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Promenading pairs of walking droplets: Dynamics and stability
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We present the results of an integrated experimental and theoretical investigation of
the promenade mode, a bound state formed by a pair of droplets walking side by side
on the surface of a vibrating fluid bath. Particular attention is given to characterizing the
dependence of the promenading behavior on the vibrational forcing for drops of a given
size. We also enumerate the different instabilities that may arise, including transitions to
smaller promenade modes or orbiting pairs. Our theoretical developments highlight the
importance of the vertical bouncing dynamics on the stability characteristics. Specifically,
quantitative comparison between experiment and theory prompts further refinement of the
stroboscopic model [A. U. Oza et al., J. Fluid Mech. 737, 552 (2013)] through inclusion
of phase adaptation and reveals the critical role that impact phase variations play in the
stability of the promenading pairs.
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I. INTRODUCTION

Consider a vibrating fluid bath subject to a vertical acceleration � = γ cos (2πf t). Provided γ <

γF , where γF is the Faraday threshold, the surface of the bath remains flat. Beyond γF , subharmonic
Faraday waves arise, with a wavelength prescribed by the standard water-wave dispersion relation [1].
Walker [2] discovered that a millimetric droplet may bounce indefinitely on such a surface provided
γ > γB , where γB < γF is the bouncing threshold. Protière et al. [3] discovered that, for a limited
parameter regime that depends on the fluid surface tension, viscosity, forcing frequency, and drop
size, there exists a walking threshold γW such that γB < γW < γF , above which the bouncing state
destabilizes into a walking regime. The droplet then self-propels through a resonant interaction with
its own wave field, executing a form of pilot-wave dynamics [4]. When γW � γ � γF , the waves are
quickly damped and the walking droplet, or walker, feels only the wave from the most recent impact.
As γ → γF from below, the waves are more persistent and the walker’s trajectory is influenced
by its distant past. The resultant path memory [5,6] is prescribed in terms of the memory time
TM = Td/(1 − γ /γF ), where Td ≈ (2νk2

F )−1 is the decay time of waves with Faraday wavelength
λF = 2π/kF in the absence of vibrational forcing and ν is the kinematic viscosity. Noting that TM is
a monotonically increasing function of γ /γF for γ < γF , we will henceforth refer to the ratio γ /γF

as memory. The walker system is remarkable in that, in the high memory limit of γ /γF → 1, it
exhibits certain features previously thought to be exclusive to the quantum realm [5,7–9]. Its relation
to quantum pilot-wave theories has been reviewed elsewhere [4,10,11].

For multiple-droplet systems, the global wave field is deduced from the superposition of the wave
fields generated by the individual droplets. Through this global wave field, the droplets may interact
and form bound states, such as lattices [12–14], orbiting pairs [3,15], and ratcheting pairs [16]. We
here focus our attention on the promenading state [3], wherein a pair of identical droplets walks in
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FIG. 1. Plan view of promenading pairs of order (a) N = 1, (b) N = 2, (c) N = 1.5, and (d) N = 2.5. The
black arrows indicate the direction of motion and white lines the droplet trajectories. Note that the drops bounce
in phase for integer N and out of phase for half-integer N . (e) Regime diagram [19] of different bouncing and
walking states for single drops, for 20 cSt silicone oil, and vibrational frequency f = 80 Hz, as a function of the
vibration number Vi = 2πf

√
ρR3/σ and dimensionless forcing acceleration γ /g, where g is the gravitational

acceleration. The walking regime is indicated in red, the bouncing regime in green and blue, and the Faraday
threshold γF = 4.2g. The region shaded in white corresponds to a drop of radius R = 0.38 ± 0.01 mm, for which
Vi = 0.793 ± 0.032. The dashed arrows indicate the range of forcing acceleration over which the transition from
the (2,1)2 to the (4,2) walking mode is expected to arise. The relevant variables are defined in Table I.

parallel while the distance between them oscillates periodically at frequencies low relative to the
bouncing frequency [17,18] (see Figs. 1 and 2).

Borghesi et al. [17] present a combined experimental and theoretical study of promenading pairs.
Their experiments demonstrated that the mean interdrop distances are quantized and approximated
by x̄N = (N − ε0)λF , where ε0 ≈ 0.4 is an offset and N denotes the order of the promenade
mode. We here adopt this notation, denoting promenaders bouncing in phase by N = 1,2,3, . . .

and those bouncing out of phase by N = 1.5,2.5,3.5, . . . . Borghesi et al. [17] reported that the mean
translational speed vN of a promenading pair in the N th mode increases monotonically with N . The
dependence of the promenading behavior on drop size and memory was not characterized. Their
experiments also prompted some theoretical developments. Specifically, the authors show that the
quantized distances x̄N reported in experiments correspond to the minima of the wave interaction
energy Hint, defined in terms of the amplitudes of the two wave fields generated by the walkers. They
also show that the difference between the steady kinetic energy of two free walkers and the same
pair bound in a promenade mode varies roughly linearly with Hint and interpret this as evidence that
either may be used as a diagnostic to rationalize the emergence of the various promenade modes.

In Sec. II we will systematically characterize the behavior of promenading pairs as a function of
memory. In Sec. III we will refine the stroboscopic model [22] and address its shortcomings in order
to rationalize the observed behavior. Specifically, we demonstrate the importance of bouncing phase
variations in stabilizing the promenading pairs.

II. EXPERIMENTS

A. Setup and methodology

The experiments were performed with the shaker system developed by Harris and Bush [23],
which minimizes the lateral vibration provided to the fluid bath and ensures the spatial uniformity
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FIG. 2. (a) Strobed trajectories of an N = 2 stable promenading pair. (b)–(d) Oblique view of the strobed
trajectory of an N = 1 promenade at different instants. The colors in the bath are due to the introduction of
a colored striped transparent film between the lighting source and bath, which facilitates visualization of the
surface deformations [20]. White lines indicate the trajectories of the droplets. See video 1 in [21].

of the Faraday threshold. We also employed a piezoelectric droplet-on-demand generator, which
produces droplets of known and repeatable size [24]. Preliminary experiments indicated that air
currents can significantly alter the trajectories of the promenaders [25]. We thus used a lid built from
optically clear acrylic. Four rotating paddles passing through the lid (see Fig. 3) are used to trap the
droplets in the holding pens prior to their simultaneous launch. The launcher consists of two channels
positioned such that the distance between their exits matches the average distance xN characteristic
of the desired promenade mode, as was approximated by the empirical formula provided by Borghesi
et al. [17]. A different launcher was constructed for each of the promenade modes N .

