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A millimetric droplet may bounce and self-propel on the surface of a vertically vibrating bath, where
its horizontal “walking” motion is induced by repeated impacts with its accompanying Faraday wave
field. For ergodic long-time dynamics, we derive the relationship between the droplet’s stationary
statistical distribution and its mean wave field in a very general setting. We then focus on the case
of a droplet subjected to a harmonic potential with its motion confined to a line. By analyzing the
system’s periodic states, we reveal a number of dynamical regimes, including those characterized
by stationary bouncing droplets trapped by the harmonic potential, periodic quantized oscillations,
chaotic motion and wavelike statistics, and periodic wave-trapped droplet motion that may persist
even in the absence of a central force. We demonstrate that as the vibrational forcing is increased
progressively, the periodic oscillations become chaotic via the Ruelle-Takens-Newhouse route. We
rationalize the role of the local pilot-wave structure on the resulting droplet motion, which is akin
to a random walk. We characterize the emergence of wavelike statistics influenced by the effective
potential that is induced by the mean Faraday wave field. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5030639

A droplet may walk on the surface of a vertically vibrat-
ing fluid bath, propelled by the waves generated from
all previous impacts. This hydrodynamic pilot-wave sys-
tem exhibits many features that were previously thought
to be exclusive to the quantum realm, such as tunnel-
ing, emergent statistics, and quantized droplet dynamics.
We herein derive the relationship between the droplet’s
statistical distribution and the accompanying mean pilot-
wave in a very general setting. When the droplet is subject
to a central force with its motion confined to a line, we
rationalize a number of regimes, including periodic quan-
tized oscillations, chaotic motion, and the emergence of
wavelike statistics. In particular, we demonstrate that the
mean-pilot-wave potential has a controlling influence on
the droplet’s dynamics at high vibrational forcing, where
the resultant droplet motion is similar to a random walk.

I. INTRODUCTION

A millimetric droplet may bounce on the surface of a
vertically vibrating bath of the same fluid; the thin air layer
separating the droplet from the bath during impact prevents
coalescence.1,2 Each impact excites a field of temporally
decaying Faraday waves, whose longevity depends on the
reduced acceleration � = Aω2

0/g, where A is the shaking
amplitude, ω0/(2π) is the frequency, and g is the gravitational
acceleration. As � increases, the bouncing may destabilize to
horizontal “walking” across the bath, whereby the droplet is
propelled at each impact by the slope of its associated Fara-
day wave field3 [see Fig. 1(a)]. The decay time of the Faraday
waves increases with � for � < �F , where the Faraday thresh-
old �F is the critical vibrational acceleration at which Faraday

waves arise in the absence of a droplet. This decay time results
in a “path-memory” of previous impacts, where the mem-
ory timescale is inversely proportional to the proximity of the
Faraday threshold �F .4 The resulting dynamics are similar in
many respects to the pilot-wave dynamics envisaged by de
Broglie as a physical framework for understanding quantum
mechanics.5

The pilot-wave dynamics of this hydrodynamic system
gives rise to quantumlike features in a number of settings,
and so has prompted the investigation of several hydro-
dynamic quantum analogs.6–10 The Faraday wavelength λF

plays a fundamental role in all of the hydrodynamic quantum
analogs, imposing a lengthscale on the interaction between
droplets, yielding a discrete set of quantized states for orbit-
ing pairs,3,11–15 promenading pairs,15–17 and multi-droplet
strings.18 When a walker is confined to a corral, a wavelike
statistical pattern emerges.19,20 A recent study has shown that
the statistical wave form is similar to the time-averaged pilot-
wave,21 but a quantitative relationship between the two was
not found. Deducing such a relationship represents one of the
key contributions of our study.

Further quantum analogies arise when the droplet is sub-
ject to either a central or a Coriolis force, where the latter is
realized experimentally in a rotating bath. In both cases, the
Faraday wavelength imposes a radial quantization of circular
orbits at high wave memory,22–24 whose stability have been
analyzed theoretically.15,25,26 As the circular orbits destabi-
lize, a new family of stable exotic orbits emerges, revealing a
range of extremely rich dynamics.24,27 In particular, the orbits
obtained under a central force exhibit a double quantization in
their mean radius and angular momentum, yielding a remark-
able analogy to quantum mechanics. The radial quantization
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may be rationalized in terms of the energy minimization of the
mean Faraday wave field, whose form is determined by the
orbital symmetry of each eigenstate.24 In the chaotic regime
arising at high vibrational forcing, a complicated switch-
ing process arises between the system’s underlying orbital
states.28 Statistical techniques have demonstrated that the
double quantization is still present in the droplet’s chaotic
dynamics.15,29

The tendency of the walker system to self-organize into
quantized dynamical states was demonstrated by Perrard et
al.24,28 and Labousse et al.30 The conceptual value of decom-
posing the instantaneous pilot-wave field into its mean and
fluctuating components was further stressed by Labousse.31

The merit of this decomposition in connecting the dynam-
ics and statistics of pilot-wave systems is demonstrated here
through consideration of a relatively simple geometry.

The complex structure of the exotic (non-circular) orbits
has to date prohibited a comprehensive theoretical investiga-
tion of their dynamics in the periodic and chaotic regimes.
Such a study is likely to shed new light on the quantumlike
behavior and the role of the mean wave field in the long path-
memory limit. To develop the techniques required for such
an analysis, we focus this work on the dynamics in a har-
monic potential where the droplet motion is restricted to a line
and accompanied by a two-dimensional wave field [Fig. 1(a)].
This system exhibits extremely rich dynamics and analogies
to quantum mechanics, whilst remaining simple enough to
form the basis of a theoretical investigation that provides a
foundational mathematical framework for future studies of
more geometrically complex systems.

In the classical harmonic oscillator mx′′(t) + κx(t) = 0
with spring constant κ , a particle of mass m enters into sim-
ple harmonic motion with fixed frequency ω = √

κ/m. The
energy of the particle varies continuously with the initial
conditions, and the motion is entirely deterministic. Con-
versely, in quantum mechanics, the particle energy E is
quantized with En = �ω(n + 1/2) (where � is the reduced
Planck’s constant and n ∈ N), where for each energy level
there is an associated probability distribution for the parti-
cle’s position. In what follows, we will demonstrate that the
dynamics of the hydrodynamic pilot-wave system vary from
classical to quantumlike, depending on the relative magni-
tudes of the wave and central forces. At low wave amplitude,
the balance of wave and drag forces yields a stable limit cycle,
whose oscillation amplitude and period vary continuously

with the spring constant. When the waves dominate, the sur-
viving pilot-wave from previous crossings of the bath causes
significant variations in the droplet velocity, yielding quan-
tized droplet range and wavelike statistics for the droplet
position. The quantization length is λF/2, and our study
reveals that the Faraday wavelength also plays a pivotal role
in the chaotic dynamics emerging near the Faraday threshold.

We herein apply the model of Durey and Milewski15 to
elucidate the emergent quantizations, wavelike statistics, and
the role of the mean wave field in the system’s periodic and
chaotic dynamics. In Sec. II B, we prove that the droplet’s
stationary probability distribution is related to the mean pilot-
wave field via a convolution with the wave field of a bouncing
droplet. In Sec. III, we extend the methods of earlier work to
analyse the amplitude and stability of periodic oscillations,
where we see the onset of quantization and wavelike statis-
tics. In the limit of � → �F , periodic wave-trapped solutions
arise in which the droplet’s oscillatory motion persists even in
the absence of an external force (κ = 0) and the mean wave
field acts as an effective potential (Sec. III C). In Sec. IV A,
we demonstrate that this system exhibits the Ruelle-Takens-
Newhouse route to chaos.32,33 At extremely high memory (as
considered in Sec. IV B), the wave field dominates the droplet
dynamics, yielding a short-timescale droplet motion similar
to a random walk, and a long-timescale behavior influenced
by an effective potential prescribed by the mean wave field.
By detrending the long-timescale behavior induced by slow
variations in the Faraday wave field, we see the emergence of
pronounced wavelike statistics whose peaks are determined
by the random walk dynamics.

II. DISCRETE-TIME MODEL

The dynamics of this system are depicted by the
schematic diagram in Fig. 1(b). We assume that the droplet
and bath are in periodic subharmonic resonance (as observed
in experiments over a broad parameter regime34), and we
model the impacts as instantaneous and localized at a point.
This approximation is reasonable for describing short impacts
with a small droplet, which we model as a rigid sphere. A full
derivation of this model can be found in Ref. 15.

The semi-infinite fluid bath is governed by linear quasi-
potential flow, which includes weak dissipative effects at high
Reynolds number.35–37 The harmonic velocity potential φ

and wave perturbation η couple with the prescribed impact

FIG. 1. (a) The wave field η(x, t) of
a steady walking droplet at impact [in
the absence of a central force (κ = 0)],
as computed by Durey and Milewski15

for �/�F = 0.97. The droplet is located
at the origin and walks to the right
along the line y = 0, where x = (x, y). (b)
Two-dimensional schematic diagram of
the fluid system with free surface η0 ≡
η|y=0. The forces acting on the droplet
are denoted by red arrows, including the
central force κX(t) that acts towards the
origin O. The system parameters consid-
ered in our simulations and analysis are
given in Table I.



