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1. Introduction, Notation

We consider fluid systems dominated by the influence of interfacial tension. The roles of curvature pressure
and Marangoni stress are elucidated in a variety of situtations. Particular attention will be given to the
dynamics of drops and bubbles, soap films and minimal surfaces, wetting phenomena, water-repellency,
surfactants, Marangoni flows, capillary origami and contact line dynamics. Theoretical developments will
be accompanied by classroom demonstrations. The role of surface tension in biology will be highlighted.

Notation

Nomenclature: σ denotes surface tension (at fluid-gas interface)
γ denotes interfacial tension (at fluid-fluid or fluid-solid interface).

Note on units: we will use predominantly cgs system.
Unit of force: 1 dyne = 1 g cm s−2 = 10−5N as the cgs unit of force, roughly the weight of 1 mosquito.
Pressure: 1 atm ≈ 100kPa = 105N/m2=106 dynes/cm2.
Units: [σ]=dynes/cm=mN/m.

What is an interface?: roughness scale δ, from equality of surface and thermal energy get σδ2 ∼kT⇒
δ ∼ (kT/σ)1/2. If δ � scales of experiment, can speak of a smooth interface.

1.1 Suggested References

While this list of relevant textbooks is far from complete, we include it as a source of additional reading
for the interested student.

• Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
by P.G. de Gennes, F. Brochard-Wyart and D. Quéré. Springer Publishing.
A readable and accessible treatment of a wide range of capillary phenomena.

• Molecular theory of capillarity
by J.S. Rowlinson and B. Widom. Dover 1982.

• Intermolecular and surface forces
by J. Israelachvili. Academic Press, 2nd edition 1995.

• Multimedia Fluid Mechanics
Cambridge University Press, Ed. Bud Homsy.
A DVD with an extensive section devoted to capillary effects. Relevant videos will be used throughout
the course.
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2. Definition and Scaling of Surface
Tension

These lecture notes have been drawn from many sources, including textbooks, journal articles, and lecture
notes from courses taken by the author as a student. These notes are not intended as a complete discussion
of the subject, or as a scholarly work in which all relevant references are cited. Rather, they are intended as
an introduction that will hopefully motivate the interested student to learn more about the subject. Topics
have been chosen according to their perceived value in developing the physical insight of the students.

2.1 History: Surface tension in antiquity

Hero of Alexandria (10 AD - 70 AD) Greek mathematician and engineer, “the greatest
experimentalist of antiquity”. Exploited capillarity in a number of inventions described in his
book Pneumatics, including the water clock.

Pliny the Elder (23 AD - 79 AD) Author, natural philosopher, army and naval commander
of the early Roman Empire. Described the glassy wakes of ships. “True glory comes in doing
what deserves to be written; in writing what deserves to be read; and in so living as to make
the world happier.” “Truth comes out in wine”.

Leonardo da Vinci (1452-1519) Reported capillary rise in his notebooks, hypothesized that
mountain streams are fed by capillary networks.

Francis Hauksbee (1666-1713) Conducted systematic investigation of capillary rise, his
work was described in Newton’s Opticks, but no mention was made of him.

Benjamin Franklin (1706-1790) Polymath: scientist, inventor, politician; examined the
ability of oil to suppress waves.

Pierre-Simon Laplace (1749-1827) French mathematician and astronomer, elucidated the
concept and theoretical description of the meniscus, hence the term Laplace pressure.

Thomas Young (1773-1829) Polymath, solid mechanician, scientist, linguist. Demonstrated
the wave nature of light with ripple tank experiments, described wetting of a solid by a fluid.

Joseph Plateau (1801-1883) Belgian physicist, continued his experiments after losing his
sight. Extensive study of capillary phenomena, soap films, minimal surfaces, drops and bubbles.
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2.2. Motivation: Who cares about surface tension? Chapter 2. Definition and Scaling of Surface Tension

2.2 Motivation: Who cares about surface tension?

As we shall soon see, surface tension dominates gravity on a scale less than the capillary length (roughly
2mm). It thus plays a critical role in a variety of small-scale processes arising in biology, environmental
science and technology.

Biology

• all small creatures live in a world dominated
by surface tension

• surface tension important for insects for many
basic functions

• weight support and propulsion at the water
surface

• adhesion and deadhesion via surface tension

• the pistol shrimp: hunting with bubbles

• underwater breathing and diving via surface
tension

• natural strategies for water-repellency in
plants and animals

• the dynamics of lungs and the role of surfac-
tants and impurities

Figure 2.1: The diving bell spider

Geophysics and environmental science

• the dynamics of raindrops and their role in the
biosphere

• most biomaterial is surface active, sticks to the
surface of drops / bubbles

• chemical, thermal and biological transport in
the surf zone

• early life: early vessicle formation, confine-
ment to an interface

• oil recovery, carbon sequestration, groundwa-
ter flows

• design of insecticides intended to coat insects,
leave plant unharmed

• chemical leaching and the water-repellency of
soils

• oil spill dynamics and mitigation

• disease transmission via droplet exhalation

• dynamics of magma chambers and volcanoes

• the exploding lakes of Cameroon

Technology

• capillary effects dominant in microgravity set-
tings: NASA

• cavitation-induced damage on propellers and
submarines

• cavitation in medicine: used to damage kidney
stones, tumours ...

• design of superhydrophobic surfaces e.g. self-
cleaning windows, drag-reducing or erosion-
resistant surfaces

• lab-on-a-chip technology: medical diagnostics,
drug delivery

• microfluidics: continuous and discrete fluid
transport and mixing

• tracking submarines with their surface signa-
ture

• inkjet printing

• the bubble computer
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2.3. Surface tension: a working definition Chapter 2. Definition and Scaling of Surface Tension

Figure 2.2: a) The free surface between air and water at a molecular scale. b) Surface tension is analogous
to a negative surface pressure.

2.3 Surface tension: a working definition

Discussions of the molecular origins of surface or interfacial tension may be found elsewhere (e.g. Is-
raelachvili 1995, Rowlinson & Widom 1982 ). Our discussion follows that of de Gennes, Brochard-Wyart
& Quéré 2003.

Molecules in a fluid feel a mutual attraction. When this attractive force is overcome by thermal
agitation, the molecules pass into a gaseous phase. Let us first consider a free surface, for example
that between air and water (Fig. 2.2a). A water molecule in the fluid bulk is surrounded by attractive
neighbours, while a molecule at the surface has a reduced number of such neighbours and so in an
energetically unfavourable state. The creation of new surface is thus energetically costly, and a fluid
system will act to minimize surface areas. It is thus that small fluid bodies tend to evolve into spheres;
for example, a thin fluid jet emerging from your kitchen sink will generally pinch off into spherical drops
in order to minimize the total surface area (see Lecture 5).

If U is the total cohesive energy per molecule, then a molecule at a free surface will lose U/2 relative to
molecules in the bulk. Surface tension is a direct measure of this energy loss per unit area of surface. If the
characteristic molecular dimension is R and its area thus R2, then the surface tension is σ ∼ U/(2R)2. Note
that surface tension increases as the intermolecular attraction increases and the molecular size decreases.
For most oils, σ ∼ 20 dynes/cm, while for water, σ ∼ 70 dynes/cm. The highest surface tensions are
for liquid metals; for example, liquid mercury has σ ∼ 500 dynes/cm. The origins of interfacial tension
are analogous. Interfacial tension is a material property of a fluid-fluid interface whose origins lie in
the different energy per area that acts to resist the creation of new interface. Fluids between which no
interfacial tension arises are said to be miscible. For example, salt molecules will diffuse freely across a
boundary between fresh and salt water; consequently, these fluids are miscible, and there is no interfacial
tension between them. Our discussion will be confined to immiscible fluid-fluid interfaces (or fluid-gas
surfaces), at which an effective interfacial (or surface) tension acts.

Surface tension σ has the units of force/length or equivalently energy/area, and so may be thought
of as a negative surface pressure, or, equivalently, as a line tension acting in all directions parallel to the
surface. Pressure is generally an isotropic force per area that acts throughout the bulk of a fluid: small
surface element dS will feel a total force p(x)dS owing to the local pressure field p(x). If the surface S is
closed, and the pressure uniform, the net pressure force acting on S is zero and the fluid remains static.
Pressure gradients correspond to body forces (with units of force per unit volume) within a fluid, and so
appear explicitly in the Navier-Stokes equations. Surface tension has the units of force per length, and
its action is confined to the free surface. Consider for the sake of simplicity a perfectly flat interface. A
surface line element d` will feel a total force σd` owing to the local surface tension σ(x). If the surface
line element is a closed loop C, and the surface tension uniform, the net surface tension force acting on
C is zero, and the fluid remains static. If surface tension gradients arise, there may be a net force on the
surface element that acts to distort it through driving flow.
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2.4. Governing Equations Chapter 2. Definition and Scaling of Surface Tension

2.4 Governing Equations

The motion of a fluid of uniform density ρ and dynamic viscosity µ is governed by the Navier-Stokes
equations, which represent a continuum statement of Newton’s laws.

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ F + µ∇2u (2.1)

∇ · u = 0 (2.2)

This represents a system of 4 equations in 4 unknowns (the fluid pressure p and the three components of
the velocity field u). Here F represents any body force acting on a fluid; for example, in the presence of
a gravitational field, F = ρg where g is the acceleration due to gravity.

Surface tension acts only at the free surface; consequently, it does not appear in the Navier-Stokes
equations, but rather enters through the boundary conditions. The boundary conditions appropriate at a
fluid-fluid interface are formally developed in Lecture 3. We here simply state them for the simple case of
a free surface (such as air-water, in which one of the fluids is not dynamically significant) in order to get
a feeling for the scaling of surface tension. The normal stress balance at a free surface must be balanced
by the curvature pressure associated with the surface tension:

n · T · n = σ(∇ · n) (2.3)

where T = −pI + µ
[
∇u+ (∇u)T

]
= −pI + 2µE is the stress tensor, E = 1

2

[
∇u+ (∇u)T

]
is the

deviatoric stress tensor, and n is the unit normal to the surface. The tangential stress at a free surface
must balance the local surface tension gradient:

n · T · t =∇σ · t (2.4)

where t is the unit tangent to the interface.

2.5 The scaling of surface tension

Fundamental Concept The laws of Nature cannot depend on arbitrarily chosen system of units. Any
physical system is most succinctly described in terms of dimensionless variables.

Buckingham’s Theorem For a system with M physical variables (e.g. density, speed, length, viscosity)
describable in terms of N fundamental units (e.g. mass, length, time, temperature), there are M − N
dimensionless groups that govern the system.
E.g. Translation of a rigid sphere through a viscous fluid:
Physical variables: sphere speed U and radius a, fluid viscosity ν and density ρ and sphere drag D; M = 5.
Fundamental units: mass M , length L and time T ; N = 3.
Buckingham’s Theorem: there are M − N = 2 dimensionless groups: Cd = D/ρU2 and Re = Ua/ν.
System is uniquely determined by a single relation between the two: Cd = F (Re).
We consider a fluid of density ρ and viscosity µ = ρν with a free surface characterized by a surface tension
σ. The flow is marked by characteristic length- and velocity- scales of, respectively, a and U , and evolves
in the presence of a gravitational field g = −gẑ. We thus have a physical system defined in terms of six
physical variables (ρ, ν, σ, a, U, g) that may be expressed in terms of three fundamental units: mass, length
and time. Buckingham’s Theorem thus indicates that the system may be uniquely described in terms of
three dimensionless groups. We choose

Re =
Ua

ν
=

Inertia

Viscosity
= Reynolds number (2.5)

Fr =
U2

ga
=

Inertia

Gravity
= Froude number (2.6)

Bo =
ρga2

σ
=

Gravity

Curvature
= Bond number (2.7)
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2.5. The scaling of surface tension Chapter 2. Definition and Scaling of Surface Tension

The Reynolds number prescribes the relative magnitudes of inertial and viscous forces in the system,
while the Froude number those of inertial and gravity forces. The Bond number indicates the relative
importance of forces induced by gravity and surface tension. Note that these two forces are comparable

when Bo = 1, which arises at a lengthscale corresponding to the capillary length: `c = (σ/(ρg))
1/2

. For
an air-water surface, for example, σ ≈ 70 dynes/cm, ρ = 1g/cm3 and g = 980 cm/s2, so that `c ≈ 2mm.
Bodies of water in air are dominated by the influence of surface tension provided they are smaller than the
capillary length. Roughly speaking, the capillary length prescribes the maximum size of pendant drops
that may hang inverted from a ceiling, water-walking insects, and raindrops. Note that as a fluid system
becomes progressively smaller, the relative importance of surface tension over gravity increases; it is thus
that surface tension effects are critical in many in microscale engineering processes and in the lives of
bugs.

Finally, we note that other frequently arising dimensionless groups may be formed from the products
of Bo, Re and Fr:

We =
ρU2a

σ
=

Inertia

Curvature
= Weber number (2.8)

Ca =
ρνU

σ
=

Viscous

Curvature
= Capillary number (2.9)

The Weber number indicates the relative magnitudes of inertial and curvature forces within a fluid, and
the capillary number those of viscous and curvature forces. Finally, we note that if the flow is marked by
a Marangoni stress of characteristic magnitude ∆σ/L, then an additional dimensionless group arises that
characterizes the relative magnitude of Marangoni and curvature stresses:

Ma =
a∆σ

Lσ
=

Marangoni

Curvature
= Marangoni number (2.10)

We now demonstrate how these dimensionless groups arise naturally from the nondimensionalization of
Navier-Stokes equations and the surface boundary conditions. We first introduce a dynamic pressure:
pd = p− ρg · x, so that gravity appears only in the boundary conditions. We consider the special case of
high Reynolds number flow, for which the characteristic dynamic pressure is ρU2. We define dimensionless
primed variables according to:

u = Uu′ , pd = ρU2p′d , x = ax′ , t =
a

U
t′ , (2.11)

where a and U are characteristic lenfth and velocity scales. Nondimensionalizing the Navier-Stokes equa-
tions and appropriate boundary conditions yields the following system:(

∂u′

∂t′
+ u′ · ∇′u′

)
= −∇p′d +

1

Re
∇′2u′ , ∇′ · u′ = 0 (2.12)

The normal stress condition assumes the dimensionless form:

−p′d +
1

Fr
z′ +

2

Re
n · E′ · n =

1

We
∇′ · n (2.13)

The relative importance of surface tension to gravity is prescribed by the Bond number Bo, while that
of surface tension to viscous stresses by the capillary number Ca. In the high Re limit of interest, the
normal force balance requires that the dynamic pressure be balanced by either gravitational or curvature
stresses, the relative magnitudes of which are prescribed by the Bond number.

The nondimensionalization scheme will depend on the physical system of interest. Our purpose here
was simply to illustrate the manner in which the dimensionless groups arise in the theoretical formulation
of the problem. Moreover, we see that those involving surface tension enter exclusively through the
boundary conditions.
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2.6. A few simple examples Chapter 2. Definition and Scaling of Surface Tension

Figure 2.3: Surface tension may be measured by drawing a thin plate from a liquid bath.

2.6 A few simple examples

Measuring surface tension. Since σ is a tensile force per unit length, it is possible to infer its value by
slowly drawing a thin plate out of a liquid bath and measure the resistive force (Fig. 2.3). The maximum
measured force yields the surface tension σ.

Curvature/ Laplace pressure: consider an oil drop in water (Fig. 2.4a). Work is required to increase
the radius from R to R+ dR:

dW = −podVo − pwdVw︸ ︷︷ ︸
mech. E

+ γowdA︸ ︷︷ ︸
surface E

(2.14)

where dVo = 4πR2dR = −dVw and dA = 8πRdR.
For mechanical equilibrium, we require
dW = −(p0 − pw)4πR2dR+ γow8πRdR = 0 ⇒
∆P = (po − pw) = 2γow/R.

Figure 2.4: a) An oil drop in water b) When a soap bubble is penetrated by a cylindrical tube, air is
expelled from the bubble by the Laplace pressure.

MIT OCW: 18.357 Interfacial Phenomena 9 Prof. John W. M. Bush



2.6. A few simple examples Chapter 2. Definition and Scaling of Surface Tension

Note:

1. Pressure inside a drop / bubble is higher than that outside ∆P ∼ 2γ/R ⇒ smaller bubbles have
higher Laplace pressure ⇒ champagne is louder than beer.
Champagne bubbles R ∼ 0.1mm, σ ∼ 50 dynes/cm, ∆P ∼ 10−2 atm.

2. For a soap bubble (2 interfaces) ∆P = 4σ
R , so for R ∼ 5 cm, σ ∼ 35dynes/cm have ∆P ∼ 3×10−5atm.

More generally, we shall see that there is a pressure jump across any curved interface:

Laplace pressure ∆p = σ∇ · n.
Examples:

1. Soap bubble jet - Exit speed (Fig. 2.4b)

Force balance: ∆p = 4σ/R ∼ ρairU2 ⇒ U ∼
(

4σ
ρairR

)1/2

∼
(

4×70dynes/cm
0.001g/cm3·3cm

)
∼ 300cm/s

2. Ostwald Ripening: The coarsening of foams (or emulsions) owing to diffusion of gas across inter-
faces, which is necessarily from small to large bubbles, from high to low Laplace pressure.

3. Falling drops: Force balance Mg ∼ ρairU2a2 gives
fall speed U ∼

√
ρga/ρair.

drop integrity requires ρairU
2 ∼ ρga < σ/a

raindrop size a < `c =
√
σ/ρg ≈ 2mm.

If a drop is small relative to the capillary length, σ maintains it against the destabilizing influence
of aerodynamic stresses.