The fluid used in all experiments was silicone oil of kinematic viscosity ν = 20 cSt, density
ρ = 949 kg/m3, and surface tension σ = 20.6 × 10−3 N/m. The trajectories were recorded from
above with an Allied Vision Manta G-12 camera at 30 frames/s. The camera captured images
of 964 × 964 pixels, corresponding to a resolution of 7.25 pixels/mm. The resulting error in the
horizontal position of the droplet is ±0.14 mm. The depth of the fluid bath was 6 mm, the diameter of
the vessel 15.7 cm, and the forcing frequency f = 80 Hz. Note that a walker may bounce in different
vertical modes [6,19,26,27], depending on its size and the vibrational forcing γ /γF [Fig. 1(e)].
Different bouncing and walking states are denoted by (i,j )k , where i/f represents the period of
the bouncing mode, during which the droplet contacts the surface j times. The integer superscript
k increases with the state’s mean mechanical energy in the case of multiple (i,j ) bouncing states
[19,26,27]. The parameter regime considered here is indicated in Fig. 1(e). Specifically, we restrict
our attention to droplets of radius R = 0.38 ± 0.01 mm and consider only two bouncing modes: the
resonant walking mode (2,1)2 and its period doubled (4,2) mode.

The protocol used in the experiments is shown in Figs. 3(d)–3(f). The fluid bath was set into
vibration and γF measured every 45 min in order to keep track of the memory γ /γF . Two droplets
of identical size were created using the droplet generator [24]. The drop radii R were checked by
recording their free walking speed u0 and comparing with the known dependence [19] of speed on R.
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FIG. 3. (a) Top view of the lid, paddles, and launcher used to generate the N = 2 promenade mode. The red
curves indicate the trajectory of each of the droplets. (b) Schematic of one of the rotating paddles. (c) Oblique
view of the apparatus. (d)–(f) Protocol followed to generate the promenading pairs: (d) drop trapping, (e) release
of the droplets from the holding pens, and (f) emergence of the desired promenading pair.

Specifically, we kept only the drops with speeds between 8.2 and 8.6 mm/s for γ /γF = 0.9 ± 0.002,
corresponding to drops of radius R = 0.38 ± 0.01 mm. Once the droplet size was deduced, γ /γF

was set to the desired value and the droplets were trapped in the holding pens with the paddles
[Fig. 3(b)]. Using a strobe light, the relative bouncing phase of the trapped drops was deduced. If
it was as desired, the downstream gates were opened and the promenading pair released from the
launcher. If not, the phase of one of the drops was altered by perturbing it with one of the paddles
prior to release. After recording one promenade, the memory γ /γF was increased and the droplets
were trapped again in order to generate a new promenading pair.

B. Results

Stable promenaders for various N at a fixed value of memory are shown in Fig. 4. The duration of
the promenades was limited by the size of the vessel; consequently, we were obliged to define a stable
promenade as one that reached the opposite side of the vessel while maintaining the initial average
distance between drops (i.e., the same N ). According to this criterion, N = 3 and N = 3.5 were
always unstable for droplets of radius R = 0.38 mm. However, decreasing the drop size increased
the stability of the promenaders; for example, we were able to generate stable N = 3 modes with
drops of radius R = 0.35 mm [Fig. 4(e)]. We note that with smaller droplets forced just above the
walking threshold, it is possible to find stable promenaders with N > 3.5 [28].

The stability of the various promenading states with R = 0.38 mm is summarized in Fig. 5.
For each N , we report a critical memory above which the droplets escape their partner and
diverge. Evidently, promenaders with larger N become unstable at lower memories [see Fig. 5(a)].
This observation is consistent with the interaction force, specifically, the wave force due to
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FIG. 4. Different stable promenading trajectories found in experiments at γ /γF = 0.85 ± 0.01: (a) N = 1,
(b) N = 1.5, (c) N = 2, (d) N = 2.5, and (e) N = 3. Trajectories are colored according to instantaneous speed
|ẋi |, nondimensionalized by the free walking speed u0. All the promenaders were generated with a drop size of
R = 0.38 mm, except the N = 3 mode, for which R = 0.35 mm.

the presence of the companion droplet, decreasing with interdroplet distance xN . The smaller
promenading modes N = 1 and N = 1.5 remained stable until relatively high memories γ /γF =
0.99. These modes were found to be extremely robust, even to reflection off the border of the
vessel.
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FIG. 5. (a) Observed stability of the promenading pairs as a function of the forcing acceleration γ /γF

for drops of radius R = 0.38 mm. Green indicates stable promenaders. Red denotes drop splitting, with the
data points indicating values of γ /γF above which the trajectories diverge for N = 1 and 1.5 and below
which trajectories diverge for N = 3 and 3.5. Gray and blue denote consecutive and nonconsecutive cascades,
respectively. The horizontal line at γ /γF = 0.85 indicates the parameter regime explored in Fig. 4. (b)–(g)
Classification of the different observed behaviors. Arrows indicate the sense of motion. (b) Stable N = 2.5
promenade. (c) N = 2.5 promenade splitting. (d) Cascade from N = 2.5 to N = 1.5. (e) Cascade from an
N = 2 promenade to an N = 1 orbit. (f) Cascade from an N = 3.5 promenade to an N = 1.5 orbit. (g) Cascade
from the N = 3 to the N = 1 promenade mode, accompanied by a shift in direction. Trajectories are colored
according to speed.
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FIG. 6. Promenading trajectories for different values of γ /γF , colored according to the instantaneous drop
speed: (a)–(c) N = 1 and (d)–(f) N = 1.5. Arrows indicate the sense of motion. Trajectories are shown (a) and
(d) in the (2,1)2 walking mode, (b) and (e) just after the transition to the (4,2) walking mode, and (c) and (f)
that arise following the onset of chaos in the vertical dynamics.

The form of the promenading trajectories was also seen to depend on memory. Observed
promenading trajectory modes N = 1 and N = 1.5 for different values of γ /γF are provided in
Fig. 6. For memories above γ /γF = 0.95, a qualitative change in the trajectories was observed, in
that the amplitude of the oscillations decreases dramatically. Notably, this critical memory value
corresponds to that at which the vertical dynamics of single droplets exhibits a transition from the
(2,1)2 to the (4,2) walking mode [Fig. 1(e)], indicating the importance of vertical dynamics in the
promenading pairs. Finally, we note that promenaders arise even after the onset of chaos in the
vertical dynamics [Figs. 6(c) and 6(f)].

Video 2 in [21] reveals the marked difference in the vertical dynamics of the N = 1 promenade
mode bouncing in the (2,1)2 and (4,2) modes. In the (2,1)2 mode, droplets hit the bath at precisely the
same instant for integer values of N or apart by TF /2 for half-integer values. However, consecutive
bounces of ∼1.08TF and ∼0.92TF arise in the (4,2) mode. In order to maintain stability in the (4,2)
bouncing mode, the droplets evidently adjust their relative phase, no longer being purely in phase or
out of phase.