096108-3 Durey, Milewski, and Bush Chaos 28, 096108 (2018)

pressure PD(x, t) = f (t)δ[x − X(t)], where x = (x, y) is the
position on the fluid surface and X(t) is the horizontal droplet
position. For instantaneous impacts with subharmonic ver-
tical motion, we require f (t) = mg

∑∞
n=0 δ(t/T − n), where

T = 4π/ω0 is the Faraday period and m is the droplet mass.38

The vibrating frame of reference introduces the effective
gravity g�(t) = g

[
1 − � cos(ω0t + β)

]
, where β denotes the

droplet’s impact phase.
Following the model of Moláček and Bush,38 the hori-

zontal droplet position is governed by

mX ′′(t) + νpX ′(t) + κX(t)

= −f (t)
{∇η

[
X(t), t

] + c
√

ρR0/σX ′(t)
}
, (1)

with parameters given in Table I. During flight (f = 0), iner-
tia is balanced by the horizontal central force and Stokes’ drag
with coefficient νp = 6πR0μair. During impact (f > 0), the
reaction force imparts a (linearized) kick to the droplet, which
is countered by skidding friction characterized by the dimen-
sionless drag coefficient c > 0,38 whose value is discussed
below.

A. Dimensionless variables

Henceforth, we describe the dynamics in terms of dimen-
sionless variables, where we scale lengths with the Fara-
day wavelength λF = 0.51 cm, time t with the subharmonic
bouncing period T = 4π/ω0, force f with f0 = mg, and pres-
sure PD with P0 = f0/λ2

F . This yields the following dimen-
sionless parameters:

ε = νT

λ2
F

, B = σT2

ρλ3
F

, G = gT2

λF
, M = m

ρλ3
F

,

R = R0

λF
, ν̃p = νpT

m
, κ̃ = κT2

m
.

Typical parameter values from Table I give reciprocal
Reynolds number ε ≈ 0.019, Bond number B ≈ 0.102, G ≈
1.201, M ≈ 0.0017, R ≈ 0.075, ν̃p ≈ 0.01, and vibration
number � ≡ 4π

√
R3/B = 0.8.39 The dimensionless poten-

tial strength κ̃ ≥ 0 is a free parameter of both the model
and experiments, with 10−3 � κ̃ � 10−1. The dynamics are
largely insensitive to changes in the skidding friction c and
impact phase β; thus, we fix c = 0.33 and β = π .15

To reduce the fluid system from partial to ordinary dif-
ferential equations, we spectrally decompose φ and η in the
horizontal plane. The simple “Dirichlet-to-Neumann” map for

TABLE I. Fluid and droplet parameters used in this model.

Variable Value Description

σ 2.06 × 10−2 kg s−2 Surface tension
ρ 949 kg m−3 Fluid density
ν 2 × 10−5 m2 s−1 Kinematic viscosity (fluid)
μair 1.8 × 10−5 kg m−1 s−1 Dynamic viscosity (air)
g 9.8 m s−2 Gravity
ω0 80 × 2π s−1 Vibration frequency (×2π)
R0 3.8 × 10−4 m Droplet radius
m 2.2 × 10−7 kg Droplet mass
νp 1.3 × 10−7 kg s−1 Stokes’ drag coefficient

φ under this decomposition allows us to eliminate φ in favour
of η, which we express as

η(x, t) =
∞∑

m=−∞

∫ ∞

0
kam(t; k)�m(x; k) dk, (2)

with orthogonal basis functions �m(x; k) ≡ Jm(kr)eimθ , where
x = (r, θ) in polar coordinates and i is the imaginary unit.
As η is real and Jm(z) = (−1)mJ−m(z) for all m ∈ Z, the
complex coefficients am satisfy the reality condition a−m =
(−1)ma∗

m for all m, where ∗ denotes the complex conjugate.
This basis decomposition yields a system of inhomogeneous
damped Mathieu equations for the wave amplitudes am, where
the inhomogeneity arises from the instantaneous forcing at
impact. Assuming X(t) and η(·, t) are continuous across
impacts, we obtain nonlinear jumps in X ′ and ηt at impact
times t = tn ≡ n, which appear in (6) and (7) below.

During flight (t �= tn), the wave and droplet dynamics
decouple and evolve according to

(
∂t + γk)

2am + [
ω2

k − �ω2
g,k cos(4π t + β)

]
am = 0, (3)

X ′′(t) + ν̃pX ′(t) + κ̃X(t) = 0, (4)

where γk ≡ 2εk2, ω2
k ≡ Gk + Bk3, and ω2

g,k ≡ Gk. As (3) is of
Floquet form with period 1/2, we evolve the system between
impacts (t+n−1 
→ t−n ) using principal fundamental matrices
Mk(�) ∈ R

2×2 for the wave amplitudes [Eq. (3)] and F(κ̃) ∈
R

4×4 for the droplet dynamics (4). This yields the 3-stage map
from t+n−1 
→ tn+:

1. Compute the next droplet position and the pre-impact
velocity

(
X(tn)
X ′(t−n )

)
= F(κ̃)

(
X(tn−1)

X ′(t+n−1)

)
. (5)

2. Update the wave amplitudes ∀k > 0 and ∀m ∈ Z

(
am(tn; k)

a′
m(t+n ; k)

)
= Mk(�)

(
am(tn−1; k)

a′
m(t+n−1; k)

)

− pk�
∗
m

[
X(tn); k

]
(

0
1

)
. (6)

3. Apply the droplet jump conditions

X ′(t+n ) = (1 − F)X ′(t−n ) − H∇η
[
X(tn), tn

]
, (7)

where F = 1 − exp(−cG
√

R/B), H = (F/c)
√

B/R, and pk =
kMG/(2π). Equations (6) and (7) couple through ∇η given
by (2).

The wave “memory” Me is defined as the timescale over
which the Faraday waves decay, which is a proxy for the num-
ber of past impacts that influence the current dynamics.4 This
appears naturally from the eigenvalues of Mk(�), which we
write as exp(−s1) and exp(−s2) for si = si(k, �) ∈ C, where
0 ≤ Re(s1) ≤ Re(s2). The dominant exponent s1(k, �) is real
and positive in a neighborhood of (kF , �F), with s1(kF , �F) =
0. For � < �F , we thus define

Me(�) = max
k

{
s1(k, �)−1|s1 ∈ R

} ∼ Td(�)

1 − �/�F
(8)

as � → �F , where Td(�) ∼ 0.6.15,36 While this parameter
diverges as � → �F , we note that the description of the wave
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FIG. 2. The axisymmetric wave field of a bouncer ηB(r) at impact for differ-
ent values of � < �F (where r = |x|). All lengths are non-dimensionalized
by λF .

field in terms of linear Faraday waves also breaks down in
this limit, where nonlinear effects are expected to become
significant.

To implement the model given by Eqs. (5)–(7), we make
an appropriate discretisation of the wavenumbers k and trun-
cate the Bessel modes m, as detailed in Ref. 15. The diagonal
structure in k and m allows for simulations at typically 1000
impacts per second40 (this is 25 times faster than the experi-
mental timescale). By using the methods developed in Sec. III,
the discrete-time formulation (5)–(7) also allows for effi-
cient computation of the system’s periodic states with linear
stability analysis.

B. Long-time statistical behavior

Previous investigations into the long-time dynamics of
this hydrodynamic pilot-wave system have focused primar-
ily on the statistical distribution of the droplet position μ(x),
rather than considering the mean pilot-wave η̄(x) at impact,
as defined by

η̄(x) = lim
N→∞

1

N

N∑

n=1

η(x, tn). (9)

A recent study of walker motion in corrals pointed out that
the two take a similar form;21 however, a quantitative relation
between the two was not deduced. We proceed by proving
that (in an unbounded domain) these two quantities are in
fact related via the convolution η̄ = ηB ∗ μ. Here, ηB(x) is the
axisymmetric wave field of a stationary bouncing droplet at
impact, which is the wave field generated by infinitely many
periodic impacts at x = 0 for a given � < �F (see Fig. 2). We
note that although we focus on the dynamics in the walking
regime (in which the bouncing state is unstable), the asso-
ciated bouncer wave field ηB still plays a pivotal role in the
long-time statistics.

The physical intuition behind this convolution result is as
follows. For stationary dynamics, each point x in the domain
(within the support of μ) is visited infinitely many times. If
all points were visited equally, each would thus contribute
equally to the mean wave field, in the amount of ηB(x). Since
they are not visited equally, the contribution of each point

ηB(x) must be weighted by μ(x). Our result not only com-
bines three key quantities of this pilot-wave system but is also
valid for periodic motion and ergodic dynamics, such as in
the chaotic regime. As will be seen, this convolution result is
particularly useful for elucidating the dynamics at high mem-
ory, including periodic wave-trapped behavior (Sec. III C) and
chaotic dynamics near the Faraday threshold (Sec. IV C).

Theorem 1. Assuming there exists a stationary proba-
bility distribution μ(x) for the droplet position and that the
system dynamics are ergodic, then the mean wave field η̄(x)

[as defined by Eq. (9)] satisfies

η̄(x) =
∫

R2
ηB(x − y)μ(y) dy = (

ηB ∗ μ
)
(x), (10)

where ηB(x) is the radially symmetric wave field of a bouncer
centred at the origin.

Proof. We define an
m(k) ≡ [

am(tn; k), a′
m(t+n ; k)

]T
and re-

write (6) as

an
m(k) = Mkan−1

m (k) − pk�
∗
m[X(tn); k]e2, (11)

where ej is the jth basis vector. We then define ām(k) ≡
limN→∞ 1

N

∑N
n=1 an

m(k) to be the wave amplitudes corre-
sponding to the mean wave field η̄. By taking the mean of
(11) over N impacts and considering the limit N → ∞, the
ergodic theorem allows for the replacement of time averages
in the last term with spatial averages, giving

ām(k) = Mk ām(k) − pke2

∫

R2
�∗

m(y; k)μ(y) dy.