MIT OCW: 18.357 Interfacial Phenomena 10 Prof. John W. M. Bush



3. Wetting

Puddles. What sets their size?
Knowing nothing of surface chemistry, one anticipates that Laplace pressure balances hydrostatic pressure
if σ/H ≥ ρgH ⇒ H < `c =

√
σ/ρg = capillary length.

Note:

1. Drops with R < `c remain heavily spherical

2. Large drops spread to depth H ∼ `c so that
Laplace + hydrostatic pressures balance at the
drop’s edge. A volume V will thus spread
to a radius R s.t. πR2`c = V , from which

R = (V/π`c)
1/2

.

3. This is the case for H2O on most surfaces,
where a contact line exists. Figure 3.1: Spreading of drops of increasing size.

Note: In general, surface chemistry can dominate and one need not have a contact line.

More generally, wetting occurs at fluid-solid contact. Two possibilities exist: partial wetting or total
wetting, depending on the surface energies of the 3 interfaces (γLV , γSV , γSL).

Now, just as σ = γLV is a surface energy per area or tensile force per length at a liquid-vapour surface,
γSL and γSV are analogous quantities at solid-liquid and solid-vapour interfaces.
The degree of wetting determined by spreading parameters:

S = [Esubstrate]dry − [Esubstrate]wet = γSV − (γSL + γLV ) (3.1)

where only γLV can be easily measured.
Total Wetting: S > 0 , θe = 0 liquid spreads completely in order to minimize its surface energy. e.g.
silicon on glass, water on clean glass.

Note: Silicon oil is more likely to spread than H2O since σw ∼ 70 dyn/cm > σs.o. ∼ 20 dyn/cm. Final
result: a film of nanoscopic thickness resulting from competition between molecular and capillary forces.

Partial wetting: S < 0, θe > 0. In absence of
g, forms a spherical cap meeting solid at a con-
tact angle θe. A liquid is “wetting” on a particular
solid when θe < π/2, non-wetting or weakly wetting
when θe > π/2. For H2O, a surface is hydrophilic
if θe < π/2, hydrophobic if θe > π/2 and superhy-
drophobic if θe > 5π/6.

Figure 3.2: The same water drop on hydrophobic
and hydrophilic surfaces.

Note: if g = 0, drops always take the form of a spherical cap ⇒ flattening indicates the effects of gravity.

11



4. Young’s Law with Applications

Young’s Law: what is the equilibrium contact angle θe ? Horizontal force balance at contact line:
γLV cos θe = γSV − γSL

cos θe =
γSV − γSL

γLV
= 1 +

S

γLV
(Y oung 1805) (4.1)

Note:

1. When S ≥ 0, cos θe ≥ 1 ⇒ θe undefined and
spreading results.

2. Vertical force balance not satisfied at contact
line ⇒ dimpling of soft surfaces.
E.g. bubbles in paint leave a circular rim.

3. The static contact angle need not take its equi-
librium value ⇒ there is a finite range of pos-
sible static contact angles.

Back to Puddles: Total energy: Figure 4.1: Three interfaces meet at the contact line.

E = (γSL − γSV )A+ γLVA︸ ︷︷ ︸
surface energy

+
1

2
ρgh2A︸ ︷︷ ︸

grav. pot. energy

= −SV
h

+
1

2
ρgV h (4.2)

Minimize energy w.r.t. h: dE
dh = SV 1

h2 + 1
2ρgV = 0 when −S/h2 = 1

2ρg ⇒
h0 =

√
−2S
ρg = 2`c sin θe

2 gives puddle depth, where `c =
√
σ/ρg.

Capillary Adhesion: Two wetted surfaces can
stick together with great strength if θe < π/2, e.g.
Fig. 4.2.
Laplace Pressure:

∆P = σ
(

1
R −

cos θe
H/2

)
≈ − 2σ cos θe

H

i.e. low P inside film provided θe < π/2.
If H � R, F = πR2 2σ cos θe

H is the attractive force
between the plates.

Figure 4.2: An oil drop forms a capillary bridge
between two glass plates.

E.g. for H2O, with R = 1 cm, H = 5 µm and θe = 0, one finds ∆P ∼ 1/3 atm and an adhesive force
F ∼ 10N , the weight of 1l of H2O.

Note: Such capillary adhesion is used by beetles in nature.

4.1 Formal Development of Interfacial Flow Problems

Governing Equations: Navier-Stokes. An incompressible, homogeneous fluid of density ρ and viscosity
µ = ρν (µ is dynamic and ν kinematic viscosity) acted upon by an external force per unit volume f evolves
according to

∇ · u = 0 (continuity) (4.3)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ f + µ∇2u (Linear momentum conservation) (4.4)

12



4.1. Formal Development of Interfacial Flow Problems Chapter 4. Young’s Law with Applications

This is a system of 4 equations in 4 unknowns (u1, u2, u3, p). These N-S equations must be solved subject
to appropriate BCs.
Fluid-Solid BCs: “No-slip”: u = Usolid.
E.g.1 Falling sphere: u = U on sphere surface, where U is the sphere velocity.
E.g.2 Convection in a box: u = 0 on the box surface.
But we are interested in flows dominated by interfacial effects. Here, in general, one must solve N-S
equations in 2 domains, and match solutions together at the interface with appropriate BCs. Difficulty:
These interfaces are free to move ⇒ Free boundary problems.

Figure 4.3: E.g.3 Drop motion within a fluid.

Figure 4.4: E.g.4 Water waves at an air-water in-
terface.

Continuity of Velocity at an interface requires that u = û.
And what about p ? We’ve seen ∆p ∼ σ/R for a static bubble/drop, but to answer this question in
general, we must develop stress conditions at a fluid-fluid interface.
Recall: Stress Tensor. The state of stress within an incompressible Newtonian fluid is described by
the stress tensor: T = −pI + 2µE where E = 1

2

[
(∇u) + (∇u)T

]
is the deviatoric stress tensor. The

associated hydrodynamic force per unit volume within the fluid is ∇ · T .
One may thus write N-S eqns in the form: ρDu

Dt =∇ · T + f = −∇p+ µ∇2u + f.
Now: Tij = force / area acting in the ej direction on a surface with a normal ei.

Note:

1. normal stresses (diagonals) T11, T22, T33 in-
volve both p and ui

2. tangential stresses (off-diagonals) T12, T13,
etc., involve only velocity gradients, i.e. vis-
cous stresses

3. Tij is symmetric (Newtonian fluids)

4. t(n) = n·T = stress vector acting on a surface
with normal n

E.g. Shear flow. Stress in lower boundary is tan-
gential. Force / area on lower boundary:
Tyx = µ∂ux

∂y |y=0 = µk is the force/area that acts on
y-surface in x-direction.

Note: the form of T in arbitrary curvilinear coordi-
nates is given in the Appendix of Batchelor.

Figure 4.5: Shear flow above a rigid lower bound-
ary.
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5. Stress Boundary Conditions

Today:

1. Derive stress conditions at a fluid-fluid inter-
face. Requires knowledge of T = −pI + 2µE

2. Consider several examples of fluid statics

Recall: the curvature of a string under tension may
support a normal force. (see right)

Figure 5.1: String under tension and the influence
of gravity.

5.1 Stress conditions at a fluid-fluid interface

We proceed by deriving the normal and tangential stress boundary conditions appropriate at a fluid-fluid
interface characterized by an interfacial tension σ.

Figure 5.2: A surface S and bounding contour C on an interface between two fluids. Local unit vectors
are n, m and s.

Consider an interfacial surface S bounded by a closed contour C. One may think of there being a force
per unit length of magnitude σ in the s-direction at every point along C that acts to flatten the surface S.
Perform a force balance on a volume element V enclosing the interfacial surface S defined by the contour
C: ∫

V

ρ
Du

Dt
dV =

∫
V

f dV +

∫
S∗

[t(n) + t̂(n̂)] dS +

∫
C

σs d` (5.1)

Here ` indicates arc-length and so d` a length increment along the curve C.
t(n) = n · T is the stress vector, the force/area exerted by the upper (+) fluid on the interface.
The stress tensor is defined in terms of the local fluid pressure and velocity field as T = −pI+µ

[
∇u+ (∇u)T

]
.

The stress exerted on the interface by the lower (-) fluid is t̂(n̂) = n̂ · T̂ = −n ·T
where T̂ = −p̂I + µ̂

[
∇û+ (∇û)T

]
.

Physical interpretation of terms∫
V
ρDu
Dt dV : inertial force associated with acceleration of fluid in V∫

f dV : body forces acting within V∫
S

t(n) dS : hydrodynamic force exerted by upper fluid∫
S

t̂(n̂) dS : hydrodynamic force exerted by lower fluid∫
C
σs d` : surface tension force exerted on perimeter.
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5.1. Stress conditions at a fluid-fluid interface Chapter 5. Stress Boundary Conditions

Now if ε is the characteristic height of our volume V and R its characteristic radius, then the accel-
eration and body forces will scale as R2ε, while the surface forces will scale as R2. Thus, in the limit of
ε→ 0, the latter must balance. ∫

S

t(n) + t̂(n̂) dS +

∫
C

σs d` = 0 (5.2)

Now we have that
t(n) = n ·T , t̂(n̂) = n̂ · T̂ = −n ·T (5.3)

Moreover, the application of Stokes Theorem (see below) allows us to write∫
C

σs d` =

∫
S

∇Sσ − σn (∇S · n) dS (5.4)

where the tangential (surface) gradient operator, defined

∇S = [I− nn] ·∇ =∇− n
∂

∂n
(5.5)

appears because σ and n are only defined on the surface S. We proceed by dropping the subscript s on
∇, with this understanding. The surface force balance thus becomes∫

S

(
n ·T− n · T̂

)
dS =

∫
S

σn (∇ · n)−∇σ dS (5.6)

Now since the surface S is arbitrary, the integrand must vanish identically. One thus obtains the interfacial
stress balance equation, which is valid at every point on the interface:
Stress Balance Equation

n ·T− n · T̂ = σn (∇ · n)−∇σ (5.7)

Interpretation of terms:
n ·T stress (force/area) exerted by + on - (will generally have both ⊥ and ‖ components)

n · T̂ stress (force/area) exerted by - on + (will generally have both ⊥ and ‖ components)
σn (∇ · n) normal curvature force per unit area associated with local curvature of interface, ∇ · n

∇σ tangential stress associated with gradients in σ

Normal stress balance Taking n·(5.7) yields the normal stress balance

n ·T · n− n · T̂ · n = σ(∇ · n) (5.8)

The jump in the normal stress across the interface is balanced by the curvature pressure.
Note: If ∇ · n 6= 0, there must be a normal stress jump there, which generally involves both pressure and
viscous terms.
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5.2. Appendix A : Useful identity Chapter 5. Stress Boundary Conditions

Tangential stress balance Taking d·(5.7), where d is any linear combination of s and m (any tangent
to S), yields the tangential stress balance at the interface:

n ·T · d− n · T̂ · d =∇σ · d (5.9)

Physical Interpretation

• LHS represents the jump in tangential components of the hydrodynamic stress at the interface

• RHS represents the tangential stress (Marangoni stress) associated with gradients in σ, as may
result from gradients in temperature θ or chemical composition c at the interface since in general
σ = σ(θ, c)

• LHS contains only the non-diagonal terms of T - only the velocity gradients, not pressure; therefore
any non-zero ∇σ at a fluid interface must always drive motion.

5.2 Appendix A : Useful identity

Recall Stokes Theorem: ∫
C

F · d` =

∫
S

n · (∇ ∧ F ) dS (5.10)

Along the contour C, d` = m d`, so that we have∫
C

F ·m d` =

∫
S

n · (∇ ∧ F ) dS (5.11)

Now let F = f ∧ b, where b is an arbitrary constant vector. We thus have∫
C

(f ∧ b) ·m d` =

∫
S

n · (∇ ∧ (f ∧ b)) dS (5.12)

Now use standard vector identities to see (f ∧ b) ·m = −b · (f ∧m) and

∇ ∧ (f ∧ b) = f (∇ · b)− b (∇ · f) + b · ∇f − f · ∇b = −b (∇ · f) + b · ∇f (5.13)

since b is a constant vector. We thus have

b ·
∫
C

(f ∧m) d` = b ·
∫
S

[n (∇ · f)− (∇f) · n] dS (5.14)

Since b is arbitrary, we thus have∫
C

(f ∧m) d` =

∫
S

[n (∇ · f)− (∇f) · n] dS (5.15)

We now choose f = σn, and recall that n ∧m = −s. One thus obtains
−
∫
C
σsd` =

∫
S

[n∇ · (σn)−∇ (σn) · n] dS =
∫
S

[n∇σ · n+ σn (∇ · n)−∇σ − σ (∇n) · n] dS.

We note that ∇σ · n = 0 since ∇σ must be tangent to the surface S and (∇n) · n = 1
2∇ (n · n) =

1
2∇(1) = 0, and so obtain the desired result:∫

C

σs d` =

∫
S

[∇σ − σn (∇ · n)] dS (5.16)
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions

5.3 Fluid Statics

We begin by considering static fluid configurations, for which the stress tensor reduces to the form T = −pI,
so that n ·T · n = −p, and the normal stress balance equation (5.8) assumes the simple form:

p̂− p = σ∇ · n (5.17)

The pressure jump across a static interface is balanced by the curvature force at the interface. Now since
n · T · d = 0 for a static system, the tangential stress balance indicates that ∇σ = 0. This leads to
the following important conclusion: There cannot be a static system in the presence of surface tension
gradients. While pressure jumps can sustain normal stress jumps across a fluid interface, they do not
contribute to the tangential stress jump. Consequently, tangential surface (Marangoni) stresses can only
be balanced by viscous stresses associated with fluid motion. We proceed by applying equation (5.17) to
describe a number of static situations.

1. Stationary Bubble : We consider a spherical air bubble of radius R submerged in a static fluid.
What is the pressure drop across the bubble surface?
The divergence in spherical coordinates of F = (Fr, Fθ, Fφ) is given by
∇ · F = 1

r2
∂
∂r

(
r2Fr

)
+ 1

r sin θ
∂
∂θ (sin θFθ) + 1

r sinφ
∂
∂φFφ.

Hence ∇ · n|S = 1
r2

∂
∂r r

2|r=R = 2
R so the normal stress jump (5.17) indicates that

∆P = p̂− p =
2σ

R
(5.18)

The pressure within the bubble is higher than that outside by an amount proportional to the surface
tension, and inversely proportional to the bubble size. As noted in Lec. 2, it is thus that small bubbles
are louder than large ones when they burst at a free surface: champagne is louder than beer. We note
that soap bubbles in air have two surfaces that define the inner and outer surfaces of the soap film;
consequently, the pressure differential is twice that across a single interface.

2. The static meniscus (θe < π/2)

Consider a situation where the pressure within a
static fluid varies owing to the presence of a gravi-
tational field, p = p0 +ρgz, where p0 is the constant
ambient pressure, and g = −gẑ is the grav. acceler-
ation. The normal stress balance thus requires that
the interface satisfy the Young-Laplace Equation:

ρgz = σ∇ · n (5.19)

The vertical gradient in fluid pressure must be bal-
anced by the curvature pressure; as the gradient is
constant, the curvature must likewise increase lin-

early with z. Such a situation arises in the static
meniscus (below).

Figure 5.3: Static meniscus near a wall.

The shape of the meniscus is prescribed by two factors: the contact angle between the air-water
interface and the wall, and the balance between hydrostatic pressure and curvature pressure. We treat
the contact angle θe as given; noting that it depends in general on the surface energy. The normal
force balance is expressed by the Young-Laplace equation, where now ρ = ρw − ρair ≈ ρw is the density
difference between water and air. We define the free surface by z = η(x); equivalently, we define a
functional f(x, z) = z − η(x) that vanishes on the surface. The normal to the surface z = η(x) is thus

n =
∇f
|∇f | =

ẑ − η′(x)x̂

[1 + η′(x)2]
1/2

(5.20)
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions

As deduced in Appendix B, the curvature of the free surface ∇ · n̂, may be expressed as

∇ · n̂ =
−ηxx

(1 + η2
x)3/2

≈ −ηxx (5.21)

Assuming that the slope of the meniscus remains sufficiently small, η2
x � 1, allows one to linearize equation

(5.21), so that (5.19) assumes the form
ρgη = σηxx (5.22)

Applying the boundary condition η(∞) = 0 and the contact condition ηx(0) = − cot θ, and solving (5.22)
thus yields

η(x) = `c cot θee
−x/`c (5.23)

where `c =
√
σ/ρg is the capillary length. The meniscus formed by an object floating in water is exponen-

tial, decaying over a length scale `c. Note that this behaviour may be rationalized as follows: the system
arranges itself so that its total energy (grav. potential + surface) is minimized.

3. Floating Bodies

Floating bodies must be supported by some combination of buoyancy and curvature forces. Specifically,
since the fluid pressure beneath the interface is related to the atmospheric pressure p0 above the interface
by

p = p0 + ρgz + σ∇ · n , (5.24)

one may express the vertical force balance as

Mg = z ·
∫
C

−pnd` = Fb︸︷︷︸
buoyancy

+ Fc︸︷︷︸
curvature

. (5.25)

The buoyancy force

Fb = z ·
∫
C

ρgzn d` = ρgVb (5.26)

is thus simply the weight of the fluid displaced above the object and inside the line of tangency (see figure
below). We note that it may be deduced by integrating the curvature pressure over the contact area C
using the first of the Frenet-Serret equations (see Appendix C).