For the remainder of the paper, we adopt the convention that promenaders translate in the y

direction and oscillate in the x direction. As shown in Figs. 7(a)–7(c), the average distance between
droplets xN ≡ 1

TN

∫ TN

0 |x1(t) − x2(t)|dt , their mean speed uN ≡ 1
TN

∫ TN

0 |ẋ(t)|dt , and the period of
oscillation TN all increase with N for constant memory, where xi is the horizontal position of drop
i (i = 1,2). Note that the mean translational speeds vN ≡ 1

TN

∫ TN

0 ẋi(t) · ŷdt are always lower than
the corresponding free walking speed [Fig. 7(d)]. This is in accord with the observations of Borghesi
et al. [17], who interpreted this observation as evidence of an effective binding energy between
walkers. The periodic nature of the velocities is also evident in Figs. 4 and 6. While xN [Fig. 9(a)]
and TN (not shown) depend only weakly on γ /γF , vN depends strongly on memory, as is evident
in Fig. 7(d). Figures 7(e) and 7(f) show uN and vN for the promenades N = 1 and N = 1.5. The
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TN

 

TF

FIG. 7. Dependence of various promenade characteristics on the forcing acceleration γ /γF and mode N :
(a)–(c) dependence on N for γ /γF = 0.85 ± 0.01 and (d)–(f) dependence on γ /γF for the indicated values of
N . (a) Mean interdrop distance xN/λF . (b) Pair speed. Here uN denotes the mean total speed, vN the mean
translational speed, and u0 the free walking speed. (c) Period of oscillation TN/TF . (d) Dependence of the
mean translational speed vN on γ /γF for different promenade modes N = 1 through N = 2.5. Note that vN

increases monotonically with increasing N . The shaded regions indicate droplets in the (4,2) vertical mode and
the unshaded regions indicate the (2,1)2 mode. Data for each promenade mode are reported until the critical
memory at which it becomes unstable. Average drop speed uN and mean translational speed vN as a function
of γ /γF for modes (e) N = 1 and (f) N = 1.5.

change in behavior of uN at high memories is particularly evident, characterized by a diminution of the
oscillation amplitudes of the interdroplet distance [Figs. 6(b) and 6(e)], and arises as a consequence
of the transition in the bouncing mode from (2,1)2 to (4,2).

For large γ /γF and for promenade modes initialized with N > 1.5, after a few oscillations, the
initial promenade typically switched to a lower N promenade mode or alternatively to a lower N

orbiting pair. We refer to these transitions as the “promenade cascades,” examples of which are shown
in Figs. 5(d)–5(g). The larger the value of N , the lower the memory required to initiate the cascades,
as is evident in Fig. 5(a). During the cascades, the relative phase of the droplets was maintained.
Several different transitions were found: At memories close to the onset of cascades, the large N

mode typically decreased its order by one, changing to the N − 1 mode [Fig. 5(d)]. Following the
transition, the new promenading pair can either maintain the initial direction or veer off its original
path [see Fig. 5(g)]. At higher memory, a direct transition may arise to a lower (N − 2) promenade
mode or to orbital states.

III. THEORETICAL MODELING AND RESULTS

A. Stroboscopic model with impact phase adaptation

Consider two identical droplets of mass m and radius R, in the presence of a gravitational
acceleration g promenading on the surface of a vertically vibrating bath of the same fluid, of surface
tension σ , density ρ, and kinematic viscosity ν. The droplet’s horizontal positions are denoted by
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TABLE I. Variables and parameters appearing in the stroboscopic trajectory equation (1). Particular values
for our experiments and simulations are: R = 0.38 mm, ν = 20 cSt, ρ = 949 kg/m3, σ = 20.6 × 10−3 N/m,
f = 80 Hz, TF = 0.025 s, Td = 0.0182 s, kF = 1.32 mm−1, λF = 4.75 mm, m = 2.18 × 10−4 g, D = 3.12 ×
10−3 g/s and A = 0.0149 mm.

Variable Definition

xi(t) Horizontal position of drop i, (i = 1,2)
m,R, ρ, σ Drop mass, radius, density, surface tension
g Gravitational acceleration
γ,γF ,f Forcing acceleration, Faraday threshold and frequency
kF ,λF ,TF = 2/f Faraday wave number, wavelength, and period
Td Characteristic decay time of waves without forcing
TM = Td/(1 − γ /γF ) Memory time
(νe),ν (Effective [19]) kinematic viscosity
μa,ρa Air dynamic viscosity and density
ς = ±1 Relative phase of the droplets (+ denotes in-phase)

D = 0.33mg

√
ρR

σ
+ 6πμaR(1 + ρagR

12μaf
) Time-averaged drag coefficient [19]

A =
√

8πνeTF

3
(kF R)3

3B−1
w +1

, Bw = ρg

k2
F

σ
Wave amplitude [19], Bond number

�, S Impact phase and its sine

x1(t) and x2(t), respectively. As the droplets are assumed to be in resonance with the bath, bouncing
in the (2,1) mode, they can only bounce in phase (ς = 1) or out of phase (ς = −1). Each drop is
propelled by a wave force proportional to the local slope of the wave field and resisted by drag induced
during flight and impact [19]. Averaging the horizontal force on each droplet over the bouncing period
yields the trajectory equation

mẍi + D ẋi = −mgS(h̃i(xi ,t))∇hi(xi ,t) (1)

for i = 1 and 2, where D is the time-averaged drag coefficient, hi denotes the total wave field, h̃i is
the wave field generated by the companion droplet, andS(h̃i) = sin[�(h̃i)] is the sine of the droplet’s
impact phase �, which depends explicitly on h̃i . The remaining model parameters are defined in
Table I.

We note that the phase function S(h̃i) depends not on the total wave amplitude h but rather on
the amplitude of the wave generated by the neighboring walker h̃. It has been shown that single
rectilinear walkers may be adequately described by a stroboscopic trajectory equation [22] that
assumes constant phaseS . The promenading path of either drop may be viewed as a perturbation from
its rectilinear walking state, prompted by its partner. The perturbation induced by the neighboring
walker thus enters in two places: the wave height hi and the phase function S(h̃i) in Eq. (1).