For � < �F , the matrix (I − Mk) is nonsingular, so we may
solve for ām(k) for all m and k.

By defining aB(k; �) = −pkeT
1 [I − Mk(�)]−1e2 and

fm(k) =
∫

R2
�∗

m(y; k)μ(y) dy,

we have

η̄(x) =
∞∑

m=−∞

∫ ∞

0
kaB(k; �)�m(x; k)fm(k) dk

=
∫

R2
μ(y)

∫ ∞

0
kaB(k; �)J0(k|x − y|) dk dy,

where we have used Graf’s addition theorem41 to write

J0(k|x − y|) =
∞∑

m=−∞
�m(x; k)�∗

m(y; k).

The result (10) follows since the wave field of a
bouncer centred at the origin for given � is ηB(x) =∫ ∞

0 kaB(k; �)J0(k|x|) dk.15 �
We have proved similar convolution results for the mod-

els of Fort et al.22 and Oza et al.,42 where different modeling
assumptions were made on the wave field dynamics and the
droplet-wave coupling. In fact, we generalize the convolu-
tion relationship (10) to a wider pilot-wave framework in
Appendix A, which includes the pilot-wave dynamics in a
confined geometry. In this more general case, the integral
kernel ηB is replaced by a function that no longer exhibits
translational invariance.
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The result in Theorem 1 rests on the assumptions that a
stationary distribution exists and that the pilot-wave dynam-
ics are ergodic. It has been observed experimentally that when
the droplet’s motion is confined (by a harmonic potential24

or the boundary walls of a corral19,21), a stationary distribu-
tion may emerge. The ergodicity assumption is more delicate.
It has been observed in the one-dimensional tunneling pilot-
wave model of Nachbin et al.8 that several chaotic trajectories
with different initial conditions had the same statistical prop-
erties as a single longer run, suggesting that the process is
indeed ergodic in that particular configuration. We note, how-
ever, that when multiple stable states exist (such as in the case
of hysteresis), the long-time behavior may depend on the ini-
tialisation of the pilot-wave system, rendering the ergodicity
assumption invalid.

To overcome this difficulty, we prove an analogous result
to Theorem 1 valid when the pilot-wave dynamics are periodic
for all time, namely, X(tn+Q) = X(tn) for all n and some finite
Q ∈ N. This corollary does not require any assumptions about
the existence or uniqueness of a stationary distribution, nor
does it require the ergodic hypothesis.

Corollary 1. If there exists Q ∈ N such that X(tn+Q) =
X(tn) for all n, then the mean wave field η̄(x) =
Q−1 ∑Q

n=1 η(x, tn) satisfies

η̄(x) =
∫

R2
ηB(x − y)μ(y) dy = (

ηB ∗ μ
)
(x),

where ηB(x) is the radially symmetric wave field of a bouncer
centred at the origin and μ(x) = Q−1 ∑Q

n=1 δ[x − X(tn)].
Proof. Using the definition of an

m(k) from the proof of
Theorem 1, we take the sum

∑Q
n=1 of both sides of Eq. (11),

giving

Q∑

n=1

an
m(k) = Mk

Q∑

n=1

an−1
m (k) − pke2

Q∑

n=1

�∗
m[X(tn); k].

By the assumed periodicity, we observe that a0
m = aQ

m .
Hence, by defining ām(k) ≡ Q−1 ∑Q

n=1 an
m(k) and μ(x) =

Q−1 ∑Q
n=1 δ[x − X(tn)], we obtain

ām(k) = Mk ām(k) − pke2

∫

R2
�∗

m(y; k)μ(y) dy.

The conclusion of the proof is identical to that of Theorem 1.
�

Henceforth, we consider the case where the droplet
motion is confined to a line. For μ(x) = ρX (x)δ(y) [where
x = (x, y)], Theorem 1 and Corollary 1 both simplify to
η̄0(x) = (

ρX ∗ ηB
)
(x), where η̄0 ≡ η̄|y=0 is the mean wave

field along the x-axis. We demonstrate in Appendix B that in
the case where the period Q → ∞, the result to Corollary 1
remains robust, even when the probability distribution ρX (x)
is approximated by a histogram.

III. PERIODIC SOLUTIONS

We seek periodic solutions to the nonlinear discrete-time
map (5)–(7) with motion restricted to the x-axis, so X(t) ≡[
X (t), 0

]
and am ∈ R for all m. For notational convenience,

we denote

Xn = X (tn), V±
n = X ′(t±n ), η0(x, t) = η(x, 0, t),

where Gn = ∂xη0(Xn, tn) is the wave field gradient along the
x-axis at impact n.

For any given (�, κ̃), the frequency of the periodic
oscillation is generally incommensurate with the Faraday fre-
quency, which complicates the analysis for our discrete-time
system. To resolve this, we exploit continuity of the param-
eter space to seek a subset of solutions where the oscillation
period P satisfies P = ϕN (N ∈ N and ϕ ∈ Q) for a given
�, and solve for κ̃ (it should be noted that in this case,
there is a relationship between the oscillation period P ∈ Q

and the number of impacts Q ∈ N such that Xn = Xn+Q for
all n). Typically, ϕ = 2 is sufficient to resolve the solution
curve, which corresponds to the droplet crossing the bath once
after N impacts. This case yields reflection conditions (for all
m ∈ Z and k > 0)

XN = −X0, (12a)

V+
N = −V+

0 , (12b)

am(tN ; k) = (−1)mam(t0; k), (12c)

a′
m(t+N ; k) = (−1)ma′

m(t+0 ; k). (12d)

For given � and N , we use a Newton method to
compute the periodic states for (N + 1) unknowns θ =(
X0, κ̃ , G1, . . . , GN−1

)
, with the details given in Appendix C.

We exploit continuity of the solution branch by using as an
initial guess a converged solution along the same branch. The
idea is to use the iterative map (5)–(7) to first obtain droplet
positions at each impact and then use the reflection condi-
tions (12c) and (12d) to find the unique corresponding wave
field. This gives the gradients at each impact, which need to
be consistent with the initial guess, and also the final droplet
position and velocity, which need to be consistent with the
reflection conditions (12a) and (12b). The stability is analyzed
through computing the eigenvalues of the linearized N-fold
iterative map for perturbations about the periodic state, where
the periodic solution is defined as asymptotically unstable if
an eigenvalue lies outside the unit disc in the complex plane.

We characterize the periodic solutions in terms of the
period P , amplitude A, and the mean energy of the wave field
Ē = P−1

∫ P
0 E(t) dt, where E(t) is the wave field energy at

time t, as defined in Ref. 15. This is the additional energy of
the fluid induced by the past droplet impacts, which has com-
ponents of gravitational potential energy, surface energy, and
the kinetic energy contribution from the potential flow within
the bath. The energy Ē also includes the wave field energy
during droplet flight, which cannot be captured in models
that neglect the oscillatory motion of the wave field between
impacts.22,42 We compare the energy to the mean energy of
a bouncing droplet ĒB at the given memory, where Ē → ĒB

as A → 0+. We also neglect the mean energy contribution
from the droplet’s horizontal and vertical motions; the former
is several magnitudes smaller than the mean wave energy, and
the latter is constant in our model due to the imposed periodic
vertical motion.15
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A. From bouncing to oscillating

We first consider the onset of small-amplitude oscillation
that arises for a sufficiently weak spring constant. In the limit
A → 0, the degenerate case P = 1 describes a bouncer at the
origin for a given �, which is stable for κ̃ > κ̃c(�). Thus,
the bouncing state can persist beyond the free-space (κ̃ = 0)
walking threshold; a sufficiently steep harmonic potential may
trap the droplet at the origin. For κ̃ < κ̃c, the bouncing desta-
bilizes via a supercritical Neimark-Sacker bifurcation, where
the period of unstable oscillation P� > 0 is given by the argu-
ment of the unstable complex conjugate eigenvalues of the
stability matrix. A stable limit cycle forms after an initial tran-
sient, whose period P and amplitude A we compute directly.
For sufficiently small oscillations (A � 0.15), the period asso-
ciated with the destabilising mode of the bouncer is well
approximated by the limit cycle period, with |P − P�| � 1, as
shown in Fig. 3. In the limit A → 0+, we have P → Pc(�) ∈
(0, ∞); this infinitesimal oscillation amplitude with a finite
frequency is analogous to the small radius limit of circular
orbits.25

B. From classical to quantized dynamics

In Fig. 4, we show the dependence of the oscillation
amplitude A on the spring constant κ̃ , period P , and wave
energy Ē . For weak memory (�/�F = 0.9), all oscillations
are stable (blue curves) and the amplitude grows monoton-
ically as κ̃ decreases. The period increases approximately
linearly with the amplitude for large oscillations under a weak
central force, which dominates the wave force only at the
extrema of the periodic motion.

