned off the harmonic potential and found that
the circular orbit could persist for up to six orbital periods in
the absence of an external force before destabilizing into a
rectilinear walking state. The authors then conducted numer-
ical simulations of the walker’s dynamics using a discrete-
time iterated map. They chose their simulation parameters
to roughly match those corresponding to their experiments
and found that spin states were stable above a critical value
of the bath forcing acceleration. These states persisted even
in the presence of a small amount of controlled noise,
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suggesting that the instability of spin states in their experi-
ments can be attributed to relatively large experimental noise.
The simulations also revealed the possibility of wobbling spin
states, wherein the orbital radius of curvature exhibits a tem-
poral oscillation incommensurate with the orbital frequency.

The work of Labousse et al.15 does not address the
stability of spin states analytically. Moreover, they do not
examine the dependence of the spin states’ stability proper-
ties on the orbital radius nor the experimental parameters. We
here use the integro-differential trajectory equation derived by
Oza et al.12,13 to assess the stability of spin states analytically
and thus determine the parameter regimes in which they are
stable and unstable.

The paper is organized as follows. In Sec. II, we review
the integro-differential trajectory equation and recast it in a
new dimensionless form. The existence and stability of spin
states is treated in Sec. III. A discussion of our results and
future directions is given in Sec. IV.

II. GENERALIZED PILOT-WAVE MODEL

Consider a droplet of mass m and radius R, in the pres-
ence of a gravitational acceleration g, bouncing on the surface
of a vertically vibrating bath of the same fluid. The fluid bath
has surface tension σ , density ρ, kinematic viscosity ν, and
depth H . It is subject to a vertical acceleration γ cos(2π ft) and
a uniform rotation of angular frequency � = �ẑ. Provided
γ < γF , with γF being the Faraday instability threshold,16

the surface of the bath remains flat. Following Moláček and
Bush,11 we assume that the drop is propelled by a wave force
proportional to the local slope of the wave field and resisted
by the drag induced during impact and flight. We also assume
the droplet to be a “resonant walker,” in that its bouncing
period TF = 2/f is equal to that of the least stable Faraday
mode of the fluid bath. Averaging the horizontal forces over
the bouncing period yields an integro-differential trajectory
equation12,13 for the walker’s horizontal position xp(t):

mẍp + Dẋp = −mg∇h[xp(t), t] − 2m� × ẋp,

h(x, t) = A

TF

∫ t

−∞
J0

[
kF

∣∣x − xp(s)
∣∣] e−(t−s)/TM ds,

(1)

where J0 is a Bessel function of the first kind. The drag coeffi-
cient D, memory time TM ,17 and wave amplitude A are given
by the formulas11

D = Cmg

√
ρR

σ
+ 6πμaR

(
1 + ρagR

12μaf

)
,

TM = Td

1 − γ /γF

and A =
√

8πνeTF

3

(kFR)3

3k2
Fσ/(ρg) + 1

sin 	. (2)

Here, Td is the viscous decay time of the surface waves in
the absence of forcing, C is a dimensionless drag constant, ρa

and μa are the density and dynamic viscosity of air, respec-
tively, νe is the bath’s effective kinematic viscosity,11 and
sin 	 is the sine of the droplet’s impact phase. The Faraday
wavenumber kF = 2π/λF may be approximated by the water-
wave dispersion relation (π f )2 = (gkF + σk3

F/ρ) tanh(kFH)

for this system11 and may generally be calculated using the
method presented by Kumar.18 Note that, as γ → γF from
below, the waves become progressively more persistent, so
the walker’s trajectory is influenced more strongly by its dis-
tant past. For the sake of simplicity, we neglect the effect
of spatial damping,19,20 which is the experimentally observed
exponential decay of the surface waves in the far field. We
also neglect the dependence of the impact phase sin 	 on both
the forcing acceleration γ and the instantaneous wave height
h[xp(t), t], an effect that has been shown to stabilize both the
orbital21 and promenade22 modes executed by pairs of walkers
in the absence of an external force.