Fc = z ·
∫
C

σ (∇ · n)n d` = σz ·
∫
C

dt

d`
d` = σz · (t1 − t2) = 2σ sin θ (5.27)

At the interface, the buoyancy and curvature forces must balance precisely, so the Young-Laplace relation
is satisfied:

0 = ρgz + σ∇ · n (5.28)

Integrating this equation over the meniscus and taking the vertical component yields the vertical force
balance:

Fmb + Fmc = 0 (5.29)

where

Fmb = z ·
∫
Cm

ρgzn d` = ρgVm (5.30)

Fmc = z ·
∫
Cm

σ (∇ · n)n d` = σz ·
∫
Cm

dt

d`
d` = σz · (t1 − t2) = −2σ sin θ (5.31)

where we have again used the Frenet-Serret equations to evaluate the curvature force.
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions

Figure 5.4: A floating non-wetting body is supported by a combination of buoyancy and curvature forces,
whose relative magnitude is prescribed by the ratio of displaced fluid volumes Vb and Vm.

Equations (5.27-5.31) thus indicate that the curvature force acting on the floating body is expressible in
terms of the fluid volume displaced outside the line of tangency:

Fc = ρgVm (5.32)

The relative magnitude of the buoyancy and curvature forces supporting a floating, non-wetting body is
thus prescribed by the relative magnitudes of the volumes of the fluid displaced inside and outside the
line of tangency:

Fb
Fc

=
Vb
Vm

(5.33)

For 2D bodies, we note that since the meniscus will have a length comparable to the capillary length,

`c = (σ/(ρg))
1/2

, the relative magnitudes of the buoyancy and curvature forces,

Fb
Fc
≈ r

`c
, (5.34)

is prescribed by the relative magnitudes of the body size and capillary length. Very small floating objects
(r � `c) are supported principally by curvature rather than buoyancy forces. This result has been
extended to three-dimensional floating objects by Keller 1998, Phys. Fluids, 10, 3009-3010.
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions

Figure 5.5: a) Water strider legs are covered with hair, rendering them effectively non-wetting. The
tarsal segment of its legs rest on the free surface. The free surface makes an angle θ with the horizontal,
resulting in an upward curvature force per unit length 2σ sin θ that bears the insect’s weight. b) The
relation between the maximum curvature force Fs = 2σP and body weight Fg = Mg for 342 species of
water striders. P = 2(L1 + L2 + L3) is the combined length of the tarsal segments. From Hu, Chan &
Bush; Nature 424, 2003.

4. Water-walking Insects

Small objects such as paper clips, pins or insects may reside at rest on a free surface provided the curvature
force induced by their deflection of the free surface is sufficient to bear their weight (Fig. 5.5a). For example,
for a body of contact length L and total mass M , static equilibrium on the free surface requires that:

Mg

2σL sin θ
< 1 , (5.35)

where θ is the angle of tangency of the floating body.
This simple criterion is an important geometric constraint on water-walking insects. Fig. 5.5b indicates
the dependence of contact length on body weight for over 300 species of water-striders, the most common
water walking insect. Note that the solid line corresponds to the requirement (5.35) for static equilibrium.
Smaller insects maintain a considerable margin of safety, while the larger striders live close to the edge.
The maximum size of water-walking insects is limited by the constraint (5.35).

If body proportions were independent of size L, one would expect the body weight to scale as L3 and

the curvature force as L. Isometry would thus suggest a dependence of the form Fc ∼ F
1/3
g , represented

as the dashed line. The fact that the best fit line has a slope considerably larger than 1/3 indicates a
variance from isometry: the legs of large water striders are proportionally longer.
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5.4. Appendix B : Computing curvatures Chapter 5. Stress Boundary Conditions

5.4 Appendix B : Computing curvatures

We see the appearance of the divergence of the surface normal, ∇ · n, in the normal stress balance. We
proceed by briefly reviewing how to formulate this curvature term in two common geometries.

In cartesian coordinates (x, y, z), we consider a surface defined by z = h(x, y). We define a functional
f(x, y, z) = z − h(x, y) that necessarily vanishes on the surface. The normal to the surface is defined by

n =
∇f
|∇f | =

ẑ − hxx̂− hyŷ(
1 + h2

x + h2
y

)1/2 (5.36)

and the local curvature may thus be computed:

∇ · n =
− (hxx + hyy)−

(
hxxh

2
y + hyyh

2
x

)
+ 2hxhyhxy(

1 + h2
x + h2

y

)3/2 (5.37)

In the simple case of a two-dimensional interface, z = h(x), these results assume the simple forms:

n =
ẑ − hxx̂

(1 + h2
x)

1/2
, ∇ · n =

−hxx
(1 + h2

x)
3/2

(5.38)

Note that n is dimensionless, while ∇ · n has the units of 1/L.
In 3D polar coordinates (r, θ, z), we consider a surface defined by z = h(r, θ). We define a functional

g(r, θ, z) = z − h(r, θ) that vanishes on the surface, and compute the normal:

n =
∇g
|∇g| =

ẑ − hrr̂ − 1
rhθθ̂(

1 + h2
r + 1

r2h
2
θ

)1/2 , (5.39)

from which the local curvature is computed:

∇ · n =
−hθθ − h2

rhθθ + hrhtheta − rhr − 2
rhrh

2
θ − r2hrr − hrrh2

θ + hrhθhrθ

r2
(
1 + h2

r + 1
r2h

2
θ

)1/2 (5.40)

In the case of an axisymmetric interface, z = h(r), these reduce to:

n =
ẑ − hrr̂

(1 + h2
r)

1/2
, ∇ · n =

−rhr − r2hrr

r2 (1 + h2
r)

3/2
(5.41)

5.5 Appendix C : Frenet-Serret Equations

Differential geometry yields relations that are of-
ten useful in computing curvature forces on 2D in-
terfaces.

(∇ · n)n =
dt

d`
(5.42)

− (∇ · n) t =
dn

d`
(5.43)

Note that the LHS of (5.42) is proportional to the
curvature pressure acting on an interface. Therefore
the net force acting on surface S as a result of cur-
vature / Laplace pressures:
F =

∫
C
σ (∇ · n)n d` = σ

∫
C
dt
d` d` = σ (t2 − t1)

and so the net force on an interface resulting from
curvature pressure can be deduced in terms of the
geometry of the end points.
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6. More on Fluid statics

Last time, we saw that the balance of curvature and hydrostatic pressures requires
−ρgη = σ∇ · n = σ −ηxx

(1+η2x)3/2
.

We linearized, assuming ηx � 1, to find η(x). Note: we can integrate directly

ρgηηx = σ
ηxηxx

(1 + η2
x)

3/2
ρg ⇒ d

dx

(
η2

2

)
= σ

d

dx

1

(1 + η2
x)

1/2
⇒

1

2σ
ρgη2 =

∫ ∞
x

d

dx

1

(1 + η2
x)

1/2
dx = 1− 1

(1 + η2
x)

1/2
= 1− sin θ

σ sin θ +
1

2
ρgη2 = σ (6.1)

Figure 6.1: Calculating the shape and maximal rise height of a static meniscus.

Maximal rise height: At z = h we have θ = θe, so from (6.1) 1
2ρgh

2 = σ(1− sin θe), from which

h =
√

2`c(1− sin θe)
1/2 where `c =

√
σ/ρg (6.2)

Alternative perspective: Consider force balance on the meniscus.
Horizontal force balance:

σ sin θ︸ ︷︷ ︸
horiz. projection of T1

+
1

2
ρgz2︸ ︷︷ ︸

hydrostatic suction

= σ︸︷︷︸
T2

(6.3)

Vertical force balance:

σ cos θ︸ ︷︷ ︸
vert. proj. of T1

=

∫ ∞
x

ρgzdx︸ ︷︷ ︸
weight of fluid

(6.4)

At x = 0, where θ = θe, gives σ cos θe = weight of fluid displaced above z = 0.

Note: σ cos θe = weight of displaced fluid is +/− according to whether θe is smaller or larger than π
2 .

Floating Bodies Without considering interfacial effects, one anticipates that heavy things sink and light
things float. This doesn’t hold for objects small relative to the capillary length.
Recall: Archimedean force on a submerged body FA =

∫
S
pndS = ρgVB .

In general, the hydrodynamic force acting on a body in a fluid
Fh =

∫
S
T · ndS, where T = −pI + 2µE = −pI for static fluid.

Here Fh = −
∫
S
pndS = −

∫
S
ρgzndS = −ρg

∫
V
∇z dV by divergence theorem. This is equal to

−ρg
∫
V

dV ẑ = −ρgV ẑ = weight of displaced fluid. The archimedean force can thus support weight
of a body Mg = ρBgV if ρF > ρB (fluid density larger than body density); otherwise, it sinks.
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6.1. Capillary forces on floating bodies Chapter 6. More on Fluid statics

Figure 6.2: A heavy body may be supported on a fluid surface by a combination of buoyancy and surface
tension.

6.1 Capillary forces on floating bodies

• arise owing to interaction of the menisci of floating bodies

• attractive or repulsive depending on whether the menisci are of the same or opposite sense

• explains the formation of bubble rafts on champagne

• explains the mutual attraction of Cheerios and their attraction to the walls

• utilized in technology for self-assembly on the microscale

Capillary attraction Want to calculate the attractive force between two floating bodies separated by
a distance R. Total energy of the system is given by

Etot = σ

∮
dA(R) +

∫ ∞
−∞

dx

∫ h(x)

0

ρgzdz (6.5)

where the first term in (6.5) corresponds to the total surface energy when the two bodies are a distance
R apart, and the second term is the total gravitational potential energy of the fluid. Differentiating (6.5)
yields the force acting on each of the bodies:

F (R) = −dEtot(R)

dR
(6.6)

Such capillary forces are exploited by certain water walking insects to climb menisci. By deforming the
free surface, they generate a lateral force that drives them up menisci (Hu & Bush 2005).
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7. Spinning, tumbling and rolling
drops

7.1 Rotating Drops

We want to find z = h(r) (see right). Normal stress
balance on S:

∆P +
1

2
∆ρΩ2r2︸ ︷︷ ︸

centrifugal

= σ∇ · n︸ ︷︷ ︸
curvature

Nondimensionalize:
∆p′ + 4B0

(
r
a

)2
=∇ · n,

where ∆p′ = a∆p
σ , Σ = ∆ρΩ2a3

8σ = centrifugal
curvature = =

Rotational Bond number = const. Define surface
functional: f(r, θ) = z − h(r) ⇒ vanishes on the
surface. Thus
n = ∇f

|∇| = ẑ−hr(r)r̂
(1+h2

r(r))1/2
and ∇ · n = −rhr−r2hrr

r2(1+h2
r)3/2

Figure 7.1: The radial profile of a rotating drop.

Brown + Scriven (1980) computed drop shapes and stability for B0 > 0:

1. for Σ < 0.09, only axisymmetric solutions,
oblate ellipsoids

2. for 0.09 < Σ < 0.31, both axisymmetric and
lobed solutions possible, stable

3. for Σ > 0.31 no stable solution, only lobed
forms

Tektites: centimetric metallic ejecta formed from
spinning cooling silica droplets generated by mete-
orite impact.

Q1: Why are they so much bigger than raindrops?

From raindrop scaling, we expect `c ∼
√

σ
∆ρg but

both σ, ∆ρ higher by a factor of 10 ⇒ large tektite
size suggests they are not equilibrium forms, but
froze into shape during flight.

Q2: Why are their shapes so different from those of
raindrops? Owing to high ρ of tektites, the internal
dynamics (esp. rotation) dominates the aerodynam-
ics ⇒ drop shape set by its rotation.

Figure 7.2: The ratio of the maximum radius to
the unperturbed radius is indicated as a function of
Σ. Stable shapes are denoted by the solid line, their
metastable counterparts by dashed lines. Predicted
3-dimensional forms are compared to photographs
of natural tektites. From Elkins-Tanton, Ausillous,
Bico, Quéré and Bush (2003).
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7.2. Rolling drops Chapter 7. Spinning, tumbling and rolling drops

Light drops: For the case of Σ < 0, ∆ρ < 0, a spinning drop is stabilized on axis by centrifugal pressures.
For high |Σ|, it is well described by a cylinder with spherical caps. Drop energy:

E =
1

2
IΩ2︸ ︷︷ ︸

Rotational K.E.

+ 2πrLγ︸ ︷︷ ︸
Surface energy

Neglecting the end caps, we write volume V = πr2L and moment of inertia I = ∆mr2

2 = ∆ρπ2Lr
4.

Figure 7.3: A bubble or a drop suspended in a denser fluid, spinning with angular speed Ω.

The energy per unit drop volume is thus E
V = 1

4∆ρΩ2r2 + 2γ
r .

Minimizing with respect to r:

d
dr

(
E
V

)
= 1

2∆ρΩ2r − 2γ
r2 = 0, which occurs when r =

(
4γ

∆ρΩ2

)1/3

. Now r =
(
V
πL

)1/2
=
(

4γ
∆ρΩ2

)1/3

⇒

Vonnegut’s Formula: γ = 1
4π3/2 ∆ρΩ2

(
V
L

)3/2
allows inference of γ from L, useful technique for small γ

as it avoids difficulties associated with fluid-solid contact.
Note: r grows with σ and decreases with Ω.

7.2 Rolling drops

Figure 7.4: A liquid drop rolling down an inclined plane.

(Aussillous and Quere 2003 ) Energetics: for steady descent at speed V, MgV sin θ =Rate of viscous
dissipation= 2µ

∫
Vd

(∇u)2dV , where Vd is the dissipation zone, so this sets V ⇒ Ω = V/R is the angular
speed. Stability characteristics different: bioconcave oblate ellipsoids now stable.
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8. Capillary Rise

Capillary rise is one of the most well-known and vivid illustrations of capillarity. It is exploited in a number
of biological processes, including drinking strategies of insects, birds and bats and plays an important role
in a number of geophysical settings, including flow in porous media such as soil or sand.

Historical Notes:

• Leonardo da Vinci (1452 - 1519) recorded the effect in his notes and proposed that mountain streams
may result from capillary rise through a fine network of cracks

• Jacques Rohault (1620-1675): erroneously suggested that capillary rise is due to suppresion of air
circulation in narrow tube and creation of a vacuum

• Geovanni Borelli (1608-1675): demonstrated experimentally that h ∼ 1/r

• Geminiano Montanari (1633-87): attributed circulation in plants to capillary rise

• Francis Hauksbee (1700s): conducted an extensive series of capillary rise experiments reported by
Newton in his Opticks but was left unattributed

• James Jurin (1684-1750): an English physiologist who independently confirmed h ∼ 1/r; hence
“Jurin’s Law”.

Consider capillary rise in a cylindrical tube of inner radius a (Fig. 8.2)

Recall:
Spreading parameter: S = γSV − (γSL + γLV ).

We now define Imbibition / Impregnation parame-
ter:
I = γSV − γSL = γLV cos θ
via force balance at contact line.
Note: in capillary rise, I is the relevant parameter,
since motion of the contact line doesn’t change the
energy of the liquid-vapour interface.

Imbibition Condition: I > 0.

Note: since I = S + γLV , the imbibition condition
I > 0 is always more easily met than the spreading
condition, S > 0
⇒ most liquids soak sponges and other porous me-
dia, while complete spreading is far less common.

Figure 8.1: Capillary rise and fall in a tube for two
values of the imbibition parameter I:
I > 0 (left) and I < 0 (right).
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Chapter 8. Capillary Rise

We want to predict the dependence of rise height H on both tube radius a and wetting properties. We
do so by minimizing the total system energy, specifically the surface and gravitational potential energies.
The energy of the water column:

E = (γSL − γSV ) 2πaH︸ ︷︷ ︸
surface energy

+
1

2
ρga2πH2︸ ︷︷ ︸
grav.P.E.

= −2πaHI +
1

2
ρga2πH2

will be a minimum with respect to H when dE
dH = 0

⇒ H = 2γSV −γSL

ρga = 2 I
ρga , from which we deduce

Jurin’s Law H = 2
γLV cos θ

ρgr
(8.1)

Note:

1. describes both capillary rise and descent: sign
of H depends on whether θ > π/2 or θ < π/2

2. H increases as θ decreases. Hmax for θ = 0

3. we’ve implicitly assumed R� H & R� lC .

The same result may be deduced via pressure or
force arguments.
By Pressure Argument
Provided a � `c, the meniscus will take the form
of a spherical cap with radius R = a

cos θ . Therefore

pA = pB − 2σ cos θ
a = p0 − 2σ cos θ

a = p0 − ρgH
⇒ H = 2σ cos θ

ρga as previously.
By Force Argument
The weight of the column supported by the tensile
force acting along the contact line:
ρπa2Hg = 2πa (γSV − γSL) = 2πaσ cos θ, from
which Jurin’s Law again follows.

Figure 8.2: Deriving the height of capillary rise in
a tube via pressure arguments.
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8.1. Dynamics Chapter 8. Capillary Rise

8.1 Dynamics

The column rises due to capillary forces, its rise being resisted by a combination of gravity, viscosity, fluid
inertia and dynamic pressure. Conservation of momentum dictates d

dt (m(t)ż(t)) = FTOT +
∫
S
ρvv · ndA,

where the second term on the right-hand side is the total momentum flux, which evaluates to πa2ρż2 = ṁż,
so the force balance on the column may be expressed as m︸︷︷︸

Inertia

+ ma︸︷︷︸
Added mass

 z̈ = 2πaσ cos θ︸ ︷︷ ︸
capillary force

− mg︸︷︷︸
weight

− πa2 1

2
ρż2︸ ︷︷ ︸

dynamic pressure

− 2πaz · τv︸ ︷︷ ︸
viscous force

(8.2)

where m = πa2zρ. Now assume the flow in the tube is fully developed Poiseuille flow, which will be

established after a diffusion time τ = a2

ν . Thus, u(r) = 2ż
(

1− r2

a2

)
, and F = πa2ż is the flux along the

tube.
The stress along the outer wall: τν = µdudr |r=a = − 4µ

a ż.
Finally, we need to estimate ma, which will dominate the dynamics at short time. We thus estimate the
change in kinetic energy as the column rises from z to z+∆z. ∆Ek = ∆

(
1
2mU

2
)
, where m = mc+m0+m∞

(mass in the column, in the spherical cap, and all the other mass, respectively). In the column, mc = πa2zρ,
u = U . In the spherical cap, m0 = 2π

3 a
3ρ, u = U . In the outer region, radial inflow extends to ∞, but

u(r) decays.
Volume conservation requires: πa2U = 2πa2ur(a) ⇒ ur(a) = U/2.