As the memory is increased (�/�F = 0.94), unstable
oscillations emerge (red curves), corresponding to forbidden
oscillation amplitudes. Strikingly, the unstable oscillations
have the largest mean energy Ē , and as more oscillations
destabilize for �/�F = 0.96, the remaining stable oscilla-
tions (blue curves) have the lowest mean wave field energy,
suggesting an underlying energy minimization principle.
A similar energy minimization was also observed for circular
orbits in a harmonic potential and at the bifurcation between
bouncing and walking.15 The remaining stable oscillations
exhibit quantization of the oscillation amplitude, with a large
number of stable plateaus (blue) in the (κ̃ ,A)-plane emerging
for a fixed memory, as apparent in Fig. 4(c). There are, more-
over, several examples of hysteresis [Fig. 4(c)]. The emergent
quantization is analogous to that arising in the quantum har-
monic oscillator, where the increment between energy levels

δE = �ω is fixed. Similarly, the fluid system exhibits a quan-
tization in the oscillation amplitude A with fixed increment
δA ≈ 1/2 equal to the radial quantization increment observed
for circular orbits.15,24,26

In Fig. 5, we plot the computed pilot-wave field η0(x, tn)
and droplet position Xn at impact over two periods of the oscil-
latory periodic state. When the central force dominates the
wave force [Fig. 5(a)], the droplet motion is approximately
sinusoidal. In contrast, at larger wave memory [Fig. 5(b)],
the pilot-wave has a strong influence on the droplet’s oscil-
latory motion, resulting in a pronounced departure from the
sinusoidal behavior.

In Fig. 6, we plot the phase space and corresponding
probability distribution for simulation of the stable oscillation
states with κ̃ = 0.012 (corresponding to the black circles in
Fig. 4). At the point of maximum range, the droplet reverses,
turning over the back of its pilot-wave field, causing a sharp
increase in the droplet speed, to approximately twice the free
walking speed (see supplementary material). The wave field
generated during previous crossings of the bath thus substan-
tially modulates the droplet speed during transit, indicating
that the weak-acceleration limit approximation is not valid in
this regime.43,44 As reported for the case of corrals,19,21 this
speed-modulation is responsible for the emergence of wave-
like statistics, where the maxima of the stationary probability
distribution ρX (x) arise when the droplet speed is lowest.
Through its modulation of the droplet speed, the wavelength
of the pilot-wave thus prescribes the wavelength of the sta-
tistical wave, as is most apparent in Fig. 6(c). We see that
for all values of �/�F , the mean wave field η̄0(x) and prob-
ability distribution ρX (x) take a similar form on the interval
x ∈ [−A,A], as expected on the basis of our convolution
relationship η̄0 = ρX ∗ ηB.

For �/�F = 0.96, we plot the mean Faraday wave field
η̄(x) in Fig. 7. Since ρX (x) is largest near the oscillation
extrema, we see corresponding peaks in η̄ near the points
(x, y) = (±A, 0). Furthermore, we typically see η̄0(x) > 0 for
all x ∈ [−A,A] since the local wave field is generally max-
imal near the droplet [for example, see the free-walker wave
field in Fig. 1(a)]. Moreover, the symmetry about x = 0 of
the statistical distribution ensures symmetry in the mean wave
field.

C. Wave-trapped solutions

As �/�F increases, we observe that the plateaus of stable
oscillations in the (κ̃ ,A)-plane become flatter and wider (see
Fig. 4). We thus seek solutions where the periodic motion is

FIG. 3. Small amplitude periodic
oscillations for dimensionless period P
(circles) and amplitude A (squares). The
period associated with the destabilising
mode of the bouncer P� is given by
the black curve. (a) �/�F = 0.81, (b)
�/�F = 0.82, and (c) �/�F = 0.83. In
the limit A → 0, the droplet is trapped in
a bouncing state that is stabilized by the
harmonic potential.

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-004898
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FIG. 4. The emergence of quantiza-
tion for the periodic states computed in
Sec. III. The oscillation amplitude A is
plotted as a function of spring constant κ̃

(first column), period P (second column),
and the mean wave field energy relative
to that of a bouncer Ē/ĒB (third col-
umn). For each row, we have (a) �/�F =
0.90, (b) �/�F = 0.94, and (c) �/�F =
0.96. The curve colors denote stability
types (blue: stable, green: unstable with
all unstable eigenvalues complex con-
jugate pairs, red: unstable with at least
one real unstable eigenvalue). The black
circles at κ̃ = 0.012 in the (κ̃ ,A) plots
correspond to the simulated oscillation
amplitudes in Fig. 6. (c) The inset in the
(κ̃ ,A) plot details the loop structure in
the corresponding square.

sustained even in the absence of a harmonic potential (κ̃ = 0),
in which the mean wave field traps the droplet. We note
that analogous solutions exist for circular orbits at high wave
memory, where the orbital radius r0 satisfies the quantization
J0(kFr0) = 0.15,25,26,45,46 The periodic wave-trapped solutions
of interest here are a version of these “hydrodynamic spin
states” for motion confined to a line.

In Fig. 8, we plot the wave profile over time for two
periods of a periodic wave-trapped solution at high memory
Me [as defined in Eq. (8)], which is a more useful measure
of the vibrational forcing in the limit � → �−

F . Strikingly,
we observe that at high memory, the wave at each impact
η0(x, tn) differs from the mean wave field η̄0(x) only by a
small perturbation. The unstable nature of this periodic state

is emphasized by the fact that η̄0(x) decreases rapidly for
|x| � A, which is to say that the droplet could escape the
potential trap imposed by its mean wave field for sufficiently
large perturbations.

From Fig. 9(a), we observe that the amplitude A of
the periodic oscillation decreases as the wave memory Me

increases, while the oscillation period P attains a minimum
value before increasing at high vibrational forcing. We ratio-
nalize these dependencies in terms of the effective potential
induced by the mean wave field. By applying Corollary 1, we
use the convolution result to obtain the mean wave field η̄0(x)
over one period of the oscillatory motion, with results shown
in Fig. 9(b). As Me increases, η̄0(x) becomes increasingly flat
for |x| ≤ A, resulting in a decrease in the propulsive force

FIG. 5. The evolution of the wave field η0(x, tn) (blue
curves) and droplet position Xn (red dots) at impact over two
periods of the computed (stable) periodic states. (a) �/�F =
0.90 and κ̃ ≈ 0.066. (b) �/�F = 0.96 and κ̃ ≈ 0.037.
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FIG. 6. Simulated periodic dynamics.
Top row: Phase plane orbits for κ̃ =
0.012, where the velocity is normalized
by the free walking speed VW .15 Middle
row: Stationary probability distributions
for the droplet position ρX (x) (black)
and that of the simple harmonic oscilla-
tor (red) for the corresponding amplitude
A. Bottom row: The corresponding mean
wave field η̄0(x) as computed by the con-
volution η̄0 = ρX ∗ ηB. The columns cor-
respond to the values of �/�F in Fig. 4,
with (a) �/�F = 0.90, (b) �/�F = 0.94,
and (c) �/�F = 0.96.

provided by the mean wave field. This reduces the average
droplet speed, and thus the oscillation period P increases. Fur-
thermore, the steepness of the stationary cumulative probabil-
ity distribution CX (x) at high vibrational forcing for |x| ≈ A
[see Fig. 9(c)] indicates that the droplet spends a significant
portion of the oscillation bouncing near its maximum range,
which further increases the oscillation period.

To postulate a lower bound of the oscillation amplitude A
in the high memory limit, we exploit the fact that the droplet
spends significant time near its oscillation extrema [see
Fig. 9(c)], and so approximate its probability density function

FIG. 7. Mean 3-dimensional wave field η̄(x) for stable periodic dynamics at
�/�F = 0.96, where x = (x, y). The circles indicate the oscillation amplitude
A ≈ 1.47.

by ρX (x) ≈ 1
2 [δ(x + A) + δ(x − A)]. An application of

Corollary 1 thus yields η̄0(x) ≈ 1
2 [ηB(x + A) + ηB(x − A)].

For oscillatory motion to persist, it is natural to require that
the extremum at x = 0 is a local minimum, corresponding
to η̄′′

0(0) > 0, or equivalently, η′′
B(A) � 0. A second natural

requirement is for η̄ to slope inwards at the point of maxi-
mum oscillation amplitude, corresponding to η̄′

0(A) > 0 (by
the symmetry of η̄0), or equivalently, η′

B(2A) � 0. From the
computation of ηB(x) in the limit Me → ∞ (as depicted in
Fig. 2), the two conditions on ηB are both satisfied for 0.3 �
A � 0.5; we thus postulate that A ≈ 0.3 is a lower bound for
the amplitude of periodic wave-trapped solutions as Me → ∞
[see Fig. 9(a)], a limit prescribed by the length scale of the
Faraday waves.

Although the wave-trapped solutions are unstable in the
parameter regime explored experimentally, they demonstrate
that in the high memory limit, the mean Faraday wave field
may trap the droplet in periodic motion. In a sense, the mean
wave field η̄ then acts as a potential, related by Corollary 1
to the droplet’s statistical distribution through η̄0 = ρX ∗ ηB.
Hence, the periodic motion of the droplet is in effect driven by
its own stationary probability distribution ρX . We re-explore
this concept in Sec. IV C for the case of chaotic dynamics in
the high memory limit.

IV. CHAOTIC DYNAMICS

We now consider the chaotic dynamics arising at suffi-
ciently high memory that the periodic states destabilize via
the Ruelle-Takens-Newhouse scenario (Sec. IV A). In the high
memory limit, we rationalize the form of the chaotic dynamics
and emergent statistics (Sec. IV B) and propose a stochastic
reformulation of the pilot-wave dynamics (Sec. IV C).
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FIG. 8. Computed periodic wave-trapped solutions arising
in the absence of a central force (κ̃ = 0). The impact wave
field η0(x, tn) (blue curves) and droplet position Xn (dots) are
shown over two oscillation periods for P = 42. The black
curve is the corresponding mean wave field η̄0(x). The wave
memory is (a) Me ∼ 47.7 (corresponding to �/�F = 0.985)
and (b) Me ∼ 4.78 × 103. We note that as Me increases, the
instantaneous wave field η0(x, tn) approaches its mean η̄0(x)
at all times.

