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Millimetric droplets may walk across the surface of a vibrating fluid bath, propelled forward by
their own guiding or “pilot” wave field. We here consider the interaction of such walking droplets
with a submerged circular pillar. While simple scattering events are the norm, as the waves become
more pronounced, the drop departs the pillar along a path corresponding to a logarithmic spiral. The
system behavior is explored both experimentally and theoretically, using a reduced numerical model
in which the pillar is simply treated as a region of decreased wave speed. A trajectory equation valid
in the limit of weak droplet acceleration is used to infer an effective force due to the presence of
the pillar, which is found to be a lift force proportional to the product of the drop’s walking speed
and its instantaneous angular speed around the post. This system presents a macroscopic example of
pilot-wave-mediated forces giving rise to apparent action at a distance. Published by AIP Publishing.
https://doi.org/10.1063/1.5031022

A small droplet can bounce indefinitely on a vibrated liq-
uid bath and move horizontally through interactions with
its own wave field. In the absence of boundaries, these
walking droplets walk in a straight line at a constant
speed. In the present study, we demonstrate that the pres-
ence of a submerged circular pillar can dramatically alter
the trajectory through its influence on the droplet’s guid-
ing wave field. Specifically, the wave-mediated interaction
between the submerged pillar and the droplet can lead to
simple scattering events or to the droplet departing the
pillar along a logarithmic spiral.

I. INTRODUCTION

The logarithmic spiral is a self-similar curve arising in
myriad settings in nature and classical mechanics. It has fas-
cinated generations of scientists, including Jacob Bernoulli,
who referred to the form as Spira Mirabelis and requested that
it be inscribed on his gravestone. Logarithmic spirals arise
naturally in the form of nautilus shells, the seed patterns in
the heart of the sunflower and the arms of spiral galaxies. They
may also arise in pursuit problems, for example, when a hawk
pursues its prey while maintaining a fixed angle to its flight
path.1 When a spinning ball in flight maintains a constant
angular speed while decelerating due to form drag, the result-
ing form is a logarithmic spiral.2 Dirac’s classical theory of
radiating electrons predicts that an electron will follow a log-
arithmic spiral in the presence of a uniform magnetic field.3

We here report an unexpected new example of the emergence
of a logarithmic spiral in a hydrodynamic pilot-wave system.

Couder et al.4 discovered that a millimetric drop placed
on the surface of a vibrating bath may interact with its own
wave field in such a way as to walk steadily across the
bath.5 The resulting “walkers” are spatially extended objects
comprising both droplet and accompanying guiding or “pilot”

wave. By virtue of their spatial delocalization, the walk-
ers exhibit several dynamical features previously thought to
be peculiar to the microscopic realm, including tunneling,6,7

quantized orbits8,9 and orbital level splitting in a rotating
frame,10 doubly quantized orbits in a harmonic potential,11,12

and wave-like statistics in confined geometries.13–15 The sys-
tem has recently been reviewed and its relation to the mod-
ern extensions of de Broglie’s double-solution pilot-wave
mechanics explored.16,17 We here demonstrate that pilot-
wave-mediated local forces can give rise to apparent action at
a distance when the walking droplets interact with submerged
circular barriers.

II. EXPERIMENTAL SETUP

In our experiments, a bath of silicon oil of viscosity ν =
20 cSt, density ρ = 950 kg m−3, and surface tension σ = 20
mN/m was vibrated sinusoidally at frequency f = ω0/2π =
80 Hz with peak acceleration γ [see Fig. 1(a) and Ref. 18 for
details]. The bath is of diameter 16 cm and is surrounded by
a shallow border of width 9 mm and depth 1 mm that serves
to damp waves locally. The bath acceleration γ is always
below the Faraday threshold γF ≈ 4.2 g, at which the interface
becomes unstable to a field of Faraday waves with wave-
length λF prescribed by the standard water-wave dispersion
relation.19 Consequently, the bath would remain quiescent in
the absence of the droplet. Droplets of radius R are generated
using piezoelectric actuation.20 The corresponding vibration
number ω0/

√
σ/(ρR3) ranges from 0.67 to 0.81 in our study

and prescribes the relative magnitudes of the driving acceler-
ation and the drop’s natural frequency.21,22 The oil layer has
depth h0 everywhere except above the pillar, where the depth
is h1. The pillar diameter, d , is varied from 1 mm to 15 mm.
A submerged droplet “launcher” guides the droplet toward
the pillar.23 Previous studies have indicated the importance
of working in a isolated environment to avoid the influence of
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FIG. 1. (a) A fluid bath vibrates vertically with acceleration γ sin ω0t. The
depth of the bath varies from h0 in the deep region to h1 over the pillar.
(b) Trajectories of a walking droplet interacting with a submerged pil-
lar of diameter d = 1 mm at a fixed vibrational forcing γ /γF = 0.98. For
these data, R = 0.38 mm, h0 = 10 mm, and h1 = 0.3 mm. (c) Dependence of
scattering angle θ on impact parameter δ.

ambient air currents,23 so we use a sealed transparent lid on
the vibrating container.