The stroboscopic model of Oza et al. [22] is based on the assumption that the walker is in resonance
with the bath, so that the motion can be averaged over the bouncing period, the vertical dynamics
described by Moláček and Bush [19] thereby being effectively eliminated from consideration. The
impact phase � is defined by

sin � = 1

(mgTF )2

(∫ TF

0
F (t) sin(πf t)dt

)(∫ TF

0
F (t) cos(πf t)dt

)
, (2)

where F (t) is the vertical reaction force on the drop [27]. Calculation of � thus requires knowledge
of the time dependence of the reaction force during contact, which may be obtained by solving for the
vertical dynamics of the drop [27]. In order to rationalize the observed behavior of promenading pairs,
a necessary refinement of the stroboscopic model [22] is the inclusion of a wave-amplitude-dependent
impact phase. Including the dependence of impact phase on wave amplitude was previously shown
to be necessary to rationalize the stability of orbiting pairs [15].
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A derivation of the evolution of the wave field generated by one droplet walking on the surface
of a vibrating bath hi(x,t) is provided elsewhere [19]. The total wave field felt by the first droplet
may be obtained by superposition of the wave fields generated by each droplet impact:

h1(x,t) = A

TF

∫ t

−∞
[J0(kF |x − x1(s)|) + ςJ0(kF |x − x2(s)|)]e−(t−s)/TM ds, (3)

where A denotes the wave amplitude, J0 denotes the Bessel function of the first kind, and the wave
number has been approximated by the Faraday wave number kF , as is related to the driving frequency
f by the standard water-wave dispersion relation. The wave field felt by the second droplet may be
obtained by interchanging 1 ↔ 2 in the above expression. We note that ς = ±1 accounts for the
relative phase of the droplets. While spatial damping of the wave field has been shown to be significant
for orbiting pairs [15], we here neglect it for the sake of simplicity. This simplification may be
justified on the grounds that orbiting pairs execute periodic or quasiperiodic trajectories and remain in
confined regions of space, thus continuously reenforcing their self-generated wave field. Conversely,
promenaders move into previously unexplored regions, so one expects spatial damping to have a
relatively small effect. Indeed, the spatial damping term e−αr2/(t+TF ) used previously [15] may be ap-
proximated as e−αv2

N t for promenaders, which is subdominant to the exponential factor e−t/TM for the
characteristic parameter values [15] in our experiments: α ∼ 4 × 10−4 s/mm2, vN ∼ 10 mm/s, and
γ /γF � 0.95.

Introduction of the dimensionless variables x̂i = kF xi and t̂ = t/TM into Eqs. (1) and (3) yields
the dimensionless trajectory equation

κ x̂′′
i + x̂′

i = −βS(h̃i(x̂i ,t̂))∇hi(x̂i ,t̂),

h1(x̂,t̂) = TM

TF

∫ t̂

−∞
[J0(|x̂ − x̂1(ŝ)|) + ςJ0(|x̂ − x̂2(ŝ)|)]e−(t̂−ŝ)dŝ,

h̃1(x̂,t̂) = ςTM

TF

∫ t̂

−∞
J0(|x̂ − x̂2(ŝ)|)e−(t̂−ŝ)dŝ,

(4)

where κ = m/DTM and β = mgAk2
F TM/D are the dimensionless mass and memory force coeffi-

cients, respectively, primes denote differentiation with respect to t̂ , and the amplitudes h2 and h̃2 are
defined by replacing 1 ↔ 2. For the sake of clarity, we henceforth remove all carets.

We seek solutions in which two droplets walk in parallel straight lines characterized by the
interdrop distance xN and the translational speed vN of the pair’s center of mass. The pair is
assumed to walk parallel to the y axis, so trajectories take the form x1(t) = (−xN/2,vN t) and
x2(t) = (xN/2,vN t). Substituting this form into Eq. (4) yields a system of two algebraic equations

0 =
∫ ∞

0

J1
(√

x2
N + (vNz)2

)

√
x2

N + (vNz)2
e−zdz,

vN = βTM

TF

S
∫ ∞

0

⎛
⎝J1(vNz) + ς

J1
(√

x2
N + (vNz)2

)

√
x2

N + (vNz)2
vNz

⎞
⎠e−zdz. (5)

Given S = sin �, these equations may be solved for xN and vN . Here, following the procedure
introduced by Oza et al. [15], we use the experimental translational speeds vN as input and solve for
S and xN as functions of γ /γF and N [Fig. 8(b)]. Doing so reveals that the impact phase decreases
with forcing acceleration and increases with the promenade mode N . These trends are consistent
with those reported for orbiting pairs of droplets [15], where the impact phases were calculated using
the experimental orbital speed.
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FIG. 8. Impact phase adaptation. (a) Observed translational velocities used in the base state algebraic
equations (5). (b) Impact phases S = sin � provided by the base state equation (5), as a function of
the promenade mode N and memory γ /γF . (c) Best-fit curve for the phase dependence indicated in (b),
sin � = p3�

2
eff + p2�eff + p1, as a function of the effective forcing �eff = γ /γF − p4h̃. The parameter values

are p1 = 0.466, p2 = −1.679, p3 = 1.6705, and p4 = 0.251. (d) Simulation of an N = 2 promenade mode at
γ /γF = 0.84, with the time evolution of the impact phase S(t) indicated in the color bar.

Once the mean impact phase of the promenaders has been determined, we deduce a semiempirical
model for the dependence of the phase on the memory and the amplitude of the wave generated by
the neighboring walker

S = p3�
2
eff + p2�eff + p1, (6)

where �eff = γ /γF − p4h̃. In order to determine the constants pi , we use the least-squares method
in MATLAB to perform a fitting of the averaged phases provided by Eq. (5), where h̃ = h̃w ≡
TMς

TF

∫ ∞
0 J0(

√
x2

N + (vNz)2)e−zdz in Eq. (6) is computable once Eq. (5) has been solved. This
procedure yields the curve of best fit presented in Fig. 8(c).

Now that the dependence of S(�eff ) has been determined, it can be used in the stability analysis
and simulations of the trajectory equation (4). We thus model a time-dependent bouncing phase: As
the drops navigate the wave field, their impact phase changes. Figure 8(d) shows an example of the
predicted phase evolution for an N = 2 promenade mode.

B. Promenading pairs: Linear stability and simulations

In order to assess the stability of parallel straight-line walkers, we first solve Eq. (5) for the
base state distance xN and translational speed vN . We find that the distance between droplets xN is
quantized and comparable to the average distances observed experimentally [see Fig. 9(a)].