A. Transition to chaos

As � is increased, the periodic phase-plane orbits may
destabilize into regular wobbling orbits, before transitioning
to chaos. The route to chaos for circular orbits in a har-
monic potential has been explored experimentally28,47 and
theoretically48 using the stroboscopic trajectory equation.42 In
both cases, the Ruelle-Takens-Newhouse route to chaos32,33

was observed. According to this scenario, from a fixed point,
three bifurcations induce additional incommensurate frequen-
cies into the spectrum, after which it is likely (but not guaran-
teed) that a strange attractor appears in the phase space.49

Following the methodology of Tambasco et al.,48 we fix
κ̃ = 0.03 and initialize a simulation for a value of � where
the periodic motion is stable, as indicated by the linear stabil-
ity analysis. The simulation runs for N0 + 2p impacts, where
the first N0 impacts are discarded to remove transient effects.
We take the Fourier transform of the droplet position Xn

for the final 2p impacts (typically p = 17) and locate the
frequencies f corresponding to the peaks in the power spec-
trum P. At the end of the simulation, we increment � 
→
� + �(�/�F)�F , where �(�/�F) is chosen adaptively to
capture the bifurcations.

The fixed point of this system is a bouncer at the origin,
which destabilizes via a Neimark-Sacker bifurcation (bifur-
cation B1), as discussed in Sec. III A. Beyond this threshold,
the frequency spectrum of the resulting stable limit cycle is
dominated by f1 = 1/P and its harmonics, where P ≈ 63 is
as computed in Sec. III. This is highlighted by the frequency
spectrum in Fig. 10(a) with accompanying phase portraits
and probability density functions. At �/�F ≈ 0.980447 (B2),
this motion destabilizes through the emergence of complex
conjugate unstable eigenvalues with oscillatory frequency f �

2

[see Fig. 10(b)]. The resulting instability is saturated by non-
linear effects, leading to the quasi-periodic stable wobbling
motion with incommensurate frequencies f1 and f2 ≈ f �

2 and
their integer combinations [see Fig. 11(a)]. This evolution
invokes a qualitative change in the statistics, with several
peaks emerging in the droplet position stationary distribution
[Fig. 10(b)]. Unlike the route to chaos of circular orbits,48 we
do not observe any frequency locking between f1 and f2.

For �/�F � 0.98050, a third bifurcation (B3) yields the
incommensurate frequency f3, as is typical of the Ruelle-
Takens-Newhouse route to chaos32,33 [see Fig. 10(c)]. While
several additional peaks arise in the frequency spectrum fol-
lowing this bifurcation, the dynamics are still dominated
by the frequencies f1 and f2 (and their harmonics), yielding
a qualitatively similar probability distribution. For �/�F �
0.980594 (B4), additional peaks emerge in the probabil-
ity distribution and the phase-portrait appears less regular
[Fig. 10(d)]. In particular, the broad-banded frequency spec-
trum suggests chaotic dynamics, which we verify by con-
sidering the Lyapunov exponent. We follow Gilet20,50 and
consider two simulations from the same initial conditions,
except for an initial perturbation in the dimensionless droplet
position of 10−10, yielding trajectories X (1)(t) and X (2)(t).
As shown in Fig. 11(b), the difference χ ≡ |X (1) − X (2)|
oscillates in the interval 10−11 � χ � 10−6 just before B4
(�/�F = 0.980593), but grows to be of order 1 just after B4
(�/�F = 0.980594), indicating a positive Lyapunov expo-
nent and the onset of chaos.

B. The high memory limit

We now consider the high memory regime (Me � 103)
in which there is a qualitative change in the dynamics.

FIG. 9. (a) Amplitude A (black) and period P (gray) of periodic wave-trapped solutions as a function of the memory Me. (b) The mean wave field η̄(x) relative
to the bouncer wave field ηB(0). The vertical dashed lines denote the corresponding drop oscillation amplitude A. (c) The corresponding stationary cumulative
probability distribution CX (x) = ∫ x

−A ρX (s) ds for periodic wave-trapped solutions (solid lines) and for simple harmonic motion with amplitude A (dashed lines).
In (b) and (c), the gray curves correspond to Me ∼ 47.7, P = 36, and A ≈ 0.43, and the black curves correspond to Me ∼ 4.8 × 103, P = 42, and A ≈ 0.35.
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FIG. 10. Route to chaos. The columns
present the simulated phase plane
behavior (left), power spectrum
(middle), and probability density
function (right) during the tran-
sition to chaos. �/�F increases
with each row: (a) periodic motion
(�/�F = 0.98044), (b) two-frequency
quasi-periodic motion (�/�F =
0.98048), (c) three-frequency quasi-
periodic motion (�/�F = 0.98056), and
(d) chaotic motion (�/�F = 0.980594).
In the phase-plane plots (left column),
the blue dots denote the prior 5000
impacts, and the red lines the final
P impacts in the nonperiodic cases.
The walker velocity V+

n is normalized
by the free walking speed VW at the
corresponding value of �/�F .15

Specifically, the wave field dominates the harmonic poten-
tial so that the droplet may change the direction several times
before crossing the origin, as indicated in Fig. 12. We find
that the mean Faraday wave field plays a crucial role in
these chaotic dynamics, giving rise to a jump-like process
between a discrete set of points, the locations of which we
rationalize in Sec. IV B1. In Secs. IV B2 and IV B3, we see
the emergence of wavelike statistics, where the peaks corre-
spond to the discrete turning points of the droplet motion.
We then use the relationship between the droplet statistics
and the mean wave field (Theorem 1) to postulate an effec-
tive potential Ve(x) that influences the chaotic motion of the
droplet (Sec. IV C). The additional notation used throughout
this section is summarized in Table II.

To gain further understanding of the pilot-wave dynam-
ics in this regime, it is useful to recast the iterative map
(5)–(7) as a trajectory equation for the droplet position Xn and
the mean droplet velocity during flight Un ≡ Xn+1 − Xn. By
computing the droplet fundamental matrix F(κ̃) analytically,

the droplet’s evolution may be expressed as

Xn − Xn−1 = Un−1, (13)

(Un − Un−1) + DUn−1 = −∂xVp(x, tn)|x=Xn , (14)

where D = 1 − (1 − F)e−ν̃p is a drag coefficient, and

Vp(x, tn) = 1
2Kx2 + Fη0(x, tn) (15)

is the time-dependent full pilot-wave potential, which is the
sum of the applied harmonic potential and the wave field at
each impact. In the vicinity of the origin (|x| � 3 in Fig. 12),
the full pilot-wave potential at each impact Vp(x, tn) oscil-
lates in x. However, as |x| → ∞ the instantaneous wave field
decays and we observe that Vp(x, tn) ≈ 1

2Kx2 for all time. In
(15), K(κ̃) > 0 determines the strength of the time-averaged
harmonic potential over one impact period and F(κ̃) > 0 pre-
scribes the magnitude of the wave force (whose dependence
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FIG. 11. Route to chaos. (a) Fundamental frequencies f1, f2, and f3 (dots) are introduced with successive bifurcations B2–B4 (gray) as the memory is progres-
sively increased. The bifurcation B1 from stationary bouncing to orbiting occurs at �/�F ≈ 0.81 and is not shown in this figure. The periodic motion has
period P , where P = 1/f1 for stable dynamics (before bifurcation B2). After B2, the periodic orbit is unstable with linear instability frequency f �

2 (dashed
line). (b) The difference χ(t) ≡ |X (1)(t) − X (2)(t)| between two trajectories X (1) and X (2) (whose initial position differ by a dimensionless distance of 10−10)
is shown for �/�F = 0.980593 (gray) and �/�F = 0.980594 (black). These values of � correspond, respectively, to 3-frequency quasi-periodic motion and
chaotic dynamics.

on κ̃ is weak).51 The system (13) and (14) and the full pilot-
wave potential Vp will be referred to throughout Secs. IV B
and IV C.

1. The random walk dynamics

In Fig. 12, we plot the evolution of the full pilot-wave
potential Vp(x, tn) and the corresponding droplet position Xn

at successive impacts in the high memory regime. To under-
stand the role of the long-lived Faraday waves in this regime,
we plot the spatial minima of Vp(x, tn) at each impact, from
which two important observations emerge. First, the minima
far from the droplet (typically � 1 Faraday wavelength away)
remain at a roughly constant position over time, indicating

FIG. 12. Pilot-wave dynamics at high memory (Me ∼ 1.17 × 104 with κ̃ =
0.01). Droplet trajectory Xn (red dots) and the full pilot-wave potential
Vp(x, tn) (blue curves), which is the sum of the harmonic potential and the
wave field, as defined in Eq. (15). The black squares denote the spatial minima
of Vp(x, tn).

the potential has an underlying stationary structure induced by
the wave field. Second, when the droplet changes direction (at
which point it is moving slowly), the local-pilot wave accu-
mulates, increasing the droplet’s potential energy, from which
the droplet departs and heads towards one of the neighbor-
ing potential minima. Depending on the prior dynamics, the
droplet will turn around again at one of the minima of Vp(x, tn)
on its path.