Continuity thus gives: 2πa2ur(a) = 2πr2ur(r) ⇒ ur(r) = a2

r2 ur(a) = a2

2r2U .

Thus, the K.E. in the far field: 1
2m

eff
∞ U2 = 1

2

∫∞
a
ur(r)

2 dm, where dm = ρ2πr2dr.

Hence

meff
∞ =

1

U2

∫ ∞
a

ρ

(
a2

2r2
U

)2

2πr2dr =

= πρa4

∫ ∞
a

1

2r2
dr =

1

2
ρπa3

Now

∆Ek =
1

2
∆ (mc +m0 +m∞)U2 +

1

2
m2U∆U =

=
1

2
∆mcU

2 +
1

2

(
mc +m0 +meff

∞
)

2U∆U =

= 1
2

(
πa2ρ∆z

)
U2+

(
πa2ρz+ 2

3πa
3ρ+ 1

2πa
3ρ
)
U∆U Figure 8.3: The dynamics of capillary rise.

Substituting for m = πa2zρ, ma = 7
6πa

3ρ (added mass) and τv = − 4µ
a ż into (8.2) we arrive at(

z +
7

6
a

)
z̈ =

2σ cos θ

ρa
− 1

2
ż2 − 8µzż

ρa2
− gz (8.3)

The static balance clearly yields the rise height, i.e. Jurin’s Law. But how do we get there?
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8.1. Dynamics Chapter 8. Capillary Rise

Inertial Regime

1. the timescale of establishment of Poiseuille
flow is τ∗ = 4a2

ν , the time required for bound-
ary effects to diffuse across the tube

2. until this time, viscous effects are negligible
and the capillary rise is resisted primarily by
fluid inertia

Figure 8.4: The various scaling regimes of capillary
rise.

Initial Regime: z ∼ 0, ż ∼ 0, so the force balance assumes the form 7
6az̈ = 2σ cos θ

ρa We thus infer

z(t) = 6
7
σ cos θ
ρa2 t2.

Once z ≥ 7
6a, one must also consider the column mass, and so solve

(
z + 7

6a
)
z̈ = 2σ cos θ

ρa . As the col-

umn accelerates from ż = 0, ż2 becomes important, and the force balance becomes: 1
2 ż

2 = 2σ cos θ
ρa ⇒

ż = U =
(

4σ cos θ
ρa

)1/2

is independent of g, µ.

z =
(

4σ cos θ
ρa

)1/2

t.

Viscous Regime (t� τ∗) Here, inertial effects become negligible, so the force balance assumes the form:
2σ cos θ
ρa − 8µzż

ρa2 − gz = 0. We thus infer H − z = 8µzż
ρga2 , where H = 2σ cos θ

ρga , ż = ρga2

8µ

(
H
z − 1

)
Nondimensionalizing: z∗ = z/H, t∗ = t/τ , τ = 8µH

ρga2 ;

We thus have ż∗ = 1
z∗−1 ⇒ dt∗ = z∗

1−z∗ dz
∗ = (−1− 1

1−z∗ )dz∗ ⇒ t∗ = −z∗ − ln(1− z∗).
Note: at t∗ →∞, z∗ → 1.

Early Viscous Regime: When z∗ � 1, we consider ln(z∗ − 1) = −z∗ − 1
2z
∗2and so infer z∗ =

√
2t∗.

Redimensionalizing thus yields Washburn’s Law : z =
[
σa cos θ

2µ t
]1/2

Note that ż is independent of g.

Late Viscous Regime: As z approaches H, z∗ ≈ 1. Thus, we consider t∗ = [−z∗−ln(1−z∗)] = ln(1−z∗)
and so infer z∗ = 1− exp(−t∗).
Redimensionalizing yields z = H [1− exp(−t/τ)], where H = 2σ cos θ

ρga and τ = 8µH
ρga2 .

Note: if rise timescale � τ∗ = 4a2

ν , inertia dominates, i.e. H � Uintertialτ
∗ =

(
4σ cos θ
ρa

)1/2
4a2

ν ⇒ inertial

overshoot arises, giving rise to oscillations of the water column about its equilibrium height H.

Wicking In the viscous regime, we have 2σ cos θ
ρa =

8µzż
ρa2 + ρg. What if the viscous stresses dominate

gravity? This may arise, for example, for predomi-
nantly horizontal flow (Fig. 8.5).
Force balance: 2σa cos θ

8µ = zż = 1
2
d
dtz

2 ⇒ z =(
σa cos θ

2µ t
)1/2

∼
√
t (Washburn’s Law).

Note: Front slows down, not due to g, but owing to
increasing viscous dissipation with increasing col-
umn length.

Figure 8.5: Horizontal flow in a small tube.
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9. Marangoni Flows

Marangoni flows are those driven by surface gradients. In general, surface tension σ depends on both the
temperature and chemical composition at the interface; consequently, Marangoni flows may be generated
by gradients in either temperature or chemical composition at an interface. We previously derived the
tangential stress balance at a free surface:

n · T · t = −t · ∇σ , (9.1)

where n is the unit outward normal to the surface, and t is any unit tangent vector. The tangential
component of the hydrodynamic stress at the surface must balance the tangential stress associated with
gradients in σ. Such Marangoni stresses may result from gradients in temperature or chemical composition
at the interface. For a static system, since n · T · t = 0, the tangential stress balance equation indicates
that: 0 =∇σ. This leads us to the following important conclusion:

There cannot be a static system in the presence of surface tension gradients.
While pressure jumps can arise in static systems characterized by a normal stress jump across a fluid
interface, they do not contribute to the tangential stress jump. Consequently, tangential surface stresses
can only be balanced by viscous stresses associated with fluid motion.
Thermocapillary flows: Marangoni flows induced by temperature gradients σ(T ).
Note that in general dσ

dT < 0 Why? A warmer gas phase has more liquid molecules, so the creation of
surface is less energetically unfavourable; therefore, σ is lower.
Approach Through the interfacial BCs (and σ(T )’s appearance therein), N-S equations must be coupled

Figure 9.1: Surface tension of a gas-liquid interface decreases with temperature since a warmer gas phase
contains more suspended liquid molecules. The energetic penalty of a liquid molecule moving to the
interface is thus decreased.

to the heat equation
∂T

∂t
+ u · ∇T = κ∇2T (9.2)
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Chapter 9. Marangoni Flows

Note:

1. the heat equation must be solved subject to appropriate BCs at the free surface. Doing so can be
complicated, especially if the fluid is evaporating.

2. Analysis may be simplified when the Peclet number Pe = Ua
κ � 1. Nondimensionalize (9.2):

x = ax′, t = a
U t
′, u = Uu′ to get

Pe
(
∂T ′

∂t′
+ u′ · ∇′T ′

)
= ∇2T ′ (9.3)

Note:
Pe = Re · Pr = Ua

ν ·
ν
κ � 1 if Re� 1, so one has ∇2T = 0.

The Prandtl number Pr = O(1) for many common (e.g. aqeous) fluids.
E.g.1 Thermocapillary flow in a slot (Fig.9.2a)
Surface Tangential BCs τ = ∆σ

L = dσ
dT

∆T
L ≈ µ

U
H viscous stress U ∼ 1

µ
H
L∆σ.

Figure 9.2: a) Thermocapillary flow in a slot b) Thermal convection in a plane layer c) Thermocapillary
drop motion.

E.g.2 Thermocapillary Drop Motion (Young, Goldstein & Block 1962)
can trap bubbles in gravitational field via thermocapillary forces. (Fig.9.2c).
E.g.3 Thermal Marangoni Convection in a Plane Layer (Fig.9.2b).
Consider a horizontal fluid layer heated from below. Such a layer may be subject to either buoyancy- or
Marangoni-induced convection.
Recall: Thermal buoyancy-driven convection (Rayleigh-Bernard) ρ(T ) = ρ0 (1 + α(T − T0)), where α is
the thermal expansivity. Consider a buoyant blob of characteristic scale d. Near the onset of convection,

one expects it to rise with a Stokes velocity U ∼ g∆ρ
ρ

d2

ν = gα∆Td2

ν . The blob will rise, and so convection

will occur, provided its rise time τrise = d
U = dν

gα∆Td2 is less than the time required for it to lose its heat

and buoyancy by diffusion, τdiff = d2

κ .

Criterion for Instability:
τdiff

τrise
∼ gα∆Td3

κν ≡ Ra > Rac ∼ 103, where Ra is the Rayleigh number.

Note: for Ra < Rac, heat is transported solely through diffusion, so the layer remains static. For
Ra > Rac, convection arises.
The subsequent behaviour depends on Ra and Pr. Generally, as Ra increases, steady convection rolls ⇒
time-dependency ⇒ chaos ⇒ turbulence.
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Chapter 9. Marangoni Flows

Thermal Marangoni Convection
Arises because of the dependence of σ on temperature: σ(T ) = σ0 − Γ(T − T0)
Mechanism:

• Imagine a warm spot on surface ⇒ prompts surface divergence ⇒ upwelling.

• Upwelling blob is warm, which reinforces the perturbation provided it rises before losing its heat via
diffusion.

• Balance Marangoni and viscous stress: ∆σ
d ∼

µU
d

• Rise time: d
U ∼

µd
∆σ

• Diffusion time τdiff = d2

κ

Criterion for instability:
τdiff

τrise
∼ Γ∆Td

µκ ≡Ma >Mac, where Ma is the Marangoni number.
Note:

1. Since Ma ∼ d and Ra ∼ d3, thin layers are most unstable to Marangoni convection.

2. Bénard’s original experiments performed in millimetric layers of spermaceti were visualizing Marangoni
convection, but were misinterpreted by Rayleigh as being due to buoyancy ⇒ not recognized until
Block (Nature 1956).

3. Pearson (1958) performed stability analysis with flat surface ⇒ deduced Mac = 80 .

4. Scriven & Sternling (1964) considered a deformable interface, which renders the system unstable at
allMa. Downwelling beneath peaks in Marangoni convection, upwelling between peaks in Rayleigh-
Bénard convection (Fig. 9.3a).

5. Smith (1966) showed that the destabilizing influence of the surface may be mitigated by gravity.
Stability Criterion: dσ

dT
dT
dz <

2
3ρgd ⇒ thin layers prone to instability.
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Chapter 9. Marangoni Flows

E.g.4 Marangoni Shear Layer (Fig. 9.3)
Lateral ∇θ leads to Marangoni stress ⇒ shear flow. The resulting T (x, y) may destabilize the layer to

Figure 9.3: a) Marangoni convection in a shear layer may lead to transverse surface waves or streamwise
rolls (c). Surface deflection may accompany both instabilities (b,d).

Marangoni convection.
Smith & Davis (1983ab) considered the case of flat free surface. System behaviour depends on Pr = ν/κ.
Low Pr: Hydrothermal waves propagate in direction of τ .
High Pr: Streamwise vortices (Fig. 9.3c).
Hosoi & Bush (2001) considered a deformable free surface (Fig. 9.3d)

E.g.5 Evaporatively-driven convection
e.g. for an alcohol-H2O solution, evaporation affects both the alcohol concentration c and temperature θ.
The density ρ(c, θ) and surface tension σ(c, θ) are such that ∂ρ

∂θ < 0, ∂ρ∂c < 0, dσdθ < 0, dσdc < 0. Evaporation
results in surface cooling and so may generate either Rayleigh-Bénard or Marangoni thermal convection.
Since it also induces a change in surface chemistry, it may likewise generate either Ra−B or Marangoni
chemical convection.

Figure 9.4: Evaporation of water from
a coffee drop drives a Marangoni flow.

E.g.6 Coffee Drop
Marangoni flows are responsible for the ring-like stain left by a
coffee drop.

• coffee grounds stick to the surface

• evaporation leads to surface cooling, which is most pro-
nounced near the edge, where surface area per volume ratio
is highest

• resulting thermal Marangoni stresses drive radial outflow
on surface ⇒ radial ring
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10. Marangoni Flows II

10.1 Tears of Wine

The first Marangoni flow considered was the tears of wine phenomenon (Thomson 1885 ), which actually
predates Marangoni’s first published work on the subject by a decade. The tears of wine phenomenon
is readily observed in a wine glass following the establishment of a thin layer of wine on the walls of the
glass.

An illustration of the tears of wine phenomenon is shown in Fig. 10.1. Evaporation of alcohol occurs
everywhere along the free surface. The alcohol concentration in the thin layer is thus reduced relative to
that in the bulk owing to the enhanced surface area to volume ratio. As surface tension decreases with
alcohol concentration, the surface tension is higher in the thin film than the bulk; the associated Marangoni
stress drives upflow throughout the thin film. The wine climbs until reaching the top of the film, where
it accumulates in a band of fluid that thickens until eventually becoming gravitationally unstable and
releasing the tears of wine. The tears or “legs” roll back to replenish the bulk reservoir, but with fluid
that is depleted in alcohol.

The flow relies on the transfer of chemical potential energy to kinetic and ultimately gravitational
potential energy. The process continues until the fuel for the process, the alcohol is completely depleted.
For certain liquors (e.g. port), the climbing film, a Marangoni shear layer, goes unstable to streamwise
vortices and an associated radial corrugation - the “tear ducts of wine” (Hosoi & Bush, JFM 2001). When
the descending tears reach the bath, they appear to recoil in response to the abrupt change in σ. The
tears or legs of wine are taken by sommeliers to be an indicator of the quality of wine.

Figure 10.1: The tears of wine. Fluid is drawn from the bulk up the thin film adjoining the walls of the
glass by Marangoni stresses induced by evaporation of alcohol from the free surface.
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10.2. Surfactants Chapter 10. Marangoni Flows II

Figure 10.2: a) A typical molecular structure of surfactants. b) The typical dependence of σ on surfactant
concentration c.

10.2 Surfactants

Surfactants are molecules that have an affinity for interfaces; common examples include soap and oil.
Owing to their molecular structure (e.g. a hydrophilic head and hydrophobic tail, Fig. 10.2a), they
find it energetically favourable to reside at the free surface. Their presence reduces the surface tension;
consequently, gradients in surfactant concentration Γ result in surface tension gradients. Surfactants thus
generate a special class of Marangoni flows. There are many different types of surfactants, some of which
are insoluble (and so remain on the surface), others of which are soluble in the suspending fluid and
so diffuse into the bulk. For a wide range of common surfactants, surface tension is a monotonically
decreasing function of Γ until a critical micell concentration (CMC) is achieved, beyond CMC there is no
further dependence of σ on Γ (Fig. 10.2b).
Surfactant properties:

• Diffusivity prescribes the rate of diffusion, Ds (bulk diffusivity Db), of a surfactant along an
interface

• Solubility prescribes the ease with which surfactant passes from the surface to the bulk. An
insoluble surfactant cannot dissolve into the bulk, must remain on the surface.

• Volatility prescribes the ease with which surfactant sublimates.

Theoretical Approach: because of the dependence of σ on the surfactant concentration, and the ap-
pearance of σ in the boundary conditions, N-S equations must be augmented by an equation governing
the evolution of Γ. In the bulk,

∂c

∂t
+ u · ∇c = Db∇2c (10.1)

The concentration of surfactant Γ on a free surface evolves according to

∂Γ

∂t
+∇s · (Γus) + Γ (∇s · n) (u · n) = J (Γ, Cs) +Ds∇2

sΓ (10.2)

where us is the surface velocity, ∇s is the surface gradient operator and Ds is the surface diffusivity of
the surfactant (Stone 1999). J is a surfactant source term associated with adsorption onto or desorption
from the surface, and depends on both the surface surfactant concentration Γ and the concentration in the
bulk Cs. Tracing the evolution of a contaminated free surface requires the use of Navier-Stokes equations,
relevant boundary conditions and the surfactant evolution equation (10.2). The dependence of surface
tension on surfactant concentration, σ(Γ), requires the coupling of the flow field and surfactant field. In
certain special cases, the system may be made more tractable. For example, for insoluble surfactants,
J = 0. Many surfactants have sufficiently small Ds that surface diffusivity may be safely neglected.
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Figure 10.3: The footprint of a whale, caused by the whales sweeping biomaterial to the sea surface. The
biomaterial acts as a surfactant in locally suppressing the capillary waves evident elsewhere on the sea
surface. Observed in the wake of a whale on a Whale Watch from Boston Harbour.

Special case: expansion of a spherical surfactant-laden bubble.
∂Γ
∂t + Γ (∇ · n)ur = 0. Here ∇ · n = 2/R, ur = dR

dt so dΓ
dt + Γ 2

R
dR
dt = 0 ⇒ dΓ

Γ = −2dRR 4πR2Γ =const., so
the surfactant is conserved.

Marangoni Elasticity The principal dynamical influence of surfactants is to impart an effective
elasticity to the interface. One can think of a clean interface as a “slippery trampoline” that resists
deformation through generation of normal curvature pressures. However, such a surface cannot generate
traction on the interface. However, a surface-laden interface, like a trampoline, resists surface deformation
as does a clean interface, but can also support tangential stresses via Marangoni elasticity. Specifically,
the presence of surfactants will serve not only to alter the normal stress balance (through the reduction
of σ), but also the tangential stress balance through the generation of Marangoni stresses.