We then perform a linear stability analysis of two parallel straight-line walkers x1(t) =
(−xN/2,vN t) and x2(t) = (xN/2,vN t). We define new variables, the pair’s center of mass xc(t),
the interdrop half-distance r(t), and the angle θ (t) between the line connecting the walkers and the
x axis,

xc(t) = 1

2
[x1(t) + x2(t)], r(t)

(
cos θ (t)

sin θ (t)

)
= 1

2
[x2(t) − x1(t)]. (7)

In terms of the new variables, the base state assumes the form xc(t) = (0,vN t), r(t) = xN/2,
and θ (t) = 0. As detailed in the Appendix, we linearize the trajectory equation (4) around this
base state. We find that the Laplace transforms of the perturbations to the base state Xc(s) =
L[x̃c(t)], Yc(s) = L[ỹc(t)], R(s) = L[r̃(t)], and �(s) = L[θ̃ (t)] satisfy an algebraic equation of
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(2,1) (4,2)
N=1.5
N=1

N=2
N=2.5

FIG. 9. Comparison between theory and experiment for a drop of radius R = 0.38 mm. (a) Data showing
the dependence on γ /γF of the dimensionless average distance xN/λF and amplitude of oscillation (indicated
by error bars) for different promenade modes N colored according to the legend. Solid lines indicate results
of the numerical simulation of Eq. (4) with phase adaptation consistent with Eq. (6). Shaded regions indicate
maximum and minimum computed separation distance. (b) Stability characteristics predicted by the variable-
phase stroboscopic model (vertical bars), color coded according to the color scheme used in Fig. 5(a). The
background is shaded according to experimental observations. The predicted onset of transverse oscillations is
indicated for the N = 1 mode. Red lines indicate drop trajectories crossing, owing to shortcomings in modeling
the wave height near the droplet.

the form

(
M+(s) 0

0 M−(s)

)⎛
⎜⎜⎜⎝

R(s)

Yc(s)

Xc(s)

(xN/2)�(s)

⎞
⎟⎟⎟⎠ = c̃, (8)

where the elements of the 2 × 2 matrices M±(s) and vector c̃ are provided in the Appendix. The
problem of finding the eigenvalues of the linearized equation is equivalent [29] to finding the poles
s∗ of Xc(s), Yc(s), R(s), and �(s), or the zeros of det M±(s). Specifically, if all of the poles lie in the
left-half complex plane Re(s∗) < 0, the parallel straight-line solution will be linearly stable. If any
of the poles lie in the right-half complex plane Re(s∗) > 0, the solution will be linearly unstable. We
note that det M−(s) has a trivial double root at s = 0 and det M+(s) has a trivial single root at s = 0,
which together correspond to translational and rotational invariance of the base state. In order to
locate the nontrivial roots numerically, we use the contour integration method developed by Delves
and Lyness [30]. For the parameter values considered in our experiments, we find that det M−(s) has
no roots in the right-half complex plane, indicating that the parallel straight-line walkers are stable
to lateral and angular perturbations (x̃c and θ̃ , respectively). We thus focus our attention on the roots
of det M+(s), which indicate instabilities in the interdrop distance r and the position of the pair’s
center of mass yc.

We find that the base state goes unstable via a Hopf-type bifurcation in which a pair of eigenvalues
crosses the imaginary axis as γ /γF is increased, thus giving rise to an oscillatory instability. Our
results also reveal that phase adaptation shifts down the curve of the real part of the eigenvalues,
the decrement increasing with γ /γF . Conversely, the imaginary part of the eigenvalues is largely
unaffected. The same trends arose for all promenade modes N . Thus, phase adaptation is seen to
stabilize the promenading walkers. With the exception of N = 1, for which parallel straight-line
walking is linearly stable until γ /γF = 0.918, the linear stability analysis predicts complex unstable
eigenvalues for γ /γF � 0.8, whose real part increases with the driving acceleration, but remains
close to zero. These results suggest the possibility of finding stable oscillatory promenaders when
the full trajectory equation is solved instead of its linearized approximation.
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We thus proceed by solving Eq. (4) numerically, in order to deduce whether or not the nonlinear
terms have a stabilizing effect. We use a fourth-order Adams-Bashforth method together with
Simpson’s integration rule [31], with a dimensionless time step �t = 2−6. We initialize simulations
in the parallel straight-line walking state x1(t) = (−xN/2,vN t) and x2(t) = (xN/2,vN t) for t < 0. In
agreement with the linear stability analysis, our simulations indicate that side-by-side parallel straight
line walkers are stable for N = 1 for γ /γF < 0.918, above which the straight-line state destabilizes
into the promenade mode. The promenading solutions arising for N � 1 exist over a range of γ /γF

above 0.8. The stroboscopic model correctly captures the trends observed in experiments: Speeds
uN and vN increase with both N and memory. The larger the N , the lower the memory at which
the promenade mode destabilizes. The average distance and amplitudes of oscillation are also in
adequate agreement with the experimental values, as is evident in Fig. 9(a). The observed stability
characteristics and the corresponding numerical results are provided in Fig. 9(b). We find that, as
suggested by the linear stability analysis, introduction of phase adaptation into the model contributes
significantly to the stabilization of the promenading pairs. Indeed, promenaders are stable for a
considerably larger range of γ /γF when phase adaptation is included in the model, as was also
the case for orbiters [15]. In the absence of consideration of phase adaptation, the model predicts
in-phase cascades that appear at a γ /γF value ∼10% lower than in experiments. Moreover, the
model without phase adaptation fails to capture cascades for N = 2.5. Once again, the introduction
of phase adaptation has substantially improved the comparison between theory and experiment. We
note that in our theoretical analysis, we restricted our attention to γ /γF � 0.95. For larger values
of forcing, the walker transitions to (4,2) or chaotic bouncing states [26] where the stroboscopic
trajectory equation (4) is no longer expected to be valid.

While including the dependence of the impact phase on forcing acceleration and local wave
height improves the comparison with experiments, the match in Fig. 9(b) is still imperfect. First,
parallel straight-line walkers for N = 1 are predicted to be stable for γ /γF < 0.918, but were never
observed experimentally. Second, our theory underpredicts the critical values of γ /γF at which
the promenade modes become unstable, as shown in Fig. 9(a). We note that a similar trend was
apparent in our assessment of the stability of orbiting pairs [15]. These failings of our theory are
presumably due to shortcomings in the model of the wave field near the droplet. Finally, we do not
expect the dynamics at high memory to be adequately described by the stroboscopic model due to the
transition to more complicated bouncing states. Specifically, as indicated in Fig. 1(e), the experimental
results of Wind-Willassen et al. [26] indicate that drops with vibration number 2πf/

√
σ/ρR3 ≈

0.793 transition to a (4,2) bouncing state at γ /γF ≈ 0.93 and to a chaotic bouncing state for
γ /γF ≈ 0.97.

C. Interaction force between walkers

In an attempt to rationalize the cascade events, we consider the wave force acting on an individual
droplet, defined in dimensionless variables as

Fi(t) = −βS(h̃i(xi(t),t))∇hi(xi(t),t). (9)

Specifically, this represents the wave force that droplet i receives due to the wave field created by its
previous bounces plus the wave field due to the presence of its companion promenader. We proceed by
considering the x component of the wave force, which acts along the line connecting the two droplets.