We first nondimensionalize the trajectory equation using
the Faraday wavelength and memory time, and so let x →
kFx, t → t/TM , and � → 2m�/D in Eq. (1). We thus obtain
the dimensionless trajectory equation

κ ẍp + ẋp = −β∇h[xp(t), t] − � × ẋp,

h(x, t) =
∫ t

−∞
J0

[∣∣x − xp(s)
∣∣] e−(t−s) ds,

(3)

where κ = m/DTM and β = mgAk2
FT2

M /DTF .
A more convenient dimensionless form may be obtained

by noting that, in the absence of rotation (� = 0), the walking
threshold occurs at β = 2. That is, the critical forcing accel-
eration γ = γW above which the bouncing state xp(t) = 0
destabilizes into a steady walking state is12

γW

γF
= 1 −

√
mgAk2

FT2
d

2DTF
. (4)

Defining the dimensionless parameters

� = γ − γW

γF − γW
, κ0 = kF

(m

D

)3/2
√

gA

2TF
, (5)

we find that β = 2/(1 − �)2 and κ = κ0(1 − �). We thus
obtain the dimensionless trajectory equation6

κ0(1 − �)ẍp + ẋp = − 2

(1 − �)2
∇h[xp(t), t] − � × ẋp, (6)

where the equation for h is identical to that in Eq. (3). The
parameter � is a dimensionless forcing acceleration in the
interval 0 ≤ � < 1, with � = 0 being the walking threshold
and � = 1 the Faraday threshold. The parameter κ0 plays
the role of a dimensionless mass. We find that κ0 = O(1) for
the parameter values typically used in prior experiments.11,23

Specifically, for a walker of radius R ≈ 0.4 mm with impact
phase sin 	 ≈ 0.2 and drag factor C = 0.17, we find that
0.9 � κ0 � 2.2 for the parameter ranges 20 Hz ≤ f ≤ 80 Hz
and 20 cSt ≤ ν ≤ 50 cSt.

The advantage of Eq. (6) over Eq. (3) is that the fluid
parameters are all contained within the single parameter κ0.
The full range of � may be accessed simply by tuning the
dimensional forcing acceleration γ . This makes Eq. (6) ideal
for conducting parametric studies beyond the regimes encom-
passed by prior experiments or accessible in the laboratory.



096106-3 Oza, Rosales, and Bush Chaos 28, 096106 (2018)

III. EXISTENCE AND STABILITY OF SPIN STATES

Equation (6) admits orbital solutions xp(t) = r0(cos ωt,
sin ωt), wherein a walker executes uniform circular motion
in the rotating frame of reference. The orbital radius r0 and
frequency ω are solutions of the pair of algebraic equations13

− κ0(1 − �)r0ω
2 − �r0ω

= 2

(1 − �)2

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z dz, (7a)

r0ω = 2

(1 − �)2

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−z dz. (7b)

The first equation (7a) expresses the force balance in the radial
direction, which reflects a competition between the walker’s
inertia, the Coriolis force, and the radial component of the
wave force. The second equation (7b) expresses the force
balance in the azimuthal direction of motion, in which the
walker’s drag balances the propulsive wave force. The solu-
tions of Eq. (7) exhibit good agreement13 with experimental
data8 of orbital trajectories in a rotating frame. In particu-
lar, the orbital radii r0 are quantized provided the forcing
acceleration � is sufficiently large, an effect first observed
experimentally by Fort et al.2

Oza et al.13 observed that the solutions to Eq. (7) occur in
pairs (�, r0, ω) and (−�, r0, −ω), where ω and � have oppo-
site signs for moderate values of the forcing acceleration �.
They showed that, as � is increased progressively, these two
branches of solutions intersect at points for which � = 0,
which correspond to hydrodynamic spin states. We seek spin
state solutions by setting � = 0 in Eq. (7a). These solutions
may be classified by their behavior as � → 1 from below. In
this limit, it can be shown13,15 that there is a spin state solu-
tion with orbital radius r0 = ρn for each zero ρn > 0 of J0.
We neglect the spin state solutions corresponding to the zeros
of J1, as such states were previously shown to be unstable to
a non-oscillatory instability.13 The zeros of J0 are ordered as
0 < ρ0 < ρ1 < · · · , so n = 0 denotes the innermost spin state.
Each of these solutions persists for �n(κ0) ≤ � ≤ 1, where the
critical curves � = �n(κ0) are indicated by the solid lines in
Fig. 1. In order to find the spin states, we solve the equations
using an iterative root-finding program in Matlab with r0 = ρn

and ω = u0/r0 as the initial guess, where u0 is the free walk-
ing speed of a walker.12 As shown in Fig. 1, �n increases with
both orbit order n and dimensionless mass κ0, since a larger
wave force is required to sustain both larger orbits and orbiting
walkers with more inertia.