The presence of surfactants will act to suppress any fluid motion characterized by non-zero surface
divergence. For example, consider a fluid motion characterized by a radially divergent surface motion.
The presence of surfactants results in the redistribution of surfactants: Γ is reduced near the point of
divergence. The resulting Marangoni stresses act to suppress the surface motion, resisting it through an
effective surface elasticity. Similarly, if the flow is characterized by a radial convergence, the resulting
accumulation of surfactant in the region of convergence will result in Marangoni stresses that serve to
resist it. It is this effective elasticity that gives soap films their longevity: the divergent motions that
would cause a pure liquid film to rupture are suppressed by the surfactant layer on the soap film surface.

The ability of surfactant to suppress flows with non-zero surface divergence is evident throughout
the natural world. It was first remarked upon by Pliny the Elder, who rationalized that the absence of
capillary waves in the wake of ships is due to the ships stirring up surfactant. This phenomenon was also
widely known to spear-fishermen, who poured oil on the water to increase their ability to see their prey,
and by sailors, who would do similarly in an attempt to calm troubled seas. Finally, the suppression of
capillary waves by surfactant is at least partially responsible for the ‘footprints of whales’ (see Fig. 10.3).
In the wake of whales, even in turbulent roiling seas, one seas patches on the sea surface (of characteristic
width 5-10m) that are perfectly flat. These are generally acknowledged to result from the whales sweeping
biomaterial to the surface with their tails, this biomaterial serving as a surfactant that suppresses capillary
waves.
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Surfactants and a murder mystery. From Nature, 22, 1880 :
“In the autumn of 1878 a man committed a terrible crime in Somerset, which was for some time involved
in deep mystery. His wife, a handsome and decent mulatto woman, disappeared suddenly and entirely from
sight, after going home from church on Sunday, October 20. Suspicion immediately fell upon the husband,
a clever young fellow of about thirty, but no trace of the missing woman was left behind, and there seemed
a strong probability that the crime would remain undetected. On Sunday, however, October 27, a week
after the woman had disappeared, some Somerville boatmen looking out towards the sea, as is their custom,
were struck by observing in the Long Bay Channel, the surface of which was ruffled by a slight breeze, a
streak of calm such as, to use their own illustration, a cask of oil usually diffuses around it
when in the water. The feverish anxiety about the missing woman suggested some strange connection
between this singular calm and the mode of her disappearance. Two or three days after - why not sooner
I cannot tell you - her brother and three other men went out to the spot where it was observed, and from
which it had not disappeared since Sunday, and with a series of fish-hooks ranged along a long line dragged
the bottom of the channel, but at first without success. Shifting the position of the boat, they dragged a
little further to windward, and presently the line was caught. With water glasses the men discovered that
it had caught in a skeleton which was held down by some heavy weight. They pulled on the line; something
suddenly gave was, and up came the skeleton of the trunk, pelvis, and legs of a human body, from which
almost every vestige of flesh had disappeared, but which, from the minute fragments remaining, and the
terrible stench, had evidently not lain long in the water. The husband was a fisherman, and Long Bay
Channel was a favourite fishing ground, and he calculated, truly enough, that the fish would very soon
destroy all means of identification; but it never entered into his head that as they did so their ravages,
combined with the process of decomposition, set free the matter which was to write the traces of
his crime on the surface of the water. The case seems to be an exceedingly interesting one; the calm
is not mentioned in any book on medical jurisprudence that I have, and the doctors seem not to have had
experience of such an occurrence. A diver went down and found a stone with a rope attached, by which
the body had been held down, and also portions of the scalp and of the skin of the sole of the foot, and of
clothing, by means of which the body was identified. The husband was found guilty and executed.”
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Figure 10.4: The soap boat. A floating body (length 2.5cm) contains a small volume of soap, which serves
as its fuel in propelling it across the free surface. The soap exits the rear of the boat, decreasing the local
surface tension. The resulting fore-to-aft surface tension gradient propels the boat forward. The water
surface is covered with Thymol blue, which parts owing to the presence of soap, which is thus visible as a
white streak.

10.3 Surfactant-induced Marangoni flows

1. Marangoni propulsion
Consider a floating body with perimeter C in contact with the free surface, which we assume for the sake
of simplicity to be flat. Recalling that σ may be though of as a force per unit length in a direction tangent
to the surface, we see that the total surface tension force acting on the body is:

Fc =

∫
C

σsd` (10.3)

where s is the unit vector tangent to the free surface and normal to C, and d` is an increment of arc
length along C. If σ is everywhere constant, then this line integral vanishes identically by the divergence
theorem. However, if σ = σ(x), then it may result in a net propulsive force. The ‘soap boat’ may be
simply generated by coating one end of a toothpick with soap, which acts to reduce surface tension (see
right). The concomitant gradient in surface tension results in a net propulsive force that drives the boat
away from the soap. We note that an analogous Marangoni propulsion technique arises in the natural
world: certain water-walking insects eject surfactant and use the resulting surface tension gradients as
an emergency mechanism for avoiding predation. Moreover, when a pine needle falls into a lake or pond,
it is propelled across the surface in an analogous fashion owing to the influence of the resin at its base
decreasing the local surface tension.

2. Soap film stability
Pinching a film increases the surface area, decreases
Γ and so increases σ. Fluid is thus drawn in and
the film is stabilized by the Marangoni elasticity.

Figure 10.5: Fluid is drawn to a pinched area of a
soap film through induced Marangoni stresses.
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Figure 10.6: The weight of a vertical
soap film is supported by Marangoni
stresses on its surface.

3. Vertical Soap Film

• Vertical force balance: ρgh(z) = dσ
dz . The weight of a soap

film is supported by Marangoni stress.

• Internal dynamics: note that film is dynamic (as are all
Marangoni flows), if it were static, its max height would
be `c. It is constantly drying due to the influence of gravity.

• On the surface: dσ
dz ∼ µdudx balance of Marangoni and vis-

cous stresses.

• Inside: ρg ∼ µd
2u
dx2 Gravity-viscous.

10.4 Bubble motion

Theoretical predictions for the rise speed of small drops or bub-
bles do not adequately describe observations. Specifically, air bubbles rise at low Reynolds number at
rates appropriate for rigid spheres with equivalent buoyancy in all but the most carefully cleaned fluids.
This discrepancy may be rationalized through consideration of the influence of surfactants on the surface
dynamics. The flow generated by a clean spherical bubble or radius a rising at low Re = Ua/ν is in-
tuitively obvious. The interior flow is toroidal, while the surface motion is characterized by divergence
and convergence at, respectively, the leading and trailing surfaces. The presence of surface contamination
changes the flow qualitatively.

The effective surface elasticity imparted by the surfactants acts to suppress the surface motion. Sur-
factant is generaly swept to the trailing edge of the bubble, where it accumulates, giving rise to a local
decrease in surface tension. The resulting for-to-aft surface tension gradient results in a Marangoni stress
that resists surface motion, and so rigidifies the bubble surface. The air bubble thus moves as if its surface
were stagnant, and it is thus that its rise speed is commensurate with that predicted for a rigid sphere: the
no-slip boundary condition is more appropriate than the free-slip. Finally, we note that the characteristic
Marangoni stress ∆σ/a is most pronounced for small bubbles. It is thus that the influence of surfactants
is greatest on small bubbles.

Figure 10.7: A rising drop or bubble (left) is marked by internal circulation in a clean system that is
absent in a contaminated, surfactant-laden fluid (right). Surfactant sticks to the surface, and the induced
Marangoni stress rigidifies the drop surface.
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11. Fluid Jets

11.1 The shape of a falling fluid jet

Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν
(see Fig. 11.1). The resulting jet accelerates under the influence of gravity −gẑ. We assume that the jet
Reynolds number Re = Q/(aν) is sufficiently high that the influence of viscosity is negligible; furthermore,
we assume that the jet speed is independent of radius, and so adequately described by U(z). We proceed
by deducing the shape r(z) and speed U(z) of the evolving jet.

Figure 11.1: A fluid jet extruded
from an orifice of radius a ac-
celerates under the influence of
gravity. Its shape is influenced
both by the gravitational acceler-
ation g and the surface tension σ.
Note that σ gives rise to a gradi-
ent in curvature pressure within
the jet, σ/r(z), that opposes the
acceleration due to g.

Applying Bernoulli’s Theorem at points A and B:

1

2
ρU2

0 + ρgz + PA =
1

2
ρU2(z) + PB (11.1)

The local curvature of slender threads may be expressed in terms of
the two principal radii of curvature, R1 and R2:

∇ · n =
1

R1
+

1

R2
≈ 1

r
(11.2)

Thus, the fluid pressures within the jet at points A and B may be
simply related to that of the ambient, P0:

PA ≈ P0 +
σ

a
, PB ≈ P0 +

σ

r
(11.3)

Substituting into (11.1) thus yields

1

2
ρU2

0 + ρgz + P0 +
σ

a
=

1

2
ρU2(z) + P0 +

σ

r
(11.4)

from which one finds

U(z)

U0
=

1 +
2

Fr
z

a︸ ︷︷ ︸
acc. due to g

+
2

We

(
1− a

r

)
︸ ︷︷ ︸

dec. due to σ


1/2

(11.5)

where we define the dimensionless groups

Fr =
U2

0

ga
=

INERTIA

GRAV ITY
= Froude Number (11.6)

We =
ρU2

0 a

σ
=

INERTIA

CURV ATURE
= Weber Number (11.7)

Now flux conservation requires that

Q = 2π

∫ r

0

U(z)r(z)dr = πa2U0 = πr2U(z) (11.8)

from which one obtains

r(z)

a
=

(
U0

U(z)

)1/2

=

[
1 +

2

Fr
z

a
+

2

We

(
1− a

r

)]−1/4

(11.9)

This may be solved algebraically to yield the thread shape r(z)/a, then this result substituted into (11.5)
to deduce the velocity profile U(z). In the limit of We→∞, one obtains

r

a
=

(
1 +

2gz

U2
0

)−1/4

,
U(z)

U0
=

(
1 +

2gz

U2
0

)1/2

(11.10)
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11.2 The Plateau-Rayleigh Instability

Figure 11.2: The capillary-driven
instability of a water thread
falling under the influence of
gravity. The initial jet diameter
is approximately 3 mm.

We here summarize the work of Plateau and Rayleigh on the instability
of cylindrical fluid jets bound by surface tension. It is precisely this
Rayleigh-Plateau instability that is responsible for the pinch-off of thin
water jets emerging from kitchen taps (see Fig. 11.2).

The equilibrium base state consists of an infinitely long quiescent
cylindrical inviscid fluid column of radius R0, density ρ and surface
tension σ (see Fig. 11.3). The influence of gravity is neglected. The
pressure p0 is constant inside the column and may be calculated by
balancing the normal stresses with surface tension at the boundary.
Assuming zero external pressure yields

p0 = σ∇ · n⇒ p0 =
σ

R0
. (11.11)

We consider the evolution of infinitesimal varicose perturbations on
the interface, which enables us to linearize the governing equations.
The perturbed columnar surface takes the form:

R̃ = R0 + εeωt+ikz , (11.12)

where the perturbation amplitude ε � R0, ω is the growth rate of
the instability and k is the wave number of the disturbance in the z-
direction. The corresponding wavelength of the varicose perturbations
is necessarily 2π/k. We denote by ũr the radial component of the
perturbation velocity, ũy the axial component, and p̃ the perturbation
pressure. Substituing these perturbation fields into the N-S equations
and retaining terms only to order ε yields:

∂ũr
∂t

= −1

ρ

∂p̃

∂r
(11.13)

∂ũz
∂t

= −1

ρ

∂p̃

∂z
(11.14)

Figure 11.3: A cylindrical column of initial radius
R0 comprised of an inviscid fluid of density ρ, bound
by surface tension σ.

The linearized continuity equation becomes:

∂ũr
∂r

+
ũr
r

+
∂ũz
∂z

= 0 . (11.15)

We anticipate that the disturbances in velocity and
pressure will have the same form as the surface dis-
turbance (11.12), and so write the perturbation ve-
locities and pressure as:

(ũr, ũz, p̃) =
(
R(r), Z(r), P (r)

)
eωt+ikz . (11.16)

Substituting (11.16) into equations (11.13-11.15)
yields the linearized equations governing the per-
turbation fields:

Momentum equations : ωR = −1

ρ

dP

dr
(11.17)

ωZ = − ik
ρ
P (11.18)

Continuity:
dR

dr
+
R

r
+ ikZ = 0 . (11.19)
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Eliminating Z(r) and P (r) yields a differential equation for R(r):

r2 d
2R

dr2
+ r

dR

dr
−
(
1 + (kr)2

)
R = 0 . (11.20)

This corresponds to the modified Bessel Equation of order 1, whose solutions may be written in terms of
the modified Bessel functions of the first and second kind, respectively, I1(kr) and K1(kr). We note that
K1(kr)→∞ as r → 0; therefore, the well-behavedness of our solution requires that R(r) take the form

R(r) = CI1(kr) , (11.21)

where C is an as yet unspecified constant to be determined later by application of appropriate boundary
conditions. The pressure may be obtained from (11.21) and (11.17), and by using the Bessel function
identity I ′0(ξ) = I1(ξ):

P (r) = −ωρC
k

I0(kr) and Z(r) = − ik
ωρ
P (r). (11.22)

We proceed by applying appropriate boundary conditions. The first is the kinematic condition on the free
surface:

∂R̃

∂t
= ũ · n ≈ ũr . (11.23)

Substitution of (11.21) into this condition yields

C =
εω

I1(kR0)
. (11.24)

Second, we require a normal stress balance on the free surface:

p0 + p̃ = σ∇ · n (11.25)

We write the curvature as σ∇ · n =
(

1
R1

+ 1
R2

)
, where R1 and R2 are the principal radii of curvature of

the jet surface:
1

R1
=

1

R0 + εeωt+ikz
≈ 1

R0
− ε

R2
0

eωt+ikz (11.26)

1

R2
= εk2eωt+ikz . (11.27)

Substitution of (11.26) and (11.27) into equation (11.25) yields:

p0 + p̃ =
σ

R0
− εσ

R2
0

(
1− k2R2

0

)
eωt+ikz (11.28)

Cancellation via (11.11) yields the equation for p̃ accurate to order ε:

p̃ = − εσ
R2

0

(
1− k2R2

0

)
eωtikz . (11.29)

Combining (11.22), (11.24) and (11.29) yields the dispersion relation, that indicates the dependence of
the growth rate ω on the wavenumber k:

ω2 =
σ

ρR3
0

kR0
I1(kR0)

I0(kR0)

(
1− k2R2

0

)
(11.30)

We first note that unstable modes are only possible when

kR0 < 1 (11.31)
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Figure 11.4: The dependence of the growth
rate ω on the wavenumber k for the Rayleigh-
Plateau instability.

The column is thus unstable to disturbances whose
wavelengths exceed the circumference of the cylinder.
A plot of the dependence of the growth rate ω on the
wavenumber k for the Rayleigh-Plateau instability is
shown in Fig. 11.4.
The fastest growing mode occurs for kR0 = 0.697, i.e.
when the wavelength of the disturbance is

λmax ≈ 9.02R0 (11.32)

By inverting the maximum growth rate ωmax one may
estimate the characteristic break-up time:

tbreakup ≈ 2.91

√
ρR3

0

σ
(11.33)

Note: In general, pinch-off depends on Oh = µν
σR .

At low Oh, we have seen that τpinch ∼
(
ρR2

σ

)1/2

, λ = 9.02R.

At high Oh, when viscosity is important, τpinch ∼ µR
σ , λ increases with µ.

A water jet of diameter 1cm has a characteristic break-up time of about 1/8s, which is consistent with
casual observation of jet break-up in a kitchen sink.
Related Phenomena: Waves on jets
When a vertical water jet impinges on a horizontal reservoir of water, a field of standing waves may be
excited on the base of the jet (see Fig. 11.5). The wavelength is determined by the requirement that the
wave speed correspond to the local jet speed: U = −ω/k. Using our dispersion relation (11.30) thus yields

U2 =
ω2

k2
=

σ

ρkR2
0

I1(kR0)

I0(kR0)

(
1− k2R2

0

)
(11.34)

Provided the jet speed U is known, this equation may be solved in order to deduce the wavelength of the
waves that will travel at U and so appear to be stationary in the lab frame. For jets falling from a nozzle,
the result (11.5) may be used to deduce the local jet speed.

11.3 Fluid Pipes

The following system may be readily observed in a kitchen sink. When the volume flux exiting the tap
is such that the falling stream has a diameter of 2 − 3mm, obstructing the stream with a finger at a
distance of several centimeters from the tap gives rise to a stationary field of varicose capillary waves
upstream of the finger. If the finger is dipped in liquid detergent (soap) before insertion into the stream,
the capillary waves begin at some critical distance above the finger, below which the stream is cylindrical.
Closer inspection reveal that the surface of the jet’s cylindrical base is quiescent.

An analogous phenomenon arises when a vertical fluid jet impinges on a deep water reservoir (see
Fig. 11.5). When the reservoir is contaminated by surfactant, the surface tension of the reservoir is
diminished relative to that of the jet. The associated surface tension gradient draws surfactant a finite
distance up the jet, prompting two salient alterations in the jet surface. First, the surfactant suppresses
surface waves, so that the base of the jet surface assumes a cylindrical form (Fig. 11.5b). Second, the jet
surface at its base becomes stagnant: the Marangoni stresses associated with the surfactant gradient are
balanced by the viscous stresses generated within the jet. The quiescence of the jet surface may be simply
demonstrated by sprinkling a small amount of talc or lycopodium powder onto the jet. The fluid jet thus
enters a contaminated reservoir as if through a rigid pipe.