III. SCATTERING

For the smallest pillar examined, d = 1 mm, pure scat-
tering trajectories were observed [Fig. 1(b)]. The scattering
angle θ , defined as the deviation from the incoming trajectory,
decreases monotonically with increasing impact parameter
δ defined as the perpendicular distance between the initial
droplet path and the pillar center [Fig. 1(c)]. For head-on
collisions δ � 0, the drop is deflected such that θ > 90◦. The
scattering angle then rapidly decreases with increasing δ. For
the largest impact parameters considered, δ � 3.5λF , the drop
still interacts with the pillar, and θ � 10◦, underscoring the
relatively long-range dynamical influence of the pillar as com-
municated by the droplet’s pilot wave field. We note that the
observed behavior might be characterized in terms of elastic

scattering, insofar as the incoming and outgoing drop speeds
are identical. While the scattering behavior observed for the
smallest pillar suggests that the effect of the pillar is repul-
sive, we shall proceed by demonstrating that, for larger pillars,
an initial repulsion may be followed by an attractive tethering
phase.

IV. THE LOGARITHMIC SPIRAL

Figure 2(a) illustrates the trajectories arising from scatter-
ing from a pillar with diameter d = 5 mm for a fixed impact
parameter and different values of γ /γF ranging from 97% to
99%. In all cases, the drop is initially repelled by the pillar,
from a point of closest approach rmin that depends weakly on
γ /γF . Thereafter, the drops follow a logarithmic spiral with
constant radial velocity vr, azimuthal velocity vθ , and speed

|v| =
√

v2
r + v2

θ . The parametric equation for the trajectory is

r(θ) = rmine
vr
vθ

(θ−θ0), (1)

FIG. 2. (a) Observed variation of droplet trajectories as the dimensionless
vibrational acceleration, γ /γF , increases from 97% to 99%. Pillar diameter
is d = 5 mm. (b) Individual trajectories are fitted to a logarithmic spiral with
pitch angle α = arctan(vr/vθ ). The time evolution of (c) the drop’s distance
from the pillar center and (d) the droplet speed. When locked onto the spiral
trajectory, the droplet moves at a nearly constant speed corresponding to its
free walking speed u0. Drop diameter, R = 0.34 mm, h0 = 5.24 mm, h1 =
0.46 mm. In (b)–(d), γ /γF = 0.995.



096105-3 Harris et al. Chaos 28, 096105 (2018)

FIG. 3. Surface topography measurements26 of a bouncing droplet with
radius and driving acceleration γ /γF = 0.995 interacting with a pillar with
diameter d = 10 mm. The time interval between consecutive images is
1.625 s. The white line indicates the trajectory traced out by the walking
droplet, which changes from rectilinear motion to curvilinear motion along
a logarithmic spiral. Images correspond to the bath at its maximum verti-
cal displacement. R = 0.38 mm, h0 = 10 mm, h1 = 0.3 mm. Reprinted by
permission from RightsLink Permissions Springer Customer Service Centre
GmbH: Springer Nature, Damiano et al., Exp. Fluids 57(10), 163 (2016).
Copyright 2016.26

where r(θ0) = rmin denotes the radius at which the drop
locks onto the spiral. The ratio of the radial and azimuthal
speeds prescribes the spiral’s pitch angle α = arctan(vr/vθ )

[see Fig. 2(b)]. The tighter the spiral, the smaller α. Beyond
a critical escape radius, or tethering length rmax, the pillar
no longer influences the droplet, which resumes its rectilin-
ear free walking state. In Fig. 2(b), we compare the trajectory
observed for γ /γF = 0.995 to a logarithmic spiral of the form
(1) with pitch angle α � 7.8◦ as inferred from speed measure-
ments (vr = 0.96 mm s−1 and vθ = 6.9 mm s−1). We note that
the instantaneous angular speed of the drop around the pillar,
� = vθ /r, decreases as 1/r given the constancy of vθ .