To analyze these dynamics, we define the set of turning
times T ⊂ N to be the times at which the droplet changes
direction. That is to say, if τi ∈ T , then X (τi) is a local
extremum and Ti ≡ X (τi) is defined to be a turning point.
In the droplet trajectory time-series data in Fig. 13(a), the
turning times τi and positions Ti correspond to the red dots.
Furthermore, it appears that the droplet changes position only
in the vicinity of specific points on the bath and that there is an
apparent structure to the distance between turning points Di =
|Ti+1 − Ti|. Indeed, by plotting the distribution ρD of distances
Di [see Fig. 13(b)], it emerges that the distance between turn-
ing points is quantized, where ρD has sharp maxima at points
approximated by the set

D = 0.6 + N ≡ {0.6, 1.6, 2.6, . . .}.
The emergence of this quantization lies in the combined struc-
ture of the global standing wave field and the wave field
generated by the droplet at each impact, whose shape is

TABLE II. Additional notation used throughout Sec. IV B.

Variable Description

τi ∈ T Turning times (raw data)
Ti ≡ X (τi) Turning positions (raw data)
C(t) Trend curve on the slow timescale
X R

n Residual droplet impact positions
TR

i Residual turning positions
ρX (x) Probability distribution of Xn (raw data)
ρT (x) Probability distribution of Ti (raw data)
ρXR(x) Probability distribution of X R

n (residuals)
ρTR(x) Probability distribution of TR

i (residuals)
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FIG. 13. The random walk-like dynamics in the wave-
dominated, high memory regime. (a) Example trajec-
tory Xn over a short time interval for κ̃ = 0.01 and
Me ∼ 1.17 × 104. Red dots denote the times τi and posi-
tions Ti ≡ X (τi) at which the droplet changes direction.
The four shades of gray indicate the four typical distances
between turning points observed. (b) Histogram ρD of the
distance between turning points (black). The vertical lines
(red dashed) indicate the values in D = {0.6, 1.6, 2.6, . . .},
and the gray curve is J0(kFx).

approximated by J0(kFx). From the observations in Fig. 12,
it becomes clear that it is the minima of J0(kFx) that plays
a role in prescribing the quantized distance between turning
points, with values in the set D. This correspondence is shown
in Fig. 13(b). In what follows, we rationalize these dynamics
by considering a jump process, before postulating a stochastic
model in Sec. IV C.

We proceed by presenting a simple geometric argu-
ment that demonstrates the role of the quantized distance
between turning points in the long-time statistics. We con-
sider a Markovian jump process (xn)n≥0 between turning
points, where the jump distances dn ≡ |xn − xn−1| are exactly
restricted to dn ∈ D. In accordance with our observations of
the pilot-wave system in the high memory limit (see Figs. 12
and 13), we require that the set of possible points visited by
the jump process forms a communicating class with symmetry
preserved about the origin.

We denote α ∈ R as a position visited by the jump pro-
cess (whose possible values are determined in the following
analysis), and without loss of generality, we set x0 = α and
consider x1 > x0. Using the assumed structure of D = 0.6 +
N, we define Nn ∈ N such that dn = 0.6 + Nn. As the droplet
changes direction at each turning point, we observe that after
an even number of jumps

|x2n − x0| =
∣∣
∣
∣

2n∑

i=1

(−1)i+1(0.6 + Ni)

∣∣
∣
∣ =

∣∣
∣
∣

2n∑

i=1

(−1)i+1Ni

∣∣
∣
∣,

so |x2n − x0| ∈ N for all n ∈ N. By a similar calculation, we
find that after an odd number of jumps

|x2n+1 − x0| ∈
{

0.6 + N if x2n+1 > x0 = α,

0.4 + N if x2n+1 < x0 = α.

Thus, for all points in the jump process to form a commu-
nicating class, we require xn ∈ M(α) for all n ≥ 0, where α

parametrizes the mesh

M(α) = {. . . , α − 1.4, α − 1, α − 0.4, α,

α + 0.6, α + 1, α + 1.6, . . .}. (16)

We note that this mesh is periodic with period 1, so without
loss of generality, we restrict the displacement of the mesh
to α ∈ [− 1

2 , 1
2 ). For symmetric statistics about the origin, we

require that α be such that M(α) is also symmetric, which
yields α ∈ {−0.3, 0.2}. For consistency with the jump dis-
tances dn ∈ D, the droplet may only leave each mesh point
in a fixed direction (as depicted in Fig. 14), namely, to the
right for xn ∈ α + Z and to the left for xn ∈ α + 0.6 + Z.

2. Detrending the long-time statistics

From the analysis in Sec. IV B 1, we expect the turning
points Ti (and the peaks of the corresponding probability dis-
tribution ρT ) to be determined by the meshes M0 = M(0.2)

and M1 = M(−0.3), where

M0 = {. . . , −1.2, −0.8, −0.2, +0.2, +0.8, +1.2, . . .},
M1 = {. . . , −1.3, −0.7, −0.3, +0.3, +0.7, +1.3, . . .},

and M0 is a translation of M1 by 1/2. The jump lengths
dn ∈ D impose a unique direction to leave each mesh point,
yielding qualitatively different dynamics, as highlighted by
the schematic diagram in Fig. 14. Due to the finite width
of the distribution ρD about each of its modes [with typical
value � 0.25 — see Fig. 13(b)], there is a corresponding finite
width in the turning point distribution about each predicted
mesh point. Hence, these distributions may overlap for mesh
points spaced 0.4 apart but are well separated for mesh points
spaced 0.6 apart. In the turning points’ time series, this yields
a thicker “band structure” between mesh points spaced 0.4
apart, as seen in Fig. 15(a), where the central mesh points are
visited most frequently. By symmetry, we expect the central

FIG. 14. Schematic diagram for a subset of mesh points for M0 (top row) and M1 (bottom row), where both meshes are periodic with period 1 and M0 is a
translation of M1 by 1/2. The jump distance must lie in D, where turning points necessitate a change in direction after each jump. This evolution is equivalent
to leaving each point in the direction of the arrow and changing color at each jump (blue/yellow). The relationship between the random walk dynamics and the
derived effective potential Ve(x) is evident in Fig. 18.
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FIG. 15. Detrending of the slow
timescale drift that arises in the random
walk-like motion. The left column
shows the raw simulation data, while the
right column shows the residuals after
subtracting out the slow drift C(t). (a)
Zoom in of the turning point time series
Ti ≡ X (τi) (circles) for κ̃ = 0.005 and
Me ∼ 1.17 × 104. The trend curve C
(red) is fitted to the black circles only
(this is the subset S ⊂ T defined in
Appendix D). After detrending (right
panel), the bands are approximately
constant in time. (b) The distribution
of all turning points Ti before (ρT ,
left panel) and after (ρTR, right panel)
detrending. (c) The distribution of all
impact positions Xn before (ρX ) and after
(ρXR) detrending. The red dashed lines
in (b) and (c) correspond to the mesh
points of M0 (see Fig. 14); following
detrending, the peaks of ρTR and ρXR

both align with the mesh points of the
random walk.

band [−0.2, 0.2] to dominate the statistics in the case of M0

but the two bands [−0.7, −0.3] and [0.3, 0.7] to be equally
dominant for M1.

Our study reveals an additional complication; specifi-
cally, the finite width about the peaks in ρD allows for a slow
translation in the dominant turning point locations, as is evi-
dent in Fig. 15(a). The translation occurs on a slow timescale,
comparable to the memory time Me, the timescale at which the
global wave field structure changes. This drift obscures the
structure of the underlying statistics induced from the short-
time dynamics; for example, there is only a weak structure
apparent in the distribution of turning points ρT in Fig. 15(b).

To remedy this, we detrend the time-series data using
statistical methods and then analyse the residuals. This
detrending involves finding a smooth best fit C(t) for the time
varying drift and re-expressing the variation in the data about

C(t). This technique visibly enhances the wavelike nature
of the droplet’s statistical distribution [see Figs. 15(b) and
15(c)] and allows us to compare the resultant dynamics to the
predicted random walk meshes M0 and M1. The details of
the statistical techniques used are given in Appendix D.

3. Results

We now explore the statistical distributions following
the detrending of the slow timescale dynamics. By defining
R(t) ≡ X (t) − C(t), we have impact residuals X R

n ≡ R(tn) for
all n ≥ 0 and turning point residuals TR

i ≡ R(τi) for all τi ∈ T ,
with respective residual probability distributions ρXR and ρTR.
We demonstrate that the distribution modes vary with the
relative strength of the central and wave forces, and are intrin-
sically linked to the mean wave field η̄0(x) and an associated
effective potential Ve(x) to be defined in Sec. IV C.

FIG. 16. Histograms ρXR of the resid-
ual system X R

n . In (a) and (c), we fix
Me ∼ 1.17 × 104 and vary κ̃ , with (a)
κ̃ = 0.01 and (c) κ̃ = 0.02. The modes of
both histograms ρXR(x) correspond to the
mesh M0. In (b) and (d), we fix κ̃ = 0.01
and vary Me, with (b) Me ∼ 2.89 × 103

and (d) Me ∼ 1.97 × 103. In this case, the
modes of ρXR(x) now correspond to M1.
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FIG. 17. Behavior of successive residual turning points TR
i ,

with simulation data plotted for κ̃ = 0.01 with (a) Me ∼
1.17 × 104 and (b) Me ∼ 2.89 × 103 (gray circles). The
black crosses give the possible combinations of successive
turning points as prescribed by the associated mesh, with (a)
M0 and (b) M1 (see Fig. 14). The droplet crosses the origin
between crossing quadrants (CQ), in which either TR

i > 0
and TR

i+1 < 0, or TR
i < 0 and TR

i+1 > 0.