A detailed theoretical description of the fluid pipe is given in Hancock & Bush (JFM, 466, 285-304).
We here present a simple scaling that yields the dependence of the vertical extent H of the fluid pipe on
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Figure 11.5: a) The field of stationary capillary waves excited on the base of a water jet impinging on a
horizontal water reservoir. b) The fluid pipe generated by a falling water jet impinging on a contaminated
water reservoir. The field of stationary capillary waves is excited above the fluid pipe. The grids at right
are millimetric.

the governing system parameters. We assume that, once the jet enters the fluid pipe, a boundary layer
develops on its outer wall owing to the no-slip boundary condition appropriate there.

Balancing viscous and Marangoni stresses on the fluid pipe surface yields

ρν
V

δH
∼ ∆σ

H
, (11.35)

where ∆σ is the surface tension differential between the jet and reservoir, V is the jet speed at the top of
the fluid pipe, and δH is the boundary layer thickness at the base of the fluid pipe. We assume that the
boundary layer thickness increases with distance z from the inlet according to classical boundary layer
scaling:

δ

a
∼
( νz

a2V

)1/2

. (11.36)

Thus, at the base of a pipe of height H

δ(H) =

(
νH

a2V

)1/2

(11.37)

Substituting for δ(H) from (11.36) into (11.35) yields

H ∼ (∆σ)2

ρµV 3
(11.38)

The pipe height increases with the surface tension differential, and decreases with fluid viscosity and jet
speed.
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12. Instability Dynamics

12.1 Capillary Instability of a Fluid Coating on a Fiber

Figure 12.1: Instability of a fluid coating on
a cylindrical fiber.

We proceed by considering the surface tension-induced
instability of a fluid coating on a cylindrical fiber.
Define mean thickness

h∗ =
1

λ

∫ λ

0

h(x)dx (12.1)

Local interfacial thickness

h(x) = h∗ + ε cos kx (12.2)

Volume conservation requires:∫ λ

0

π(r + h)2dx =

∫ λ

0

π(r + h0)2dx⇒
∫ λ

0

(r + h∗ + ε cos kx)2dx = (r + h0)2λ⇒

(r + h∗)2λ+ ε2
λ

2
= (r + h0)2λ⇒ (r + h∗)2 = (r + h0)2 − ε2

2
= (r + h0)2

[
1− 1

2

ε2

(r + h0)2

]
which implies

h∗ = h0 −
1

4

ε2

r + h0
(12.3)

Note:
h∗ < h0 which suggests instability.

So, when does perturbation reduce surface energy? i.e. when is
∫ λ

0
2π(r + h)ds < 2π(r + h0)λ?

Note: ds2 = dh2 + dx2 ⇒ ds = dx
√

1 +
(
dh
dx

)
≈ dx

[
1 + 1

2ε
2k2 sin2 kx

]1/2∫ λ
0

(r + h)ds =
∫ λ

0
(r + h∗ + ε cos kx)(1 + 1

2ε
2k2 sin2 kx)1/2dx = (r + h∗)λ+ 1

4 (r + h∗)ε2k2λ.

So the inequality holds provided (r + h∗)λ+ 1
4 (r + h∗)ε2k2λ < (r + h0)λ.

Substitute for h∗ from (12.3):

−1

4

ε2

r + h0
+

1

4
(r + h∗)ε2k2 < 0 (12.4)

We note that the result is independent of ε:

k2 < (r + h0)−1(r + h∗)−1 ≈ 1

(r + h0)2
(12.5)

i.e. unstable wavelengths are prescribed by

λ =
2π

k
> 2π(r + h0) (12.6)

as in standard inviscid Ra-P. All long wavelength disturbances will grow. Which grows the fastest? That
is determined by the dynamics (not just geometry). We proceed by considering the dynamics in the thin
film limit, h0 � r, for which we obtain the lubrication limit.
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12.2 Dynamics of Instability (Rayleigh 1879)

Physical picture: Curvature pressure induced by perturbation drives Couette flow that is resisted by
viscosity

η
d2v

dy
− dp

dx
= 0 (12.7)

where dp
dx is the gradient in curvature pressure, which is independent of y ( a generic feature of lubrication

problems), so we can integrate the above equation to obtain

v(y) =
1

µ

dp

dx

(
y2

2
− hy

)
(12.8)

Flux per unit length:

Q =

∫ h

0

v(y)dy = − 1

3µ

dp

dx
h3 (12.9)

Conservation of volume in lubrication problems requires that Q(x+ dx)−Q(x) = −∂h∂t dx ⇒

dQ

dx
= −h

3
0

3µ

d2p

dx2
= −∂h

∂t
(12.10)

Curvature pressure

p(x) = σ

(
1

R1
+

1

R2

)
= σ

(
1

r + h
− hxx

)
(12.11)

Substitute (12.11) into (12.10):

∂h

∂t
=
σh3

0

3µ

∂2

∂x2

[
1

r + h(x)
− σhxx

]
(12.12)

Now h(x, t) = h∗ + ε(t) cos kx ⇒ hx = −εk sin kx, hxx = −ε2k cos kx, ht = dε
dt cos kx

So cos kxdεdt =
σh3

0

3µ ε cos kx
[

k2

(r+h)2 − k
4
]
⇒ dε

dt = βε where β =
σh3

0

3µ

[
k2

(r+h0)2 − k
4
]

Fastest growing mode when dβ
dk = 0 = 2k8

(r+h0)2 − 4k∗3 so

λ∗ = 2
√

2π (r + h0) (12.13)

is the most unstable wavelength for the viscous mode.

Figure 12.2: Growth rate β as a func-
tion of wavenumber k for the system de-
picted in Fig. 12.1.

Note:

• Recall that for classic Ra-P on a cylindrical fluid thread
λ∗ ∼ 9R.

• We see here the timescale of instability: τ∗ = 12µ(r+h0)4

σh3
0

.

• Scaling Argument for Pinch-off time.

When h� r, ∇p ∼ σh0

r2
1
r ∼ µ

v
h2
0
⇒ v ∼ r

τ ∼
h3
0

µ
σh0

r3 ⇒

τpinch ∼
µr4

σh3
0

(12.14)
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12.3 Rupture of a Soap Film (Culick
1960, Taylor 1960)

Figure 12.3: Rupture of a soap film of
thickness h.

We assume Oh = µν
σR � 1, so that viscous effects are negligible.

The driving curvature force is thus resisted principally by fluid
inertia. Assume dynamics is largely 2D (true for a planar film,
or for bubble burst for r(t)� h).
Retraction of a Planar Sheet
Note: Force/ length acting on the rim may be calculated exactly
via Frenet-Serret

FC =

∫
C

σ (∇ · n)ndl (12.15)

where (∇ · n)n = dt
dl

⇒ FC =

∫
C

σ
dt

dl
dl = σ (t1 − t2) = 2σx̂ (12.16)

At time t = 0, planar sheet of thickness h punctured at x = 0, and retracts in x̂ direction owing to F c.
Observation: The rim engulfs the film, and there is no upstream disturbance.

Figure 12.4: Surface-tension-induced retraction of a planar sheet of uniform thickness h released at time
t = 0.

Rim mass: m(x) = ρhx and speed v = dx
dt .

Since the inertial force on the rim is equal to the rate of change of rim momentum

FI =
d

dt
(mv) = v

d

dx
mv = v2 dm

dx
+mv

dv

Dx
=

1

2
v2 dm

dx
+

1

2

d

dx
(mv2) . (12.17)

The force balance us between the curvature force and the inertial force

2σ =
d

dx
(
1

2
mv2) +

1

2
ρhv2 (12.18)

Integrate from 0 to x:

2σx =
1

2
ρhxv2 +

1

2
ρh

∫ x

0

v2dx (12.19)

The first term is the surface energy released per unit length, the 2nd term the K.E. of the rim, and the
3rd term the energy required to accelerate the rim. Now we assume v is independent of x (as observed in
experiments), thus

∫ x
0
v2dx = xv2 and the force balance becomes 2σx = ρhxv2 ⇒

v =

(
2σ

ρh

)1/2

is the retraction speed (Taylor-Culick speed) (12.20)

E.g. for water-soap film, h ∼ 150µm ⇒ v ∼ 102cm/s.
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Note: Surface area of rim/ length: p = 2πR where m = ρhx = πρR2 ⇒ R =
√

hx
π where R is the rim

radius. Therefore the rim surface energy is σP = σ2π
√

hx
π = 2σ

√
hxπ. Total surface energy of the system

is σ
[
2x+ 2(πhx)1/2

]
.

Scale: SArim

SAsheet
∼ 2
√
hxπ

2x ∼
(
hπ
x

)1/2 � 1 for x� h.
The rim surface area is thus safely neglected once the sheet has retracted a distance comparable to its
thickness.

Figure 12.5: The different shapes of a retract-
ing sheet and rim depend on the value of Oh.

Some final comments on soap film rupture.

1. for dependence on geometry and influence of µ, see
Savva & Bush (JFM 2009).

2. form of sheet depends on
√
Oh = µ√

2hρσ
.

3. The growing rim at low Oh is subject to Ra-Plateau
⇒ scalloping of the retracting rim⇒ rim pinches off
into drops

4. At very high speed, air-induced shear stress leads
to flapping. The sheet thus behaves like a flapping
flag, but with Marangoni elasticity.

Figure 12.6: The typical evolution of a retracting sheet. As the rim retracts and engulfs fluid, it eventually
becomes Rayleigh-Plateau unstable. Thus, it develops variations in radius along its length, and the
retreating rim becomes scalloped. Filaments are eventually left by the retracting rim, and pinch off
through a Rayleigh-Plateau instability, the result being droplets.
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13. Fluid Sheets

13.1 Fluid Sheets: shape and stability

The dynamics of high-speed fluid sheets was first considered by Savart (1833) after his early work on
electromagnetism with Biot, and was subsequently examined by Rayleigh (1879), then in a series of
papers by Taylor (Proc. Roy. Soc., 1959 ). They have recently received a great deal of attention owing to
their relevance in a number of spray atomization processes. Such sheets may be generated from a variety
of source conditions, for example, the collision of jets on rigid impactors, and jet-jet collisions. There
is generally a curvature force acting on the sheet edge which acts to contain the fluid sheet. For a 2D
(planar) sheet, the magnitude of this curvature force is given by

F c =

∫
C

σ (∇ · n)ndl (13.1)

Using the first Frenet-Serret equation (Lecture 2, Appendix B),

(∇ · n)n =
dt

dl
(13.2)

thus yields

F c =

∫
C

σ
dt

dl
dl = σ (t1 − t2) = 2σx (13.3)

There is thus an effective force per unit length 2σ along the length of the sheet rim acting to contain the
rim. We now consider how this result may be applied to compute sheet shapes for three distinct cases: i)
a circular sheet, ii) a lenticular sheet with unstable rims, and iii) a lenticular sheet with stable rims.
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13.2. Circular Sheet Chapter 13. Fluid Sheets

Figure 13.1: A circular fluid sheet generated by the impact of a water jet on a circular impactor. The
impacting circle has a diameter of 1 cm.

13.2 Circular Sheet

We consider the geometry considered in Savart’s original experiment. A vertical fluid jet strikes a small
horizontal circular impactor. If the flow rate is sufficiently high that gravity does not influence the sheet
shape, the fluid is ejected radially, giving rise to a circular free fluid sheet (Fig. 13.1).

For We = ρU2D
σ > 1000, the circular sheet is subject to the flapping instability. We thus consider

We < 1000, for which the sheet is stable. Scaling: Re = UR
ν ∼

30·10
0.01 ∼ 3·104 � 1. Fr = U2

gR ∼
302

103·10 ∼ 0.1
so inertia dominates gravity.
The sheet radius is prescribed by a balance of radial forces; specifically, the inertial force must balance
the curvature force:

ρu2h = 2σ (13.4)

Continuity requires that the sheet thickness h depend on the speed u, jet flux Q and radius r as

h(r) =
Q

2πru
∼ 1

r
(13.5)

Experiments (specifically, tracking of particles suspended within the sheet) indicate that the sheet speed u
is independent of radius; consequently, the sheet thickness decreases as 1/r. Substituting the form (13.5)
for h into the force balance (13.4) yields the sheet radius, or so-called Taylor radius:

RT =
ρQu

4πσ
(13.6)

The sheet radius increases with source flux and sheet speed, but decreases with surface tension. We note
that the fluid proceeds radially to the sheet edge, where it accumulates until going unstable via a modified
Rayleigh-Plateau instability, often referred to as the Rayleigh-Plateau-Savart instability, as it was first
observed on a sheet edge by Savart.
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13.3 Lenticular sheets with unstable rims (Taylor 1960)

Figure 13.2: A sheet generated by the collision of water jets at left. The fluid streams radially outward in
a thinning sheet; once the fluid reaches the sheet rim, it is ejected radially in the form of droplets. From
G.I. Taylor (1960).

Figure 13.3: The “Fluid fishbone”
formed by the collision of two jets of
a glycerine-water solution. Bush &
Hasha (2004).

We now consider the non-axisymmetric fluid , such as may be
formed by the oblique collision of water jets (see Fig. 13.2), a ge-
ometry originally considered by Taylor (1960). Fluid is ejected
radially from the origin into a sheet with flux distribution given
by Q(θ), so that the volume flux flowing into the sector between
θ and θ + dθ is Q(θ)dθ. As in the previous case of the circular
sheet, the sheet rims are unstable, and fluid drops are contin-
uously ejected therefrom. The sheet shape is computed in a
similar manner, but now depends explicitly on the flux distri-
bution within the sheet, Q(θ). The normal force balance on the
sheet edge now depends on the normal component of the sheet
speed, un:

ρu2
n(θ)h(θ) = 2σ (13.7)

The sheet thickness is again prescribed by (13.5), but now Q =
Q(θ), so the sheet radius R(θ) is given by the Taylor radius

R(θ) =
ρu2

nQ(θ)

4πσu
(13.8)

Computing sheet shapes thus relies on either experimental mea-
surement or theoretical prediction of the flux distribution Q(θ)
within the sheet.

13.4 Lenticular sheets with stable rims

In a certain region of parameter space, specifically, with
fluids more viscous than water, one may encounter fluid sheets with stable rims (see www-
math.mit.edu/∼bush/bones.html). The force balance describing the sheet shape must change accordingly.
When rims are stable, fluid entering the rim proceeds along the rim. As a result, there is a centripetal
force normal to the fluid rim associated with flow along the curved rim that must be considered in order
to correctly predict the sheet shapes.
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Figure 13.4: A schematic illustration of a fluid sheet
bound by stable rims.

The relevant geometry is presented in Fig. 13.4.
r(θ) is defined to be the distance from the origin
to the rim centreline, and un(θ) and ut(θ) the nor-
mal and tangential components of the fluid velocity
in the sheet where it contacts the rim. v(θ) is de-
fined to be the velocity of flow in the rim, R(θ)
the rim radius, and Ψ(θ) the angle between the po-
sition vector r and the local tangent to the rim
centreline. Finally, rc(θ) is defined to be the ra-
dius of curvature of the rim centreline, and s the
arc length along the rim centreline. The differential
equations governing the shape of a stable fluid rim
bounding a fluid sheet may be deduced by consid-
eration of conservation of mass in the rim and the
local normal and tangential force balances at the
rim.

For a steady sheet shape, continuity requires
that the volume flux from the sheet balance the
tangential gradient in volume flux along the rim:

0 = unh−
∂

∂s

(
vπR2

)
(13.9)

The normal force balance requires that the curvature force associated with the rim’s surface tension
balance the force resulting from the normal flow into the rim from the fluid sheet and the centripetal force
resulting from the flow along the curved rim:

ρu2
nh+

ρπR2v2

rc
= 2σ (13.10)

Note that the force balance (13.7) appropriate for sheets with unstable rims is here augmented by the
centripetal force. The tangential force balance at the rim requires a balance between tangential gradients
in tangential momentum flux, tangential gradients in curvature pressure, viscous resistance to stretching
of the rim, and the tangential momentum flux arriving from the sheet. For most applications involving
high-speed sheets, the Reynolds number characterizing the rim dynamics is sufficiently large that viscous
resistance may be safely neglected. Moreover, the curvature term ∇ · n̂ generally depends on θ; however,
accurate to O(R/rc), we may use ∇ · n̂ = 1/R. One thus obtains:

∂

∂s

(
πR2v2

)
= hutun −

πR2σ

ρ

∂

∂s

(
1

R

)
. (13.11)

Equations (13.9)-(13.11) must be supplemented by the continuity relation,

h(r, θ) =
Q(θ)

u0r
(13.12)

in addition to a number of relations that follow directly from the system geometry:

un = u0 sin Ψ , uT = u0 cos Ψ ,
1

rc
=

sin Ψ

r

(
∂Ψ

∂θ
+ 1

)
(13.13)

The system of equations (13.9-13.13) may be nondimensionalized, and reduce to a set of coupled ordinary
equations in the four variables r(θ), v(θ), R(θ) and Ψ(θ). Given a flux distribution, Q(θ), the system may
be integrated to deduce the sheet shape.
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13.5 Water Bells

All of the fluid sheets considered thus far have been confined to a plane. In §13.1, we considered circular
sheets generated from a vertical jet striking a horizontal impactor. The sheet remains planar only if
the flow is sufficiently fast that the fluid reaches its Taylor radius before sagging substantially under the
influence of gravity. Decreasing the flow rate will make this sagging more pronounced, and the sheet will
no longer be planar. While one might expect the sheet to fall along a parabolic trajectory, the toroidal
curvature of the bell induces curvature pressures that act to close the sheet. Consequently, the sheet may
close upon itself, giving rise to a water bell, as illustrated in Fig. 13.5. A recent review of the dynamics
of water bells has been written by Clanet (Ann.Rev.). We proceed by outlining the theory required to
compute the shapes of water bells.