Figure 10 shows that, when the droplets maintain a stable oscillatory promenade, the wave force
forms a hysteresis loop: The instantaneous force depends not only on the drops’ positions but on
whether they are moving inward or outward, the force being larger when the drops are moving
towards each other. As γ /γF is increased progressively, so too does the memory-induced hysteresis
[Fig. 10(a)]. Additionally, computations show that for a fixed value of memory, the wave force
due to the companion droplet becomes weaker as N is increased [Fig. 10(b)], which is consistent
with the observation of larger promenaders splitting at lower values of the γ /γF and having higher
translational velocity vN . While the analytical model presented by Borghesi et al. [17] represents the
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FIG. 10. (a) The x component of the force Fi(t), as defined by Eq. (9), exerted by the wave field on one of
the N = 3.5 promenading droplets as a function of its position x2(t) at different values of the memory γ /γF .
Note that the area inside the curves represents the work done by the x component of the wave force during one
oscillation period of the promenader. (b) The x component of the wave force as a function of the interdroplet
distance xN for out-of-phase promenaders at γ /γF = 0.83. (c) Cascade from N = 3.5 to N = 1.5. The red dot
represents the base state used in simulations.

force between promenaders as a linear spring, our findings highlight the shortcomings of doing so,
particularly in the high memory limit.

For each N � 2, our model predicts a critical value of γ /γF at which a bifurcation arises:
Promenading trajectories destabilize via an unstable spiral and transition to a stable promenade
mode at lower N , which corresponds to the cascades [gray and blue in Fig. 9(b)]. An example of
such a trajectory is shown in Fig. 10(c), which shows that the droplets transition from an N = 3.5
to an N = 1.5 promenade mode when the distance between droplets oscillates with amplitude ∼λF .
Physically, a droplet bound in a stable promenading state lies roughly in the trough of the wave
field created by its companion. For the cascades, the interaction force on the droplets is evidently
sufficiently large to enable them to escape to a trough corresponding to a lower N value.

Figure 10(a) demonstrates that the horizontal wave force applied on a promenading droplet grows
with γ /γF , as does the area enclosed by the force-displacement curve, which corresponds to the
work done by the x component of the wave force. Attempts to rationalize the relative stability of
the different promenade modes by calculating this work as a function of γ /γF were unsuccessful.
Following Borghesi et al. [17], we define the binding energy of the bound state asWbind = Wp − 2Ww,
where Wp represents the work done by the wave force on a promenading pair and Ww the work done
by the wave force on an identical free walker over the same time interval TN , specifically,

Wp =
∫ TN

0
[F1(t) · ẋ1(t) + F2(t) · ẋ2(t)]dt, Ww =

∫ TN

0
F1(t) · ẋ1(t)dt. (10)
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Had there been a change in the relative magnitudes of the binding energies of the various promenading
states with γ /γF , one would expect this to indicate a shift in their relative stability. However, we did
not find such changes, suggesting that the smaller promenaders are the most stable regardless of the
value of γ /γF .

While the binding energy of the promenading pairs, as defined in Eq. (10), provides a measure of
the work done in confining the drop’s horizontal motion, it fails to provide rationale for the stability
of the various promenading states, specifically, the dependence of their relative stability on memory.
The failings of this binding energy as a useful diagnostic of the relative stability of the promenading
states arises because the dominant energies in the system are associated with the drop’s vertical
dynamics, as evidenced by the fact that the vertical drop velocities are roughly ten times higher than
their horizontal counterparts. We thus conclude that the work done by the wave field in the horizontal
direction is negligible relative to that associated with the accompanying modulation of the drop’s
vertical dynamics, which is not considered in the stroboscopic model. A more complete treatment of
the energetics which incorporates bouncing phase variations is beyond the scope of the present work.

IV. CONCLUSION

We have extended the observations of Borghesi et al. [17] by characterizing the role of memory on
the stability of promenading pairs of walking droplets. We observed that the larger the N , the lower
the memory at which the promenade destabilization occurs. We also reported that at sufficiently
high memory, the largest promenaders may spontaneously cascade to smaller bound states, either
promenaders or orbiters. Finally, we observe that large N > 3.5 promenaders may be achieved for
relatively small droplets.

We also found that small promenaders, N = 1 and N = 1.5, maintain stable oscillatory motion
even at high memory, where they enter the (4,2) or a chaotic bouncing mode and continuously adapt
their relative phase while maintaining a bound state. Our study provides evidence that the (4,2)
bouncing mode has a stabilizing effect on the promenading pairs; specifically, once the pair enters
the (4,2) mode, it remains stable until relatively high memory. Moreover, promenading pairs formed
by relatively small drops maintain a stable interaction until higher memory, presumably because the
transition to the (4,2) mode occurs at relatively low values of γ /γF [see Fig. 1(e)].

In order to rationalize our experimental findings, the dependence of impact phase on local wave
amplitude had to be considered. We did so by adopting a semiempirical formula for �(h̃) in the
stroboscopic model (4). This phase adaptation was shown to have a stabilizing effect on promenade
modes and so to improve substantially the match between theory and experiments. The promenading
trajectories predicted by numerical simulations of the resulting variable-phase stroboscopic model
correctly capture the main experimental features: The distance between droplets is quantized and in
good agreement with experimental values, and translational velocities increase with N . The model
also captures the promenade cascades, in which promenading pairs transition to smaller N or into
circular orbits. However, promenaders at high memory in the (4,2) or chaotic bouncing modes could
not be adequately captured, as the stroboscopic model assumes a resonant (2,1)2 vertical bouncing
mode. A general treatment of walker dynamics in which both spatial damping and phase adaptation
are modeled is left for future work.

Borghesi et al. [17] limited their analytical work to the low memory limit, specifically, they
consider only the influence of the last impact. While their numerical simulations incorporated the
walkers’ histories, their analytical model represented the interaction force as a linear spring: The
force depended only on the instantaneous distance between droplets. Our study demonstrates the role
that memory-induced hysteresis plays in modeling the promenaders at higher memories [Fig. 10(a)].
It has also highlighted the importance of vertical dynamics, specifically, bouncing-phase adaptation
in stabilizing promenading pairs, a feature not previously considered [17,18].