We now assess the stability of the spin state solutions
using the procedure described by Oza et al.,13 which we sum-
marize briefly. Equation (6) is linearized around the orbital
solution, and the linear equations are solved using Laplace
transforms. It was shown that the eigenvalues of the linear
stability problem are given by the roots of the function F(s),
whose functional form is given in the Appendix. As described
in the Appendix, we implement a numerical method based on
the argument principle from complex analysis to find the roots
of F(s) in the complex plane. The orbital solution is stable if
all of the roots satisfy Re(s) < 0 and is unstable otherwise.

FIG. 1. Existence and stability of spin states within the generalized pilot-
wave framework. The solid lines indicate the values of � = �n(κ0) above
which spin states exist, the colors denoting different orbit orders n. The solid
black region indicates the region of parameter space in which n = 0 spin
states are stable. The dashed vertical black lines indicate the values of κ0

corresponding to walkers of radius R = 0.4 mm, impact phase sin 	 = 0.2,
and drag factor C = 0.17, for two different values of kinematic viscosity ν

and forcing frequency f . These parameters correspond to those typically used
in experiments.11,23

Our stability analysis shows that there is a region in the
(κ0, �) plane for which n = 0 spin states are stable, indicated
by the black region in Fig. 1. As one crosses the stability
boundary into the unstable region, the spin states destabilize
via an oscillatory instability, as a complex-conjugate pair of
roots of F(s) crosses the imaginary axis. Our model (6) pre-
dicts that spin states for n ≥ 1 are unstable for all values of κ0

and �. The stability of the n = 0 spin states was confirmed by
numerically solving the trajectory equation (6), and the cir-
cular orbits were observed to persist over a simulation time
exceeding 300 orbital periods. The numerical method, which
is described in detail elsewhere,24 uses an Adams-Bashforth
fourth-order time-stepping scheme combined with Simpson’s
rule for the integration. The initial conditions for the walker xp

and the wave field h correspond to those defined by the orbital
solution in Eq. (7).

For the values of (κ0, �) corresponding to stable n = 0
spin states, we also observe an analog Zeeman effect, as
shown in Fig. 2. Specifically, with (κ0, �) fixed, we find
the solutions to Eq. (7) as functions of �. Since multiple
orbital solutions may exist for a single value of �, we sweep
the orbital radius r0 and find the corresponding values of
the orbital frequency ω and bath rotation rate � that sat-
isfy Eq. (7). The two branches in Fig. 2(a) are accessed by
changing the sign of the initial guess for ω, with ω > 0 cor-
responding to the left branch and ω < 0 to the right. The
solutions are color-coded according to their stability proper-
ties, as is determined by the root s∗ of F(s) with the largest real
part. Blue denotes stable orbits, for which Re(s∗) < 0. Red
denotes unstable orbits that undergo a non-oscillatory insta-
bility [Re(s∗) > 0, Im(s∗) = 0], and green denotes orbits that
undergo an oscillatory instability [Re(s∗) > 0, Im(s∗) 	= 0].
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FIG. 2. Analog of Zeeman splitting observed in a generalized pilot-wave the-
ory with κ0 = 0.1 and � = 0.75. The two spin states at � = 0, with orbital
frequencies ω > 0 and ω < 0, split into solutions of different radii r0 as the
dimensionless bath rotation rate � is increased from zero. The insets show
the wave fields h(x) (arbitrary units) corresponding to orbits for � = 0.02, as
given by Eq. (3), plotted in a reference frame rotating with the walker (black
dot). The orbital solutions are color-coded according to their stability, deter-
mined by the root s∗ of F(s) with the largest real part. Blue denotes stable
orbits, for which Re(s∗) < 0. Red denotes unstable orbits that undergo a non-
oscillatory instability [Re(s∗) > 0, Im(s∗) = 0], and green denotes orbits that
undergo an oscillatory instability [Re(s∗) > 0, Im(s∗) 	= 0].