We consider a fluid sheet extruded radially at a speed u0 and subsequently sagging under the influence
of a gravitational field g = −gẑ. The inner and outer sheet surfaces are characterized by a constant
surface tension σ. The sheet has constant density ρ and thickness t(r, z). Q is the total volume flux in
the sheet. The characteristic Re is assumed to be sufficiently high so that the influence of viscosity is
negligible.

We define the origin to be the center of the impact plate; r and z are, respectively, the radial and
vertical distances from the origin. u is the sheet speed, and φ the angle made between the sheet and the
vertical. rc is the local radius of curvature of a meridional line, and s the arc length along a meridional
line measured from the origin. Finally, ∆P is the pressure difference between the outside and inside of
the bell as may be altered experimentally.

Figure 13.5: A water bell produced by the
impact of a descending water jet on a solid
impactor. The impactor radius is 1 cm. Fluid
is splayed radially by the impact, then sags
under the influence of gravity. The sheet may
close on itself owing to the azimuthal curva-
ture of the bell.

Flux conservation requires that

Q = 2πrtu (13.14)

while Bernoulli’s Theorem indicates that

u2 = u2
0 + 2gz (13.15)

The total curvature force acting normal to the bell surface
is given by

2σ∇ · n = 2σ

(
1

rc
+

cosφ

r

)
(13.16)

Note that the factor of two results from there being two
free surfaces. The force balance normal to the sheet thus
takes the form:

2σ

rc
+

2σ cosφ

r
−∆P + ρgt sinφ− ρtu2

rc
= 0 (13.17)

Equations (13.14), (13.15) and (13.17) may be appropri-
ately nondimensionalized and integrated to determine the
shape of the bell.
Note:

• the bell closes due to the out-of-plane curvature

• the influence of g is reflected in top-bottom asymmetry. Note that g is not significant in Fig. 13.5.
The relevant control parameter is Fr = INERTIA/GRAVITY = U2/gL ∼ 1

• if deflected upwards by the impactor, the bell with also close due to σ
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13.6 Swirling Water Bell

Consider the water bell formed with a swirling jet (Bark et al. 1979 ).
Observation: Swirling bells don’t close. Why not?
Conservation of angular momentum: as r decreases, v increases as does FC ∼ v2/r.
Sheet velocity:

v = uês︸︷︷︸
in plane

+ vêθ︸︷︷︸
swirl

(13.18)

Continuity: Q = 2πrhu (13.19)

Conservation of Angular Momentum: vr = v0r0 (13.20)

Energy conservation: u2 + v2 = 2gz + u2
0 + v0z (13.21)

Normal force balance:
2σ

R
+

2σ cosφ

r
+ ρgh sinφ = ∆P +

ρhu2

R
+
ρhv2 cosφ

r
(13.22)

Evidently, the bell fails to close owing to the influence of the centripetal forces induced by the swirl.

Figure 13.6: Swirling water bells extruded from a rotating nozzle.
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14. Instability of Superposed Fluids

Figure 14.1: Wind over water: A layer of fluid of density ρ+ moving with relative velocity V over a layer
of fluid of density ρ−.

Define interface: h(x, y, z) = z − η(x, y) = 0 so that ∇h = (−ηx,−ηy, 1).
The unit normal is given by

n̂ =
∇h
|∇h| =

(−ηx,−ηy, 1)(
η2
x + η2

y + 1
)1/2 (14.1)

Describe the fluid as inviscid and irrotational, as is generally appropriate at high Re.
Basic state: η = 0 , u =∇φ , φ = ∓ 1

2Vx for z±.
Perturbed state: φ = ∓ 1

2Vx + φ± in z±, where φ± is the perturbation field.
Solve

∇ · u = ∇2φ± = 0 (14.2)

subject to BCs:

1. φ± → 0 as z → ±∞

2. Kinematic BC: ∂η
∂t = u · n,

where

u =∇
(
∓1

2
Vx + φ±

)
= ∓1

2
V x̂+

∂φ±
∂x

x̂+
∂φ±
∂y

ŷ +
∂φ±
∂z

ẑ (14.3)

from which
∂η

∂t
=

(
∓1

2
V +

∂φ±
∂x

)
(−ηx) +

∂φ±
∂y

(−ηy) +
∂φ±
∂z

(14.4)

Linearize: assume perturbation fields η, φ± and their derivatives are small and therefore can neglect
their products.
Thus η̂ ≈ (−ηx,−ηy, 1) and ∂η

∂t = ± 1
2V ηx + ∂φ±

∂z ⇒

∂φ±
∂z

=
∂η

∂t
∓ 1

2
V
∂η

∂x
on z = 0 (14.5)

3. Normal Stress Balance: p− − p+ = σ∇ · n on z = η.
Linearize: p− − p+ = −σ (ηxx + ηyy) on z = 0.
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We now deduce p± from time-dependent Bernoulli:

ρ
∂φ

∂t
+

1

2
ρu2 + p+ ρgz = f(t) (14.6)

where u2 = 1
4V

2 ∓ V ∂φ±
∂x +H.O.T.

Linearize:

ρ±
∂φ±
∂t

+
1

2
ρ±

(
∓V ∂φ±

∂x

)
+ p± + ρ±gη = G(t) (14.7)

so

p− − p+ = (ρ+ − ρ−)gη + (ρ+
∂φ±
∂t
− ρ−

∂φ−
∂t

) +
V

2
(ρ−

∂φ−
∂x

+ ρ+
∂φ+

∂x
) = −σ(ηxx + ηyy) (14.8)

is the linearized normal stress BC. Seek normal mode (wave) solutions of the form

η = η0e
iαx+iβy+ωt (14.9)

φ± = φ0±e
∓kzeiαx+iβy+ωt (14.10)

where ∇2φ± = 0 requires k2 = α2 + β2.

Apply kinematic BC: ∂φ±∂z = ∂η
∂t ∓

1
2V

∂η
∂x at z = 0 ⇒

∓kφ0± = ωη0 ∓
1

2
iαV η0 (14.11)

Normal stress BC:

k2ση0 = −g(ρ− − ρ+)η0 + ω(ρ+φ0+ − ρ−φ0−) +
1

2
iαV (ρ+φ0+ + ρ−φ0−) (14.12)

Substitute for φ0± from (14.11):

−k3σ = ω

[
ρ+(ω − 1

2
iαV ) + ρ−(ω +

1

2
iαV )

]
+ gk(ρ− − ρ+) +

1

2
iαV

[
ρ+(ω − 1

2
iαV ) + ρ−(ω +

1

2
iαV )

]
so

ω2 + iαV

(
ρ− − ρ+

ρ− + ρ+

)
ω − 1

4
α2V 2 + k2C2

0 = 0 (14.13)

where C2
0 ≡

(
ρ−−ρ+
ρ−+ρ+

)
g
k + σ

ρ−+ρ+
k.

Dispersion relation: we now have the relation between ω and k

ω =
1

2
i

(
ρ+ − ρ−
ρ− + ρ+

)
k · V ±

[
ρ−ρ+

(ρ− + ρ+)2
(k · V )

2 − k2C2
0

]1/2

(14.14)

where k = (α, β), k2 = α2 + β2.
The system is UNSTABLE if Re (ω) > 0, i.e. if

ρ+ρ−
ρ− + ρ+

(k · V )
2
> k2C2

0 (14.15)

Squires Theorem:
Disturbances with wave vector k = (α, β) parallel to V are most unstable. This is a general property of
shear flows.

We proceed by considering two important special cases, Rayleigh-Taylor and Kelvin-Helmholtz instability.
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14.1 Rayleigh-Taylor Instability

We consider an initially static system in which heavy fluid overlies light fluid: ρ+ > ρ−, V = 0. Via
(14.15), the system is unstable if

C2
0 =

ρ− − ρ+

ρ+ρ−

g

k
+

σ

ρ− + ρ+
k < 0 (14.16)

i.e. if ρ+ − ρ− > σk2

g = 4π2σ
gλ2 .

Thus, for instability, we require: λ > 2πλc where λc =
√

σ
∆ρg is the capillary length.

Figure 14.2: The base state and the per-
turbed state of the Rayleigh-Taylor system,
heavy fluid over light.

Heuristic Argument:
Change in Surface Energy:

∆ES = σ · ∆l︸︷︷︸
arc length

= σ
[∫ λ

0
ds− λ

]
= 1

4σε
2k2λ.

Change in gravitational potential energy:

∆EG =
∫ λ

0
− 1

2ρg
(
h2 − h2

0

)
dx = − 1

4ρgε
2λ.

When is the total energy decreased?
When ∆Etotal = ∆ES + ∆EG < 0, i.e. when ρg > σk2,
so λ > 2πlc.
The system is thus unstable to long λ.

Figure 14.3: Rayleigh-Taylor instability may
be stabilized by a vertical temperature gradi-
ent.

Note:

1. The system is stabilized to small λ disturbances by
σ

2. The system is always unstable for suff. large λ

3. In a finite container with width smaller than 2πλc,
the system may be stabilized by σ.

4. System may be stabilized by temperature gradients
since Marangoni flow acts to resist surface defor-
mation. E.g. a fluid layer on the ceiling may be
stabilized by heating the ceiling.
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14.2 Kelvin-Helmholtz Instability

We consider shear-driven instability of a gravitationally stable base state. Specifically, ρ− ≥ ρ+ so the
system is gravitationally stable, but destabilized by the shear.
Take k parallel to V , so (V · k)

2
= k2V 2 and the instability criterion becomes:

Figure 14.4: Kelvin-Helmholtz instability: a gravi-
tationally stable base state is destabilized by shear.

ρ−ρ+V
2 > (ρ− − ρ+)

g

k
+ σk (14.17)

Equivalently,

ρ−ρ+V
2 > (ρ− − ρ+) g

λ

2π
+ σ

2π

λ
(14.18)

Note:

1. System stabilized to short λ disturbances by
surface tension and to long λ by gravity.

2. For any given λ (or k), one can find a critical
V that destabilizes the system.

Figure 14.5: Fluid speed V (k) required for
the growth of a wave with wavenumber k.

Marginal Stability Curve:

V (k) =

(
ρ− − ρ+

ρ−ρ+

g

k
+

1

ρ−ρ+
σk

)1/2

(14.19)

V (k) has a minimum where dV
dk = 0, i.e. d

dkV
2 =

0.

This implies −∆ρ
k2 + σ = 0 ⇒ kc =

√
∆ρg
σ =

1
lcap

.

The corresponding Vc = V (kc) = 2
ρ−ρ+

√
∆ρgσ is the min-

imal speed necessary for waves.

E.g. Air blowing over water: (cgs)

V 2
c = 2

1.2·10−3

√
1 · 103 · 70 ⇒ Vc ∼ 650cm/s is the mini-

mum wind speed required to generate waves.

These waves have wavenumber kc =
√

1·103

70 ≈ 3.8 cm−1, so λc = 1.6cm. They thus correspond to capillary
waves.
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15. Contact angle hysteresis, Wetting
of textured solids

Recall: In Lecture 3, we defined the equilibrium contact angle θe, which is prescribed by Young’s Law:
cos θe = (γSV − γSL) /γ as deduced from the horizontal force balance at the contact line.
Work done by a contact line moving a distance dx:

Figure 15.1: Calculating the work done by moving a contact line a distance dx.

dW = (γSV − γSL) dx︸ ︷︷ ︸
contact line motion

− γ cos θedx︸ ︷︷ ︸
from creating new interface

(15.1)

In equilibrium: dW = 0, which yields Young’s Law. It would be convenient if wetting could be simply
characterized in terms of this single number θe. Alas, there is:

15.1 Contact Angle Hysteresis

For a given solid wetting a given liquid, there is a range of possible contact angles: θr < θ < θa, i.e. the
contact angle lies between the retreating and advancing contact angles; θr and θa, respectively. That is,
many θ values may arise, depending on surface, liquid, roughness and history.

Filling a drop

• begin with a drop in equilibrium with θ = θe

• fill drop slowly with a syringe

• θ increases progressively until attaining θa, at
which point the contact line advances

Draining a drop

• begin with a drop in equilibrium with θ = θe

• drain drop slowly with a syringe

• θ decreases progressively until attaining θr, at
which point the contact line retreats

Origins: Contact line pinning results from surface heterogeneities (either chemical or textural), that
present an energetic impediment to contact line motion.

The pinning of a contact line on impurities leads to increased interfacial area, and so is energetically
costly. Contact line motion is thus resisted.

Contact Line Pinning at Corners
A finite range of contact angles can arise at a corner θ1 < θ < π−φ+ θ1; thus, an advancing contact line

will generally be pinned at corners. Hence surface texture increases contact angle hysteresis.
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Figure 15.2: Pinning of a contact line retreating from left to right due to surface impurities.

Figure 15.3: A range of contact angles is possible at a corner.

Figure 15.4: A heavy liquid column may be
trapped in a capillary tube despite the effects
of gravity.

Manifestations of Contact Angle Hysteresis

I. Liquid column trapped in a capillary tube.
θ2 can be as large as θa; θ1 can be as small as
θr. In general θ2 > θ1, so there is a net cap-
illary force available to support the weight of the
slug.

2πRσ(cos θ1 − cos θ2)︸ ︷︷ ︸
max contact force

= ρgπR2H︸ ︷︷ ︸
weight

(15.2)

Force balance requires:

2σ

R
(cos θ1 − cos θ2) = ρgH (15.3)

Thus, an equilibrium is possible only if 2σ
R (cos θr − cos θa) >

ρgH.

Note: if θa = θr (no hysteresis), there can be no equilib-
rium.
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Figure 15.5: A raindrop may be pinned
on a window pane.

II. Raindrops on window panes (Dussan+Chow 1985)

If θ1 = θ2 then the drop will fall due to unbalanced
gravitational force. θ2 can be as large as θa, θ1 as small
as θr. Thus, the drop weight may be supported by the
capillary force associated with the contact angle hystere-
sis.

Note: Fg ∼ ρR3g, Fc ∼ 2πRσ(cos θ1 − cos θ2) which implies

that FG

FC
∼ ρgR2

σ ≡ Bo. In general, drops on a window pane
will increase in size by accretion until Bo > 1 and will then roll
downwards.

15.2 Wetting of a Rough Surface

Consider a fluid placed on a rough surface.
Define: roughness parameters

r =
Total Surface Area

Projected Surf. Area
> 1 φS =

Area of islands

Projected Area
< 1 (15.4)

The change in surface energy associated with the fluid front advancing a distance dz:

dE = (γSL − γSV ) (r − φS)dz + γ(1− φS)ds (15.5)

Spontaneous Wetting (demi-wicking) arises when dE < 0
i.e. cos θe = γSV −γSL

γ > 1−φS

r−φS
≡ cos θc, i.e. when θe < θC . Note:

1. can control θe with chemistry, r and φS with geometry, so can prescribe wettability of a solid.

2. if r � 1, θC = π
2 , so one expects spontaneous wicking when θe < π/2

3. for a flat surface, r ∼ 1, θc = 0: wicking requires cos θe > 1 which never happens.

4. most solids are rough (except for glass which is smooth down to ∼ 5Å).

Wetting of Rough Solids with Drops
Consider a drop placed on a rough solid. Define: Effective contact angle θ∗ is the contact angle apparent
on a rough solid, which need not correspond to θe. Observation:
θ∗ < θe when θe < π/2 (hydrophilic)
θ∗ > θe when θe > π/2 (hydrophobic).
The intrinsic hydrophobicity or hydrophilicity of a solid, as prescribed by θe, is enhanced by surface
roughening.

Figure 15.6: A drop wetting a rough solid has an effective contact angle θ∗ that is generally different
from its equilibrium value θe.
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15.3 Wenzel State (1936)

A Wenzel state arises when the fluid impregnates the rough solid. The change in wetting energy associated
with a fluid front advancing a distance dx (see Fig. 15.7) is

Figure 15.7: The wetting of a rough solid in
a Wenzel state.

dEW = r(γSL − γSV )dx+ γ cos θ∗dx (15.6)

If r = 1 (smooth surface), Young’s Law emerges.
If r > 1: cos θ∗ = r cos θe

Note:

1. wetting tendencies are amplified by roughening,
e.g. for hydrophobic solid (θe > π/2, cos θe < 0 ⇒ θe �
π/2 for large r )

2. for θe < θc (depends on surface texture) ⇒ demi-wicking
/ complete wetting

3. Wenzel state breaks down at large r ⇒ air trapped within
the surface roughness ⇒ Cassie State

15.4 Cassie-Baxter State

In a Cassie state, the fluid does not impregnate the rough
solid, leaving a trapped vapour layer. A fluid placed on
the rough surface thus sits on roughness elements (e.g.
pillars or islands), and the change of energy associated
with its front advancing a distance dx is

dEc = φS (γSL − γSV ) dx+ (1− φS) γdx+ γ cos θ∗dx
(15.7)

Figure 15.8: The wetting of a rough solid in
a Cassie-Baxter state.

For equilibrium (dEc/dx = 0), we require:

cos θ∗ = −1 + φS + φS cos θe (15.8)

Note:

1. as pillar density φS → 0, cos θ∗ → −1, i.e. θ∗ → π

2. drops in a Cassie State are said to be in a “fakir
state”.

3. contact angle hysteresis is greatly increased in the
Wenzel state, decreased in the Cassie.

4. the maintenance of a Cassie state is key to water
repellency.