Examples of the corresponding residual distributions are
given in Figs. 15(b) and 15(c), where the residual statistics
are symmetric relative to mesh M0. The modes of ρXR corre-
spond to the modes of ρTR since the droplet is moving slowest
at the turning points, so spends most of its time in their vicin-
ity. The harmonic potential dominates the wave field far from
the origin, which explains the slight discrepancy between the
distribution modes and the mesh points for large |x|. We note
that the sub-mesh points {±1.2, ±2.2, . . .} are visited less fre-
quently as these drive the droplet away from the origin (see
Fig. 14), countering the harmonic potential.

To explore the extent of the random walk-like dynamics,
we vary the parameters κ̃ and Me and present the results in
Fig. 16. When Me is fixed, the quantization is sharper when
the waves dominate the harmonic potential [Fig. 16(a)], but as
κ̃ is increased, the peaks become broader and the quantization
loses clarity [Fig. 16(c)]. The plot of successive turning points
[Fig. 17(a)] confirms that the droplet motion is consistent with
the directional arrows predicted by the mesh M0 (see Fig. 14).
However, it is relatively rare for the droplet to cross the centre
of the bath (corresponding to TR

i TR
i+1 < 0), a feature that we

rationalize in Sec. IV C.
When the wave memory Me is reduced (with κ̃ fixed),

the random walk-like dynamics shift to the M1 mesh, where
the sub-mesh {±0.3, ±1.3, . . .} dominates the distribution
modes [see Figs. 16(b) and 16(d)]. Although the mesh points
{±0.7, ±1.7, . . .} remain apparent in the residual turning point
distribution ρTR [Fig. 17(b)], their presence is obscured in ρXR

[Fig. 16(b)]. As Me is further decreased, the mesh points that
counter the harmonic potential ({±0.7, ±1.7, . . .}) are visited
less frequently [Fig. 16(d)]. Indeed, it appears from Fig. 17(b)
that the centre of the bath is crossed more frequently in this
regime, as the relative strength of the central force is more
pronounced at lower wave memory.

These random walk-like dynamics differ substantially
from those arising in a bath driven at two incommensurate

frequencies52 and those in a corral given by the toy model
of Gilet.20,50 In our case, the domain is unbounded, so the
allowable steps between turning points are dominated by the
structure of the droplet’s local wave field. The associated
random walk mesh (M0 or M1) is selected by the relative
strength of the central and wave forces, where the mesh M0

is dominant in the high memory limit. In contrast, the random
walk-like motion observed by Gilet is instead induced by the
global wave field given by the corral’s cavity modes, with a
fixed random walk step size of λF/2.

C. The mean-pilot-wave potential

Based on the ideas of Theorem 1, we start by consid-
ering an effective potential Ve(x) using the stationary resid-
ual distribution ρXR(x) and the applied harmonic potential
1
2Kx2, defining Ve(x) = 1

2Kx2 + F
(
ρXR ∗ ηB

)
(x). Remarkably,

the direction associated with each mesh point (as given by
Fig. 14) corresponds precisely to the gradients of Ve, as indi-
cated by the arrows in Fig. 18. This correspondence provides
a strong indicator that the chaotic motion of the droplet is
driven by an effective potential induced by the slow decay
of the pilot-wave field in the high memory limit. With this
observation in mind, we sketch a stochastic reformulation
of the long-time pilot-wave dynamics in the high memory
limit, from which we aim to derive an equation for the time-
dependent probability distribution ρ(x, t) for the droplet’s
position.

Following a similar idea to that proposed by Labousse
et al.,30 we decompose the pilot-wave dynamics using its con-
trasting short and long timescale behavior. Specifically, we
model the contribution of the wave field to the pilot-wave
dynamics in terms of a propulsive nonlinear drag −D(Un)Un

(similar to that used in the weak acceleration limit),43,44

an approximation for the effect of the long-lived Faraday
waves, and a mean-zero normally distributed random noise

FIG. 18. Effective potential Ve(x) (blue)
with κ̃ = 0.01 for (a) Me ∼ 1.17 × 104

(corresponding to mesh M0) and (b)
Me ∼ 2.89 × 103 (corresponding to mesh
M1). The vertical gray dashed lines and
the arrows indicate the mesh points and
corresponding directions as given by the
schematic diagram in Fig. 14. The poten-
tials are symmetric about x = 0 (red line).
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FIG. 19. Solution ρs(x) to Eq. (21) for K/E = 100 with ηB normalized
so that ηB(0) = 1. The black and blue curves correspond to F/K = 5 and
F/K = 20, respectively. As the wave force increases relative to the central
force, ρs becomes broader and more wavelike.

that accounts for the local fluctuations of the pilot-wave.
Using the fact that |Un| � 1 (i.e., the distance between suc-
cessive impacts is small relative to the Faraday wavelength),
we approximate (13) and (14) by the continuous limit, in
which the Gaussian noise is replaced by an increment of the
Wiener process Wt over an infinitesimal timestep dt. This
yields Langevin evolution equations for the position-velocity
process (Xt, Ut) at time t > 0

dXt = Ut dt, (17)

dUt = −
[
D(Ut)Ut + ∂xV(Xt, t)

]
dt + σ0 dWt, (18)

where σ0 > 0 prescribes the magnitude of the stochastic
forcing. Here, we have defined the stochastic potential

V(x, t) = 1

2
Kx2 + F

(
ηB ∗ ρ

)
(x, t), (19)

where ρ(x, t) is the time-dependent probability distribution for
the droplet’s position.

The system (17) and (18) is speculative, and it should be
noted that, unlike Theorem 1, the convolution

(
ηB ∗ ρ

)
(x, t) is

for the time-dependent probability distribution and not for the
stationary probability distribution. However, an initial condi-
tion ρ(x, 0) = δ(x) would correspond to prescribing the initial
pilot-wave field as that of a bouncer, which is consistent with
the numerical simulations of Sec. IV B. Moreover, if a sta-
tionary probability distribution ρs(x) were to exist [where
ρ(x, t) → ρs(x) as t → ∞], then the system (17) and (18)
would be consistent with the results of Theorem 1.

The evolution of the time-dependent joint probability dis-
tribution p(x, u, t) corresponding to (17) and (18) is governed
by the Vlasov-Fokker-Planck equation

∂p

∂t
+ u

∂p

∂x
= ∂

∂u

{[
∂xV(x, t) + D(u)u

]
p
}

+ σ 2
0

2

∂2p

∂u2
, (20)

where ρ(x, t) = ∫
R

p(x, u, t) du is the marginal distribution and
V(x, t) is defined in Eq. (19). An interesting aspect of this
equation is the nonlinearity and spatial nonlocality in p(x, u, t)
arising through V(x, t). Indeed, similar equations have been
used in granular flow,53 and it has been proved that such
equations yield a unique stationary probability under suitable
assumptions for the nonlinear drag D, the applied potential,
and the convolution kernel ηB.54,55 Self-propulsive particles

in the case of no spatial nonlocality (F = 0) have also been
studied in a biological context.56 The numerical solution
to (20), with the possible inclusion of a velocity-dependent
multiplicative noise σ0(u), will be the subject of future work.

While the case without self-propulsion D(u) = D0 is not
appropriate for modeling the dynamics of walking droplets,
we note that the stationary distribution ρs(x) to Eq. (20) sat-
isfies Kramer’s equation for a given potential V , with implicit
solution

ρs(x) = Z0 exp

{
− 1

E

[
1

2
Kx2 + F

(
ηB ∗ ρs

)
(x)

]}
, (21)

where E = σ 2
0 /(2D0) and Z0 is a normalisation constant.57 In

Fig. 19, the numerical solution to (21) with different param-
eter values (solved using a Newton method) yields wave-
like stationary statistics, a feature consistent with not only
the pilot-wave dynamics of this system (Fig. 16) but also
pilot-wave dynamics under a Coriolis force23,27 and motion
confined to a corral.19,21 This provides a strong indication
that the stochastic system (17) and (18) with the correspond-
ing Vlasov-Fokker-Planck equation (20) will still exhibit
wavelike statistics when the nonlinear drag D(u) is included.

V. DISCUSSION

We have studied the dynamics of a droplet walking in
a harmonic potential with its motion confined to a line. By
performing linear stability analysis of the periodic states, we
have captured the changes to the limit cycle dynamics as
the wave force begins to dominate the harmonic potential.
In particular, we have elucidated the oscillation amplitude
quantization that appears at higher wave memory, which is
analogous to the energy quantization in the quantum harmonic
oscillator. We have also demonstrated that the pilot-wave has
the lowest mean energy for stable oscillations, suggesting the
significance of an underlying energy minimization principle
in rationalising the quantized states.