The two n = 0 spin state solutions for � = 0 have the
same radius r0 and orbital frequencies of opposite signs,
ω = ±ω0. As shown in Fig. 2(b), the co-rotating solution
ω > 0 increases in radius as � is progressively increased from
zero, whereas the counter-rotating solution ω < 0 decreases in
radius, both solutions remaining stable for a range of � val-
ues. While this analog Zeeman effect was hypothesized by
Oza et al.,13 the corresponding orbital solutions were shown
to be unstable. Indeed, the value of κ0 ≈ 2 used in that work
was too large to support spin states, as it was based on the
experimental parameters reported by Harris and Bush.8 We
note that this splitting is similar in form to that reported by
Eddi et al.3 for orbiting pairs of walkers in a rotating frame.

Might it be possible to observe stable n = 0 spin states in
the laboratory? As shown in Fig. 1, the stability boundary for
these states is bounded by 0 ≤ κ0 < 0.2, which is far below
the values of κ0 explored in prior experiments. The effects of
air drag are typically small compared to the drag associated
with the transfer of the walker’s momentum to the bath,11

so we may approximate D ≈ Cmg
√

ρR/σ in Eq. (2). Com-
bining the formulas in Eqs. (2) and (5), we thus obtain the
approximation

κ2
0 ≈

√
2π

3g2C3

(
σ

ρ

)3/2 k5
FR3/2

3k2
Fσ/(ρg) + 1

√
νe

TF
sin 	. (8)

For deep-water capillary waves, kF ∝ f 2/3, so the value of
κ0 could readily be decreased by decreasing the forcing fre-
quency f . Indeed, Protière et al.25 have observed walkers
using a forcing frequency f = 35 Hz and a silicone oil with
kinematic viscosity ν = 100 cSt, which corresponds to the
value κ0 = 0.45 for R = 0.4 mm and sin 	 = 0.2. While this
value of κ0 is still too large to support spin states, one might
hope to find stable spin states by further decreasing the forcing
frequency.

IV. CONCLUSIONS

We have explored the possibility of realizing a hydrody-
namic analog of the classical model of the electron.26,27 We
have developed a generalized pilot-wave framework in order
to demonstrate that the innermost n = 0 spin states are theo-
retically stable, even if not readily accessible in the laboratory.
These states are stable provided the dimensionless mass coef-
ficient κ0 is sufficiently small and the dimensionless forcing
acceleration � is sufficiently large (Fig. 1). This regime could
possibly be accessed in the laboratory by decreasing the bath’s
forcing frequency f . Spin states for n ≥ 1 are found to be
unstable for all values of κ0 and �. When placed in a rotating
frame, the n = 0 spin states display an analog of the Zee-
man effect (Fig. 2), wherein two orbital solutions of the same
radius split into orbits with distinct radii.

Labousse et al.15 concluded that stable n = 0 spin states
might arise in an experimentally accessible regime; further-
more, their numerical simulations suggest the possibility of
wobbling spin states. Their conclusions are based on the
simulations of a discrete-time iterated map. We consider a
continuous-time integro-differential equation that enables the
assessment of the stability of orbital states. A future direction
would be to compare our results with those of a mathematical
stability analysis of spin state solutions to an iterated map.29

It has been shown that phase adaptation, wherein the
walker’s impact phase sin 	 varies with both the forcing
acceleration � and the instantaneous wave height h, is crucial
to stabilizing the orbital21 and promenade22 modes for inter-
acting pairs of walkers. We thus expect that spin states may
be stabilized by phase adaptation. The effect of spatial damp-
ing on the stability of spin states is also unclear. While both
effects could readily be studied by appropriate modifications
of the trajectory equation (6), new parameters would neces-
sarily be introduced, making a parametric study of spin state
stability prohibitive.

In the future, we plan to conduct a complete numer-
ical exploration of Eq. (6) for � = 0, with the goal of
identifying the parameter regimes in which wobbling spin
states and other self-induced quasiperiodic trajectories arise.
Such states would arise when the walker experiences a wave
force sufficiently large to confine its motion. We note that
the dissipation-dominated limit κ0 → 0 produces spin states
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for the largest range of �. In this regime, the walker’s
inertia is negligible and the trajectory equation (6) is first-
order in time. This parameter regime thus might be ideal
for exploring other hydrodynamic quantum analogs, such as
the double quantization of trajectories in radial extent and
angular momentum4,29,30 emerging in the presence of applied
potentials. The discrete-time theoretical model of Durey and
Milewski29 represents an efficient means to address this class
of problems.