This exploration of the promenade mode, in conjunction with the recent study of orbiting pairs
[15], indicates that the role of variable impact phase is significant in the stabilization of bound states
formed by droplet interactions. Phase-dependent bouncing is likewise expected to play a role in
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stabilizing the circular orbits of single droplets, either in isolation [4,22,32] or in the presence of an
external force [5,9,29,33–35]. Indeed, for walker motion both in a rotating frame and in the presence
of a harmonic potential, wobbling circular orbits were far more prevalent in experiment [9,33] than
was indicated by the linear stability theory developed from the stroboscopic model without phase
adaptation [29,34]. Developing a more general description of the dependence of the phase on the
wave amplitude and memory is left for future work. Finally, consideration of the energetics of the
system may provide a new rationale for the relative stability of the promenade modes [17] and, more
generally, for the emergence of bound states in multidroplet systems. An analysis of the energetics
of single and multiple bouncer and walker systems is also left for future work.
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APPENDIX

We here assess the linear stability of the side-by-side walking state. To this end, we substitute
the expressions x1(t) = (−xN/2,vN t) + x̃1(t)H (t) and x2(t) = (xN/2,vN t) + x̃2(t)H (t) into the
trajectory equation (4) and retain terms at leading order in the perturbations x̃i(t), where xN and vN

are defined in Eq. (5) and H (t) is the Heaviside function. To simplify the notation, we define the
function f (r,t) = TM

TF
J0(r)e−t and the functions

f0(z) = f
(√

x2
N + (vNz)2,z

)
, f1(z) =

fr

(√
x2

N + (vNz)2,z
)

√
x2

N + (vNz)2
, f2(z) = frr

(√
x2

N + (vNz)2,z
)
,

g1(z) = fr (vNz,z)

vNz
, g2(z) = frr (vNz,z). (A1)

We also use the fact that Eq. (5) can be written as(
0
vN

)
= −βS(h̃w)

∫ ∞

0

[
g1(z)

(
0

vNz

)
+ ςf1(z)

(
xN

vNz

)]
dz (A2)

where h̃w = ς
∫ ∞

0 f0(z)dz, and note that

∇
(

g(|x|)
|x| x

)
= g(|x|)

|x| I +
(

g′(|x|) − g(|x|)
|x|

)
xx
|x|2 , (A3)

where I is the identity matrix. We obtain the linearized equation

κ ¨̃x1 + ˙̃x1 = ςvNS ′

S

(
0
1

) ∫ t

−∞
f1(z)

(−xN

vNz

)
· [x̃1(t) − x̃2(s)H (s)]ds

−βS
∫ t

−∞

(
g1(z) 0

0 g2(z)

)
[x̃1(t) − x̃1(s)H (s)]ds

− ςβS
∫ t

−∞
f1(z)[x̃1(t) − x̃2(s)H (s)]ds

− ςβS
∫ t

−∞

f2(z) − f1(z)

x2
N + (vNz)2

(
x2

N −xNvNz

−xNvNz (vNz)2

)
[x̃1(t) − x̃2(s)H (s)]ds, (A4)
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where z = t − s, and both S and S ′ ≡ ∂S/∂h̃ are evaluated at h̃w. The analogous equation for x̃2

is obtained by interchanging x̃1 ↔ x̃2 and replacing xN → −xN in Eq. (A4). Taking the Laplace
transform of both sides of Eq. (A4) and assuming that x̃i(0) = 0, we obtain(

A−(s) B−(s)

B+(s) A+(s)

)(
X1(s)

X2(s)

)
= c, (A5)

where X i(s) = L[x̃i(t)] ≡ ∫ ∞
0 x̃i(t)e−st dt and c = κ(ẋ1(0)

ẋ2(0)). The 2 × 2 matrices A±(s) and B±(s)
are defined as

A±(s) = (κs2 + s)I − ςvNS ′

S

∫ ∞

0
f1(z)

(
0 0

±xN vNz

)
dz − βSL−

[(
g1(t) 0

0 g2(t)

)]

+ ςβS I
∫ ∞

0
f1(z)dz + ςβS

∫ ∞

0

f2(z) − f1(z)

x2
N + (vNz)2

(
x2

N ±xNvNz

±xNvNz (vNz)2

)
dz,

B±(s) = ςvNS ′

S L
[
f1(t)

(
0 0

±xN vN t

)]
− ςβS IL[f1(t)]

− ςβSL
[

f2(t) − f1(t)

x2
N + (vN t)2

(
x2

N ±xNvN t

±xNvN t (vN t)2

)]
,

(A6)

where L±[g(t)] ≡ ∫ ∞
0 g(t)(e−st ± 1)dt .

To simplify Eq. (A5), we introduce the center-of-mass variables

xc(t) = 1

2
[x1(t) + x2(t)], r(t)

(
cos θ (t)
sin θ (t)

)
= 1

2
[x2(t) − x1(t)]. (A7)

Perturbations around the base state are defined through the formulas xc(t) = (0,vN t) + x̃c(t), r(t) =
xN/2 + r̃(t), and θ (t) = θ̃ (t) and are thus related to the perturbations x̃i(t) by the equation (x̃1

x̃2
) = Jq,

where

q(t) =

⎛
⎜⎝

r̃

ỹc

x̃c

(xN/2)θ̃

⎞
⎟⎠, J =

(−Z Z
I I

)
, Z =

(
1 0
0 −1

)
. (A8)

Defining Q(s) = L[q(t)] and c̃ = J−1c, Eq. (A5) may be written as M(s) Q(s) = c̃, where

M(s) = J−1

(
A−(s) B−(s)
B+(s) A+(s)

)
J =

(
A1 − B1 A2 + B2

A2 − B2 A1 + B1

)
, (A9)

with A1 = (A+ + Z A− Z)/2, A2 = (A+ − Z A− Z)/2, B1 = (B+ Z + Z B−)/2, and B2 = (B+ Z −
Z B−)/2. Since A2 = B2 = 0, A1 = A+, and

B1(s) = ςvNS ′

S L
[
f1(t)

(
0 0
xN −vN t

)]
− ςβSZL[f1(t)]

− ςβSL
[

f2(t) − f1(t)

x2
N + (vN t)2

(
x2

N −xNvN t

xNvN t −(vN t)2

)]
, (A10)
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M(s) assumes the block diagonal form M(s) = (M+(s) 0
0 M−(s)), where the 2 × 2 matrices M±(s)

have matrix elements

M±
11 = κs2 + s − βSL−[g1(t)] ± ςβSL±

[
f2(t)x2

N + f1(t)(vN t)2

x2
N + (vN t)2

]
,

M±
12 = ∓ςβSL∓

[
f2(t) − f1(t)

x2
N + (vN t)2

xNvN t

]
,

M±
21 = ∓ςvNxNS ′

S L±[f1(t)] ± ςβSL±

[
f2(t) − f1(t)

x2
N + (vN t)2

xNvN t

]
,

M±
22 = κs2 + s − βSL−[g2(t)] ± ςvNS ′

S L∓[f1(t)vN t] ∓ ςβSL∓

[
f2(t)(vN t)2 + f1(t)x2

N

x2
N + (vN t)2

]
.