The methods developed herein for analyzing periodic
orbits are readily adaptable for studying the droplet motion
in a harmonic potential without restricting the motion to a
line, which will be useful for further characterization of the
more exotic periodic orbital states observed in the laboratory
(e.g., lemniscates and trefoils).24,28 We expect some of these
orbital states to be related by a (currently unknown) unstable
branch in the parameter space, which is likely to connect two
local minima of the wave’s mean energy. Additionally, this
methodology will allow for further analysis of the periodic
motion observed between two droplets (in free-space), such
as promenading pairs15–17 and wobbling orbits.13–15

We have demonstrated that this system follows the
Ruelle-Takens-Newhouse route to chaos, provided that the
periodic state destabilizes via a pair of complex-conjugate
eigenvalues. Furthermore, each of the new incommensurate
frequencies that emerges after each of the first two bifurca-
tions is approximated by the frequency of the corresponding
unstable state, as predicted by the linear stability analysis.
This result is a useful verification of our stability analysis
and allows us to predict the dynamics of the quasi-periodic
orbits.
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Finally, we have uncovered the relationship between the
mean wave field and the droplet statistics (Theorem 1), which
represents a powerful diagnostic tool at extremely high wave
memory. In this high memory regime, the droplet motion is
reminiscent of a random walk, where the distance between
successive turning points is prescribed by the minima of the
local pilot-wave. By detrending the slow-timescale variations
in the droplet’s trajectory, we have highlighted the wave-
like nature of the statistics, as becomes more pronounced
at higher memory. We expect our approach to reveal the
underlying statistical structure in other experimental configu-
rations of this pilot-wave system, such as tunneling8,10 and in
corrals.19,21

Remarkably, the mean wave field yields an effective
potential that has a controlling influence on the droplet
dynamics and thus the emergent statistics. This draws fur-
ther parallels to Bohmian mechanics, in which the statistical
and guiding wave fields are identical.58 Furthermore, we have
proposed a Langevin equation to describe the dynamics in the
high memory limit, where the motion is subject to an effective
potential. By expressing the stationary probability distribu-
tion ρs(x) as a (nonlinear) Vlasov-Fokker-Planck equation, we
can solve directly for ρs(x). We hope that these developments
will lead to a fruitful comparison of the long-time behavior of
this pilot-wave system in the chaotic regime to both statistical
mechanics and Bohmian mechanics.

We expect the connection between the dynamics and
statistics elucidated here to apply in other experimental
configurations (such as corrals19,21) or indeed in a more
generalized pilot-wave framework.59 The generalization of
Theorem 1 (as given by Appendix A) will play a key role
in elucidating the link between the dynamics and statistics of
pilot-wave systems and may provide a tool for better under-
standing the ingredients required for observing quantumlike
behavior on a classical scale.

SUPPLEMENTARY MATERIAL

See supplementary material for videos of the periodic
oscillatory pilot-wave dynamics.
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APPENDIX A: STATISTICS IN A GENERALIZED
PILOT-WAVE FRAMEWORK

In a generalized (linear) pilot-wave setting (with instanta-
neous impacts), the evolution of the fluid variables u(x, t) may
be written as u(x, t+n ) = Lu(x, t+n−1) + uI [x, X(tn)], where
uI(x, y) is the (not necessarily symmetric) pilot-wave field
generated by a single impact at time t = 0 centred at x = y.
The linear operator L maps the fluid variables from t+n−1 
→ t−n
with operator norm ||L||op < 1 corresponding to a dis-
sipative system. Assuming a stationary distribution μ(y)
exists and that the dynamics are ergodic, then ergodic-
ity gives ū(x) = Lū(x) + ∫

R2 uI(x, y)μ(y) dy, where ū(x) ≡
limN→∞ 1

N

∑N
n=1 u(x, t+n ). Thus,

ū(x) =
∫

R2
uB(x, y)μ(y) dy,

where uB(x, y) ≡ (Id − L)−1uI(x, y) and Id is the identity
operator. From the Neumann series

∑∞
n=0 Ln = (Id − L)−1,

we recognize uB(x, y) as being proportional to the time-
periodic Green’s function for the domain centred at x = y,
which is analogous to the wave field of a bouncer in a
generalized framework.

APPENDIX B: ROBUSTNESS OF THE CONVOLUTION
RESULT

To demonstrate the robustness of Corollary 1, we sim-
ulate the droplet motion in a parameter regime that cor-
responds to the stable periodic motion (see Sec. III) and
compute the corresponding histogram H(x) to approximate
the droplet’s probability distribution ρX (x) [Fig. 20(a)]. Thus,
for histogram bin centres ξj with heights H(ξj), we have

FIG. 20. Example convergence of Corollary 1 for periodic motion Xn = Xn+Q in the case where Q → ∞. (a) Histogram of the simulated periodic motion for
�/�F = 0.95 and κ̃ = 0.02 over N = 2 × 105 impacts. (b) Simulated mean wave field η̄S

0 (x) (gray) and computed mean wave field η̄C
0 (x) using the convolution

(10) (black) for bin width δH ≈ 0.034, where the histogram bin centres lie at x = ξ±j ≡ ±j δH for j ≥ 0. (c) Mean squared error MSE ≡ N−1
X

∑NX
i=1

[
η̄S

0 (xi) −
η̄C

0 (xi)
]2

for decreasing δH . The functions are evaluated at NX = 301 equally spaced points xi in the interval [−3, 3]. The slope indicates an O(δH3) convergence.

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-004898
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H(ξj) ≈ ρX (ξj). For NX equally spaced points xi in the inter-
val [−3, 3], we compute the mean wave field η̄C

0 (xi) using
the convolution (10), with the midpoint quadrature rule
η̄C

0 (xi) ≈ δH
∑

j ηB(xi − ξj)H(ξj). To compare the simulated
mean wave field η̄S

0 , we compute the mean squared error

MSE ≡ N−1
X

∑NX
i=1

[
η̄S

0(xi) − η̄C
0 (xi)

]2
, which has size O(δH3)

as δH → 0 [Fig. 20(c)], thus indicating convergence.

APPENDIX C: ANALYSIS OF THE PERIODIC STATES

Following from Sec. III, we perform a Newton iteration
to find the periodic states. Specifically, we solve G(θ) = 0,
where θ = (

X0, κ̃ , G1, . . . , GN−1
)

and G (of dimension N + 1)
is given below. The function G is dependent on several other
functions of θ , which are computed at each step of the follow-
ing algorithm. Hence, computation of the Jacobian ∂G/∂θT

requires an application of the chain rule, where the derivative
∂/∂θT of each newly defined function is also computed. For
an initial guess θ :

1. Use κ̃ and (5) to uniquely find V+
0 (θ) such that

X1 − X0 = 0 (X0 is an extremum).
2. Use the droplet iteration maps (5) and (7) with gradi-

ents Gn and the initial conditions [X0, V+
0 (θ)]T to compute

positions Xn(θ) and velocities V−
n (θ) for n = 1, . . . , N .

3. For the wave field η0 to satisfy the reflection conditions
(12c) and (12d) with impacts Xn(θ), use (6) to find the ini-
tial wave amplitudes am(t0; k, θ) and a′

m(t+0 ; k, θ), which
solve

[
(−1)mI − MN

k

](
am(t0; k, θ)

a′
m(t+0 ; k, θ)

)
= −Hm(k; θ)

(
0
1

)
,

where

Hm(k; θ) = pk

N∑

n=1

Jm
[
kXn(θ)

]
MN−n

k .

4. Use (6) to recover the wave field η0(x, tn; θ) and gradients
gn(θ) = ∂xη0(Xn, tn; θ).

5. Using gN (θ) and V−
N (θ) with (7), compute V+

N (θ).
6. For consistency with gradients and droplet reflection

conditions (12a) and (12b), compute the output

G(θ) =

⎛

⎜⎜
⎜
⎜⎜
⎝

XN (θ) + X0

V+
N (θ) + V+

0 (θ)

g1(θ) − G1
...

gN−1(θ) − GN−1

⎞

⎟⎟
⎟
⎟⎟
⎠

.

7. If ||G(θ)||∞ < TOL, stop. Otherwise, update θ with a
Newton iteration and return to step 1.

To analyse the stability of the N-step periodic states, we
extend the method used for the 1-step stability maps explored
by Durey and Milewski,15 where perturbations are now
restricted to the x-axis. In brief, we linearize the map (5)–(7)
about the periodic state at times t+n for n = 1, . . . , N . By
expressing all the perturbed variables at time t+n−1 as a sin-
gle column vector, we construct (sparse) transition matrices
Tn(�) to map the perturbed variables from t+n−1 
→ t+n for
n = 1, . . . , N . The N-step stability matrix T is the product

T = RTN · · · T1, where R is the diagonal reflection matrix
about the x-axis. The eigenvalues of T are computed numer-
ically, and the periodic state is defined to be asymptotically
unstable if at least one eigenvalue lies outside the unit disc in
the complex plane.

APPENDIX D: DETRENDING THE LONG-TIME
STATISTICS

To detrend the data, we fit a simple version of a gener-
alized additive model60 to one of the aforementioned central
bands of turning points. This yields a subset of turning point
times S ⊂ T , which corresponds to the black data points in
Fig. 15(a). This detrending technique is a form of regression,
in which the trend curve C(t) is expressed as a linear com-
bination of smooth linearly independent basis functions (in
this case, B-splines) whose weights are computed to give a
least-squares fit of the data. However, to avoid over-fitting of
the data [characterized by an excessively “wiggly” function
C(t)], we introduce a smoothing penalization term.

As the trend changes over a timescale comparable to
the memory time Me � 1, we consider a linear combina-
tion of K basis functions bj(t), where KMe is the simulation
duration. The trend function C(t) is thus given by the linear
combination C(t) = ∑K

j=1 βjbj(t), where βj are the unknown
coefficients. The penalty for over-fitting is chosen to mini-
mize variation in the basis function coefficients βj, where the
required smoothness is determined by the parameter θ > 0.
The coefficients β = (β1, . . . , βK) are then defined as the
minimizer

β̂ = argminβ

∑

i:τi∈S

[
X (τi) − C(τi)

]2 + θS(β),

with the smoothness penalization term

S(β) =
K−1∑

j=2

(βj+1 − 2βj + βj−1)
2.

Although methods exist to find the “optimal” value of θ for
a given dataset,60 it is sufficient for our purposes to simply
fix θ = 500 for all datasets considered, where the residual
statistics vary only weakly for 100 � θ � 1000.
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