ACKNOWLEDGMENTS

J.W.M.B. acknowledges the support of the National
Science Foundation (NSF; Grant Nos. DMS-1614043 and
CMMI–1727565). R.R.R. was partially supported by the NSF
(Grant Nos. DMS-1614043 and DMS-1719637).

APPENDIX: STABILITY OF ORBITAL SOLUTIONS

Consider a walker executing a circular orbit of radius
r0 and orbital frequency ω in a frame rotating with fre-
quency �. Oza et al.13 linearized the integro-differential
trajectory equation (6) around this orbital state and showed
that the eigenvalues of the linear stability problem correspond
to the roots of the function

F(s) = (1 − e−2π(s+1)/|ω|)[A(s)D(s) + B(s)C(s)], (A1)

where

A(s) = κ0(1 − �)s2 + s − κ0(1 − �)ω2 − �ω

− 2

(1 − �)2|ω|I
[

f (t) cos2 t

2
+ g(t) sin2 t

2

]

− 2

(1 − �)2|ω|L
[

g(t) sin2 t

2
− f (t) cos2 t

2

]
,

B(s) = [2ωκ0(1 − �) + �] s − [κ0(1 − �)ω + �]

− 1

(1 − �)2ω
L {[f (t) + g(t)] sin t} ,

C(s) = [2ωκ0(1 − �) + �] s + 2ω + κ0(1 − �)ω + �

− 1

(1 − �)2ω
L {[f (t) + g(t)] sin t} ,

D(s) = κ0(1 − �)s2 + s − 1

− 2

(1 − �)2|ω|L
[

f (t) sin2 t

2
− g(t) cos2 t

2

]
, (A2)

the functions f (t) and g(t) are defined as

f (t) = J1
(
2r0 sin t

2

)
2r0 sin t

2

e−t/|ω|, g(t) = J ′
1

(
2r0 sin

t

2

)
e−t/|ω|,

(A3)
and the integral operation I[f ] and Laplace transform L[f ] are
defined as

I[f ] =
∫ ∞

0
f (t) dt and L[f ] =

∫ ∞

0
f (t)e−st/|ω| dt. (A4)

We introduce the variable z = (s + 1)/|ω| and define the cor-
responding function F̃(z) as F̃(z) = F(s). To compute F̃(z)
efficiently, we use the fact that, if q(t) is a 2π -periodic

FIG. 3. Contour L in the complex z-plane used to evaluate Eq. (A6). The
contour is oriented counterclockwise, and the trivial roots of F̃(z) at z =
1/|ω| and z = 1/|ω| + i are indicated by the black dots. In principle, one
should take the limit R → ∞; in practice, we take R = 20 for the numerical
calculations in this paper.

function of t,

I [
q(t)e−t/|ω|] = 1

1 − e−2π/|ω|

∫ 2π

0
q(t)e−t/|ω| dt

and L [
q(t)e−t/|ω|] = 1

1 − e−2πz

∫ 2π

0
q(t)e−zt dt. (A5)

The integrals in Eq. (A2) may thus be computed on the
finite interval [0, 2π ]. Oza et al.13 also showed that F(s) has
trivial roots at s = 0 and s = ±iω (or z = 1/|ω| and z =
1/|ω| ± i) which correspond, respectively, to the rotational
and translational invariance of the orbital solution.

The orbital solution is stable if and only if all of the non-
trivial roots of F(s) satisfy Re(s) < 0, or, equivalently, the
roots of F̃(z) satisfy Re(z) < 1/|ω|. We assess the stability
of the orbital solution by employing the argument principle
from complex analysis. Specifically, we numerically compute
the quantity

N = Im

[
1

π

∫
L

F̃ ′(z)
F̃(z)

dz

]
, (A6)

where we use the fact that F̃(z) is real-valued on the real axis
Im(z) = 0, and the contour L is shown in Fig. 3. The solution
is stable if N = 0 and is unstable otherwise. An extension of
this method, as proposed by Delves and Lyness,31 allows us
to also locate the unstable eigenvalues, as was necessary for
Fig. 2.
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