The pillar affects the droplet’s trajectory exclusively
through its influence on the pilot wave field. It is thus illumi-
nating to measure the evolution of the wave field during the
droplet-pillar interaction using the surface synthetic Schlieren
technique.25,26 In Fig. 3, we report the surface topography of
a drop interacting with a pillar of diameter d = 10 mm. Note
that the peak amplitude of the waves, 10 μm, is reduced to
less than 1 μm above the pillar. The abrupt change of the wave
properties above the pillar is a key feature of this problem to
be captured in our numerical simulations. Note also the band
of relatively intense wave activity on the “tethering line” that
may be drawn between the droplet and the pillar.

We proceed by characterizing how the features of such
spirals depend on the system parameters. In Fig. 4(a) we
show the dependence of the pitch angle α on γ /γF for the
experimental trajectories displayed in Fig. 2(a). While chang-
ing γ has little effect on the drop speed |v|, it does alter
the relative magnitudes of vr and vθ . The pitch angle is thus
found to decrease with increasing γ /γF , so the spiral becomes
tighter as the waves become more pronounced. We note that
the case of a circular trajectory, which would correspond to
pillar-induced trapping of the droplet, was not achieved in our
experiments.

In Fig. 4(a), we also report the dependence of the tether-
ing length rmax on γ /γF . We note that the abrupt increase in
rmax above γ /γF = 0.982 is likely related to the rapid increase
in the spatial extent of the pilot-wave field of the walker as
the Faraday threshold is approached.24 In Fig. 4(b), we see
the effect of varying the impact parameter δ while holding all
other parameters constant. Within the range bounded by the
dashed lines in Fig. 4(b), we see that all trajectories obtained
experimentally may be collapsed onto a single spiral by sim-
ple rotation about the center of the pillar [Fig. 4(c)]. The pitch
angle α is thus independent of δ for a pillar of a given size.
However, the pitch angle does depend on the diameter d of the
pillar. In Fig. 4(d), we show three trajectories observed exper-
imentally with different d . The smaller the pillar, the smaller
α. For d = 3 mm, the droplet executes a complete revolution
around the pillar as it drifts away from it, wobbling around
the spiral. Once again, the trapping of droplets onto a circular
orbit was not observed for any pillar size or driving acceler-
ation. Since further decreasing d ultimately leads to simple
scattering events, one can infer that there is a pillar size at
which the pitch angle will obtain a minimum value, allowing
for the longest possible spiral.

In order to avoid the influence of the bath’s outer
boundaries, as may become significant for the largest spirals
observed in our laboratory study, we employ the numerical
model of Faria,27 which is able to reliably treat walker-
boundary interactions. The model was built from the the-
oretical model of walking droplets developed by Moláček
and Bush21,28 and from the wave-field modeling of Milewski
et al.24 and has been benchmarked against experiment for
walker-boundary interactions in a number of settings.23,27,29

Our simulations indicate that the pitch angle and tethering
length rmax are only weakly dependent on pillar depth h1 over
the range considered [Figs. 4(e) and 4(f)]: all trajectories lock
onto the same spiral, with their time on the spiral increasing as
h1 decreases. Our simulations also show that the escape radius
rmax decreases with h1 [Fig. 4(f)]. We note that rmax is indepen-
dent of the impact parameter δ provided the drop locks onto a
spiral. Our numerical simulations also demonstrated that the
spiral induced by a square pillar is similar to that of a circular
pillar with the same diameter, suggesting that the spiral and
its features are not strongly sensitive to the pillar shape.

We now seek to infer the pillar-induced force. Moláček
and Bush21,28 developed a theoretical model for the motion of
a drop on a vibrating bath that rationalizes the reported bounc-
ing and walking behaviors.22,30 By averaging the forces on
the walking droplet over the bouncing period, they developed
a trajectory equation describing the drop’s horizontal motion
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FIG. 4. (a) Observed dependence of pitch angle α and maximum tethering distance rmax on driving acceleration, γ /γF , at fixed pillar depth h1 = 0.3 mm for a
pillar of diameter d = 5 mm. (b) Trajectories within the tethering range, obtained by varying the impact parameter δ, all collapse onto a single spiral (c) upon
rotation. Here, γ /γF = 0.99 and d = 5 mm. (d) Spirals obtained experimentally with three different pillar diameters (d = 3, 5, 15 mm) at the same γ /γF = 0.99
indicate that the pitch angle decreases with increasing d. (e) Computed trajectories for a pillar of diameter d = 10 mm, obtained with different pillar depths h1.
(f) Computed dependence of pitch angle α and maximum tethering distance rmax on pillar depth h1. In all simulations, R = 0.38 mm, h0 = 6 mm, γ /γF = 0.99.

that was recast in an integro-differential form by Oza et al.31

Bush et al.17 examined the resulting “stroboscopic” model in
the limit of weak droplet acceleration, allowing them to recast
the trajectory equation in a temporally local form that is valid
in the absence of submerged topography. Specifically, asymp-
totic expansion of the wave force in the weak-acceleration
limit demonstrates that the drop motion may be described in
terms of the mechanics of a particle with a speed-dependent
mass mγB(v) and a nonlinear drag force Dw(v) that drives it
toward its free walking speed u0.32 We describe the overall
effect of the pillar on the drop as an instantaneous force Fp

and so write
d(mγBv)

dt
+ Dw(v) v = Fp, (2)

where the dependence of the speed-dependent “boost factor”
γB(v) > 1 and the nonlinear drag coefficient Dw on the system
parameters may be found in Ref. 17.