(A11)
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[19] J. Moláček and J. W. M. Bush, Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave
theory, J. Fluid Mech. 727, 612 (2013).

[20] V. Prost, J. Quintela, D. M. Harris, P.-T. Brun, and J. W. M. Bush, Proceedings of the 68th
Annual Meeting of the APS Division of Fluid Dynamics (APS, Ridge, 2015), Vol. 60, No. 21,
http://meetings.aps.org/link/BAPS.2015.DFD.M33.2.

[21] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.013604 for
videos. Video 1 shows a pair of walkers in the N = 1 promenade mode, strobed at nearly the bouncing
frequency. A colored striped transparent film between the lighting source and bath facilitates visualization
of surface deformations. Video 2 shows walkers in the N = 1 promenade mode. Left video: Walkers execute
the (2,1)2 bouncing mode at forcing acceleration γ /γF = 0.90 ± 0.01. Right video: Walkers execute a
(4,2) bouncing mode at forcing acceleration γ /γF = 0.96 ± 0.01.

[22] A. U. Oza, R. R. Rosales, and J. W. M. Bush, A trajectory equation for walking droplets: Hydrodynamic
pilot-wave theory, J. Fluid Mech. 737, 552 (2013).

[23] D. M. Harris and J. W. M. Bush, Generating uniaxial vibration with an electrodynamic shaker and external
air bearing, J. Sound Vib. 334, 255 (2015).

[24] D. M. Harris, T. Liu, and J. W. M. Bush, A low-cost, precise piezoelectric droplet-on-demand generator,
Exp. Fluids 56, 83 (2015).

[25] G. Pucci, D. M. Harris, L. M. Faria, and J. W. M. Bush, Walking droplets interacting with single and double
slits, J. Fluid Mech. 835, 1136 (2018).
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[27] J. Moláček and J. W. M. Bush, Drops bouncing on a vibrating bath, J. Fluid Mech. 727, 582 (2013).
[28] M. Couchman (private communication).
[29] A. U. Oza, D. M. Harris, R. R. Rosales, and J. W. M. Bush, Pilot-wave dynamics in a rotating frame: On

the emergence of orbital quantization, J. Fluid Mech. 744, 404 (2014).
[30] L. M. Delves and J. N. Lyness, A numerical method for locating the zeros of an analytic function,

Math. Comput. 21, 543 (1967).
[31] A. U. Oza, Ø. Wind-Willassen, D. M. Harris, R. R. Rosales, and J. W. M. Bush, Pilot-wave hydrodynamics

in a rotating frame: Exotic orbits, Phys. Fluids 26, 082101 (2014).
[32] M. Labousse, S. Perrard, Y. Couder, and E. Fort, Self-attraction into spinning eigenstates of a mobile wave

source by its emission back-reaction, Phys. Rev. E 94, 042224 (2016).
[33] D. M. Harris and J. W. M. Bush, Drops walking in a rotating frame: From quantized orbits to multimodal

statistics, J. Fluid Mech. 739, 444 (2014).
[34] M. Labousse, A. U. Oza, S. Perrard, and J. W. M. Bush, Pilot-wave dynamics in a harmonic potential:

Quantization and stability of circular orbits, Phys. Rev. E 93, 033122 (2016).
[35] L. D. Tambasco, D. M. Harris, A. U. Oza, R. R. Rosales, and J. W. M. Bush, The onset of chaos in orbital

pilot-wave dynamics, Chaos 26, 103107 (2016).

013604-18

https://doi.org/10.1017/jfm.2013.280
https://doi.org/10.1017/jfm.2013.280
https://doi.org/10.1017/jfm.2013.280
https://doi.org/10.1017/jfm.2013.280
http://meetings.aps.org/link/BAPS.2015.DFD.M33.2
http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.013604
https://doi.org/10.1017/jfm.2013.581
https://doi.org/10.1017/jfm.2013.581
https://doi.org/10.1017/jfm.2013.581
https://doi.org/10.1017/jfm.2013.581
https://doi.org/10.1016/j.jsv.2014.09.015
https://doi.org/10.1016/j.jsv.2014.09.015
https://doi.org/10.1016/j.jsv.2014.09.015
https://doi.org/10.1016/j.jsv.2014.09.015
https://doi.org/10.1007/s00348-015-1950-6
https://doi.org/10.1007/s00348-015-1950-6
https://doi.org/10.1007/s00348-015-1950-6
https://doi.org/10.1007/s00348-015-1950-6
https://doi.org/10.1017/jfm.2017.790
https://doi.org/10.1017/jfm.2017.790
https://doi.org/10.1017/jfm.2017.790
https://doi.org/10.1017/jfm.2017.790
https://doi.org/10.1063/1.4817612
https://doi.org/10.1063/1.4817612
https://doi.org/10.1063/1.4817612
https://doi.org/10.1063/1.4817612
https://doi.org/10.1017/jfm.2013.279
https://doi.org/10.1017/jfm.2013.279
https://doi.org/10.1017/jfm.2013.279
https://doi.org/10.1017/jfm.2013.279
https://doi.org/10.1017/jfm.2014.50
https://doi.org/10.1017/jfm.2014.50
https://doi.org/10.1017/jfm.2014.50
https://doi.org/10.1017/jfm.2014.50
https://doi.org/10.1090/S0025-5718-1967-0228165-4
https://doi.org/10.1090/S0025-5718-1967-0228165-4
https://doi.org/10.1090/S0025-5718-1967-0228165-4
https://doi.org/10.1090/S0025-5718-1967-0228165-4
https://doi.org/10.1063/1.4891568
https://doi.org/10.1063/1.4891568
https://doi.org/10.1063/1.4891568
https://doi.org/10.1063/1.4891568
https://doi.org/10.1103/PhysRevE.94.042224
https://doi.org/10.1103/PhysRevE.94.042224
https://doi.org/10.1103/PhysRevE.94.042224
https://doi.org/10.1103/PhysRevE.94.042224
https://doi.org/10.1017/jfm.2013.627
https://doi.org/10.1017/jfm.2013.627
https://doi.org/10.1017/jfm.2013.627
https://doi.org/10.1017/jfm.2013.627
https://doi.org/10.1103/PhysRevE.93.033122
https://doi.org/10.1103/PhysRevE.93.033122
https://doi.org/10.1103/PhysRevE.93.033122
https://doi.org/10.1103/PhysRevE.93.033122
https://doi.org/10.1063/1.4964350
https://doi.org/10.1063/1.4964350
https://doi.org/10.1063/1.4964350
https://doi.org/10.1063/1.4964350