When the drop walks at its free speed, v = u0, the drag
coefficient vanishes Dw(u0) = 0. Consequently, since |v| =
u0 along the spiral, we may describe the walker in terms of

the inviscid dynamics of a particle whose mass depends on its
speed. Specifically,

mγB
dv
dt

= Fp. (3)

Inserting trajectory equations consistent with the parametric
Eq. (1) and the constancy of vr and vθ , specifically r(t) =
vrt + rmin and θ(t) = vθ /vr ∗ ln(vrt + rmin) + θ0, into Eq. (3)
reveals a remarkably simple form for the pillar-induced force:

Fp = mγB� × v, (4)

where � = (vθ /r)k̂ is the instantaneous angular velocity of
the drop around the pillar and k̂ is the upward unit vector nor-
mal to the undisturbed free surface. We note that, despite the
circular symmetry of the system geometry, the pillar-induced
force Fp is not radial, but rather orthogonal to the drop trajec-
tory at all times. The lift force so inferred is thus equivalent
in form to a Coriolis force acting on the droplet with boosted
mass mγB.
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V. CONCLUSION

We have characterized the impact of a walking droplet on
a submerged pillar. While the effect of relatively small pillars
is to repel the oncoming drop, leading to a simple scattering
event, an unexpected effect arises for larger pillars. Specifi-
cally, the droplet locks onto a logarithmic spiral whose form
is largely independent over a range of impact parameters, but
whose pitch angle decreases with γ /γF and pillar size. The
boost equation17 has allowed us to infer that, through its influ-
ence on the pilot wave field, the pillar induces a lift force Fp =
mγB� × v, where � is the instantaneous angular velocity of
the pillar around the post. The analogous form of the Corio-
lis force acting on a mass in a rotating frame and the Lorentz
force acting on a charge in a uniform magnetic field8 invites
the identification of an electromagnetic analog for our system.
Dirac’s classical theory of radiating electrons predicts that an
electron will spiral inwards along a logarithmic spiral in the
presence of a uniform magnetic field.3 The outward spirals
reported here would presumably arise for the case of elec-
tron motion in a uniform magnetic field if the electrons were
absorbing energy from their environment (and so maintaining
a uniform speed) rather than radiating energy into it.

The pilot-wave dynamics of the walking drops are local
in that the instantaneous force acting on the drop is determined
by the local wave form at the point of impact. However, the
dynamics might also be interpreted as non-local in both space
and time in the sense that the wave form at the point of impact
depends on both the walker’s history and its environment.30

The logarithmic spiral discovered here provides a new macro-
scopic example of how a local pilot-wave dynamics can give
rise to the inference of a nonlocal force, or how pilot-wave-
mediated local forces can give rise to apparent action at a
distance.
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22Ø. Wind-Willassen, J. Moláček, D. M. Harris, and J. W. M. Bush, “Exotic
states of bouncing and walking droplets,” Phys. Fluids 25(8), 082002
(2013).

23G. Pucci, D. M. Harris, L. M. Faria, and J. W. M. Bush, “Walking droplets
interacting with single and double slits,” J. Fluid Mech. 835, 1136–1156
(2018).

24P. A. Milewski, C. A. Galeano-Rios, A. Nachbin, and J. W. M. Bush, “Fara-
day pilot-wave dynamics: Modelling and computation,” J. Fluid Mech.
778, 361–388 (2015).

25F. Moisy, M. Rabaud, and K. Salsac, “A synthetic schlieren method for the
measurement of the topography of a liquid interface,” Exp. Fluids 46(6),
1021 (2009).

26A. P. Damiano, P.-T. Brun, D. M. Harris, C. A. Galeano-Rios, and
J. W. M. Bush, “Surface topography measurements of the bouncing droplet
experiment,” Exp. Fluids 57(10), 163 (2016).

27L. M. Faria, “A model for Faraday pilot waves over variable topography,”
J. Fluid Mech. 811, 51–66 (2017).
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