Crossover between Wenzel and Cassie states:

For dEW > dEc, we require −r cos θe+cos θ∗ > −φs cos θe+(1−φs)+cos θ∗, i.e. cos θe <
−1+φS

r−φS
= cos θc,

i.e. one expects a Cassie state to emerge for cos θe > cos θc. Therefore, the criterion for a Wenzel State
giving way to a Cassie state is identical to that for spontaneous wicking.
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Summary:

Hydrophilic: Wenzel’s Law ceases to apply at small θe when demi-wicking sets in, and the Cassie state
emerges.

Hydrophobic: Discontinuous jump in θ∗ as θe exceeds π/2 ⇒ Cassie state. Jump is the largest for large
roughness (small φS)
Historical note:

1. early studies of wetting motivated by insecticides

2. chemists have since been trying to design superhydrophobic (or oliophobic) surfaces using combina-
tions of chemistry and texture

3. recent advances in microfabrication have achieved θ∗ ∼ π, ∆θ ∼ 0 (e.g. Lichen surface McCarthy)

MIT OCW: 18.357 Interfacial Phenomena 63 Prof. John W. M. Bush



16. More forced wetting

Some clarification notes on Wetting.

Figure 16.1: Three different wetting states.

Figure 16.2: Wetting of a tiled (chem-
ically heterogeneous) surface.

Last class, we discussed the Cassie state only in the context
of drops in a Fakir state, i.e. suspended partially on a bed of
air. There is also a “wet Cassie” state. More generally, the
Cassie-Baxter model applies to wetting on a planar but chemi-
cally heterogeneous surfaces.
Consider a surface with 2 species, one with area fraction f1 and
equilibrium contact angle θ1, another with area fraction f2 and
angle θ2. Energy variation associated with the front advancing
a distance dx:
dE = f1(γSL − γSV )1dx+ f2(γSL − γSV )2dx+ γ cos θ∗dx.
Thus, dE = 0 when

cos θ∗ = f1 cos θ1+f2 cos θ2 (Cassie-Baxter relation) (16.1)

Special Case: in the Fakir state, the two phases are the solid
(θ1 = θe and f1 = θS) and air (θ2 = π, f2 = 1− θS) so we have

cos θ∗ = θS cos θe − 1 + θS (16.2)

as previously. As before, in this hydrophobic case, the Wenzel state is energetically favourable when
dEW <dEC , i.e. cos θC < cos θe < 0
where cos θC = (θS − 1)/(r − θS), i.e. θE is between π/2 and θC .
However, experiments indicate that even in this regime, air may remain trapped, so that a metastable
Cassie state emerges.

16.1 Hydrophobic Case: θe > π/2, cos θe < 0

In the Fakir state, the two phases are the solid (θ = θe, f1 = φ) and vapour (θ2 = π, f2 = 1− φs).
Cassie-Baxter:

cos θ∗ = πS cos θe − 1 + φs (16.3)

as deduced previously. As previously, the Wenzel state is energetically favourable when dEW < dEL, i.e.
cos θC < cos θe < 0 where cos θC = φS−1

r−φS
. Experiments indicate that even in this region, air may remain

trapped, leading to a meta-stable Fakir state.
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Figure 16.3: Relationship between cos θ∗ and cos θe for different wetting states.

16.2 Hydrophilic Case: θe < π/2

Here, the Cassie state corresponds to a tiled surface with 2 phases corresponding to the solid (θ1 = θe,
f1 = φS) and the fluid (θ2 = 0, f2 = 1− φS).
Cassie-Baxter ⇒ cos θ∗ = 1 − φS + φS cos θe, which describes a “Wet Cassie” state. Energy variation:
dE = (r − φS)(γSL − γSV )dx+ (1− φS)γdx.

⇒ dE = 0 if cos θe =
γSL − γSV

γ
>

1− φS
r − φS

≡ cos θ∗c (16.4)

For θe < θc, a film will impregnate the rough solid. Criteria for this transition can also be deduced by
equating energies in the Cassie and Wenzel states, i.e. r cos θe = 1−φS +φS cos θe ⇒ θe = θC . Therefore,
when π/2 > θe > θC , the solid remains dry ahead of the drop ⇒ Wenzel applies ⇒ when θe < θC ⇒ film
penetrates texture and system is described by “Wet Cassie” state.

Johnson + Dettre (1964) examined water drops on wax, whose roughness they varied by baking. They
showed an increase and then decrease of ∆θ = θa − θr as the roughness increased, and system went from
smooth to Wenzel to Cassie states.
Water-repellency: important for corrosion-resistance, self-cleaning, drag-reducing surfaces. It requires
the maintenance of a Cassie State. This means the required impregnation pressure must be exceeded by
the curvature pressure induced by roughness.
E.g.1 Static Drop in a Fakir State

The interface will touch down if δ > h. Pressure balance: σ
R ∼ σ

δ
l2 so δ > h⇒ l2

R > h i.e. R < l2

h .
Thus taller pillars maintain Fakir State. (see Fig. 16.5)

E.g.2 Impacting rain drop: impregnation pressure ∆P ∼ ρU2 or ρUc where c is the speed of sound in
water.

E.g.3 Submerged surface, e.g. on a side of a boat. ∆P = ρgz is impregnation pressure.
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16.3. Forced Wetting: the Landau-Levich-Derjaguin Problem Chapter 16. More forced wetting

Figure 16.4: Contact angle as a function of surface roughness for water drops on wax.

Figure 16.5: To remain in a Cassie state, the internal drop pressure P0 + 2σ/R must not exceed the
curvature pressure induced by the roughness, roughly σ/`.

16.3 Forced Wetting: the Landau-Levich-Derjaguin Problem

Withdraw a plate from a viscous fluid with constant speed. What is the thickness of the film that coats
the plate? Consider a static meniscus.
For relatively thick films (Ca ∼ 1), balancing viscous stresses and gravity: µVh ∼ ρgh ⇒

h ∼
(
µV

ρg

)1/2

∼ `cCa1/2 (Derjaguin 1943) (16.5)

where `c =
√

σ
ρg and Ca = µV

σ = viscous
curvature is the Capillary number.

But this scaling is not observed at low Ca, where the coating is resisted principally by curvature pressure
rather than gravity. Recall static meniscus (Lecture 6): η(x) =

√
2`c (1− sin θ(x)) and internal pressure:

p(x) = p0 − ρgη(x). As x → 0, η(x) →
√

2`c and p(x) → p0 −
√

2ρg`c. It is this capillary suction inside
the meniscus that resists the rise of thin films.
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Figure 16.6: The two regions of the meniscus
next to a moving wall.

Thin film wetting
We describe the flow in terms of two distinct re-
gions:

Region I: Static meniscus. The balance is between
gravity and curvature pressures: ρgη ∼ σ∇ · n so curva-
ture ∇ · n ∼ 1/`c.
Region II: Dynamic meniscus (coating zone). The
balance here is between viscous stresses and curvature
pressure. Define this region as the zone over which film
thickness decreases from 2h to h, whose vertical extent L
to be specified by pressure matching. In region II, cur-
vature ∇ · n ∼ h/L2. Matching pressure at point A:
p0 − σh

L2 ∼ p0 − ρg`c ⇒ L2 ∼ σh
ρg`c

∼ `ch ⇒ L =
√
`ch

is the geometric mean of `c and h.
Force balance in Zone II: viscous stress vs. curvature pres-
sure: µ V

h2 ∼ ∆P
L ∼ σ

h
L2

1
L .

Substitute in for L ⇒ h3 ∼ µV
σ L

3 ∼ Ca`3/2c h3/2 ⇒ h ∼ `cCa2/3 where `c =
√

σ
ρg , Ca = µV

σ .

Implicit in above: h � L, L � `c, ρg � σh
L3 , or equivalently Ca1/3 � 1. Matched asymptotics give

h ≈ 0.94`cCa2/3.

E.g.1 Jump out of pool at 1m/s: Ca ∼ 10−2 so h ∼ 0.1mm ⇒ ∼ 300g entrained.

E.g.2 Drink water from a glass, V ∼ 1cm/s ⇒ Ca ∼ 10−4.

Figure 16.7: Left: A static meniscus. Right: Meniscus next to a wall moving upwards with speed V .

MIT OCW: 18.357 Interfacial Phenomena 67 Prof. John W. M. Bush



17. Coating: Dynamic Contact Lines

Last time we considered the Landau-Levich-Derjaguin Problem and deduced
h ∼ `cCa2/3 for Ca = µV

σ < 10−3

h ∼ `cCa1/3 for Ca→ 1.
The influence of surfactants
Surfactants decrease σ which affects h slightly. But the principle effect is to generate Marangoni stresses
that increase fluid emplacement: h typically doubles.

Figure 17.1: The influence of surfactants on fiber coating. Gradients in Γ induce Marangoni stresses that
enhance deposition.

Fiber coating:

Normal stress: p0 + σ
(

1
R1

+ 1
R2

)
= p0 − ρgz.

If b� `c,
1
R1
∼ 1

b ⇒ curvature pressures dominant, can’t be balanced by gravity.

Thus, the interface must take the form of a catenoid: 1
R1

+ 1
R2

= 0.

For wetting, θe = 0 ⇒ r(z) = b cosh
(
z−h
b

)
where h ≈ b ln(2`c/b).

Note:
1. gravity prevents meniscus from extending to ∞ ⇒ h deduced by cutting it off at `c.
2. h is just a few times b (h� `c) ⇒ lateral extent greatly exceeds its height.
Forced wetting on fibers e.g. optical fiber coating.

Figure 17.2: Etching of the microtips of Atomic Force Microscopes. As the fiber is withdrawn from the
acid bath, the meniscus retreats and a sharp tip forms.
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Chapter 17. Coating: Dynamic Contact Lines

Figure 17.3: Left: Forced wetting on a fiber. Right: The coating thickness as a function of the Reyonolds
number Re.

pfilm ∼ p0 + σ
b , pmeniscus ∼ p0 ⇒ ∆p ∼ σ

b resists entrainment.

Force balance: µ Ue2 ∼
∆p
L = σ

bL .

Pressure match: e
L2 ∼ 1

b ⇒ L ∼
√
be, substitute into the previous equation to find

e ≈ bCa2/3 (Bretherton′s Law) (17.1)

Note:

• this scaling is valid when e� b, i.e. Ca2/3 � 1.

• At higher Ca, film is the viscous boundary layer that develops during pulling: δ ∼
(
µ
ρ
Ls

U

)1/2

, where

Ls is the submerged length.

Displacement of an interface in a tube
E.g. air evacuating a water-filled pipette, pumping oil out of rock with water.

Figure 17.4: Left: Displacing a liquid with a vapour in a tube. Right: The dependence of the film
thickness left by the intruding front as a function of Ca = µU/σ.

In the limit of h� r, the pressure gradient in the meniscus ∇p ∼ σ
rl , where l is the extent of the dynamic

meniscus.
As on a fiber, pressure matching: p0 + 2σ

r −
σ
r−h ∼ p0 + σh

l2 ⇒ l ∼ (hr)1/2 when h� r.

Force balance: µU/h2︸ ︷︷ ︸
viscous

∼ σ/rl︸︷︷︸
curvature

∼ σ/r(hr)1/2 ⇒

h ∼ rCa2/3 (Bretherton 1961) (17.2)

where Ca = µU
σ .

Thick films: what if h = ord(r)? For h ∼ r, Taylor (1961) found h ∼ (r − h)Ca2/3.
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17.1 Contact Line Dynamics

Figure 17.5: The form of a moving meniscus near a wall or inside a tube for three different speeds.

We consider the withdrawal of a plate from a fluid bath (Fig. 16.6) or fluid displacement within a
cylindrical tube. Observations:

• at low speeds, the contact line advances at the dynamic contact angle θd < θe

• dynamic contact angle θd decreases progressively as U increases until U = UM .

• at sufficiently high speed, the contact line cannot keep up with the imposed speed and a film is
entrained onto the solid.

Figure 17.6: Dynamic contact angle θd
as a function of the differential speed U .
For U > UM , the fluid wets the solid.

Now consider a clean system free of hysteresis.
Force of traction pulling liquid towards a dry region:
F (θd) = γSV − γSL − γ cos θd.
Note:

• F (θe) = 0 in equilibrium. How does F depend on U?
What is θd(U)?

• the retreating contact line (F < 0) was examined with
retraction experiments e.g. plate withdrawal.

• the advancing contact line (F > 0) was examined by Hoff-
mann (1975) for the case of θe = 0.

• he found θd ∼ U1/3 ∼ Ca1/3 (Tanner’s Law)

Dussan (1979): drop in vicinity of contact line advances like a
tractor tread
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Figure 17.7: The advancing and retreating contact angles of a drop.

Figure 17.8: A drop advancing over a solid boundary behaves like a tractor tread (Dussan 1979 ), ad-
vancing though a rolling motion.

Flow near advancing contact line
We now consider the flow near the contact line of a spreading liquid (θd > θe):

• consider θd � 1, so that slope tan θd = z
x ≈ θd ⇒ z ≈ θdx.

• velocity gradient: dU
dz ≈

U
θdx

• rate of viscous dissipation in the corner

Φ =

∫ ∫
corner

µ

(
dv

dz

)2

dU = µ

∫ ∞
0

dx

∫ zmax=θdx

0

U2

θ2
dx

2
dz (17.3)

Φ = 3µ

∫ ∞
0

U2

θ2
dx

2
θdxdx =

3µU2

θd

∫ ∞
0

dx

x
(17.4)

de Gennes’ approximation:
∫∞

0
dx
x ≈

∫ L
a

dx
x = lnL/a ≡ `D

where L is the drop size and a is the molecular size. From experiments 15 < `D < 20.

Energetics:

FU = Φ =
3µ`D
θd
· U2 (17.5)

rate of work done by surface forces equals the rate of viscous dissipation.
Recall:

• F = γSV − γSL − γ cos θd = γ (cos θe − cos θd)

• in the limit θe < θd � 1, cos θ ≈ 1− θ2

2 ⇒ F ≈ γ
2

(
θ2
d − θ2

e

)
• substitute F into the energetics equation to get the contact line speed:

U =
U∗

6`D
θd
(
θ2
d − θ2

e

)
(17.6)

where U∗ = γ
µ ≈ 30m/s.
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Note:

1. rationalizes Hoffmann’s data (obtained for θe = 0) ⇒ U ∼ θ3
D

2. U = 0 for θd = θe (static equilibrium)

3. U = 0 as θd → 0: dissipation in sharp wedge impedes motion.

4. U(θd) has a maximum when dU
dθd

= U∗

6`D

(
3θ2
d − θ2

e

)
⇒ θd = θe√

3
⇒ Umax = U∗

9
√

3`D
θ3
e

Figure 17.9: Left: Schematic illustration of the flow in the vicinity of an advancing contact line. Right:
The dependence of the dynamic contact angle on the speed of withdrawal.

E.g. In water, U∗ = 70m/s. With θe = 0.1 radians and `D = 20, Umax = 0.2mm/s
⇒ sets upper bound on extraction speed for water coating flows.
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18. Spreading

Recall: gravity currents, the spreading of heavy fluid under the influence of gravity.
further reading: John E. Simpson - Gravity Currents: In the Environment and the Laboratory.

Figure 18.1: Spreading of a fluid volume un-
der the influence of gravity.

Stage I: Re� 1
Flow forced by gravity, and resisted by fluid iner-
tia:

∆ρgh
R ∼ ρU

2

R ⇒ U ∼
√
g′h where g′ =

∆ρ
ρ g.

Continuity: V = πR2(t)h(t) = const. ⇒ h(t) ∼ V
R2(t)

⇒ U ≡ dR
dt ∼

√
g′V 1

R ⇒ RdR ∼
√
g′V dt ⇒ R(t) ∼

(g′V )1/4t1/2

Note: U ∼
√
g′h decreases until Re = UR

ν ≤ 1.

Stage II: Re� 1

Flow forced by gravity, resisted by viscosity: ∂p
∂r = ν ∂

2u
∂z2 ⇒

∆ρgh
R ∼ ν Uh2

now substitute for h(t) = V/R2(t) to obtain:

U =
dR

dt
∼ R

t
∼ ρg′V 3

νR7
⇒ R ∼

(
ρg′V 3

ν

)1/8

t1/8 (18.1)

18.1 Spreading of small drops on solids

For a drop of undeformed radius R placed on a solid substrate, spreading will in general be driven by both
gravity and curvature pressure.
Gravity: ∇pg ∼ ρgh

R , Curvature: ∇pc ∼ γh
R3 .

Continuity V = πR2(t)h(t) =const.

Which dominates?
∆pg
∆pc
∼ ρgR2

γ = Bond number. Bo = ρgV
γh ∼

1
h ⇒ gravity becomes progressively more

important as the drop spreads !?
Recall:

• drop behaviour depends on S = γSV − γSL − γ.

• When S < 0: Partial wetting. Spreading arises until a puddle forms.

• When S > 0: Complete wetting. Here, one expects spreading forced by the unbalanced tension at
the contact line.

µU

h︸︷︷︸
viscous stress

· πR2︸︷︷︸
drop area

∼ S︸︷︷︸
contact line force

· 2πR︸︷︷︸
perimeter

(18.2)

Thus, we expect R dR
dt ∼

S
µh ∼

S
µ
U
R2 ⇒ R3 dR

dt ∼
SU
µ

⇒ R ∼
(
SU

µ

)1/4

t1/4 (18.3)
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18.2. Immiscible Drops at an Interface Pujado & Scriven 1972 Chapter 18. Spreading

But this is not observed; instead, one sees R ∼ t1/10. Why?

Hardy (1919) observed a precursor film, the evidence of which was the disturbance of dust ahead of the
drop. This precursor film is otherwise invisible, with thickness e ∼ 20Å
Its origins lie in the force imbalance at the contact line (S > 0) and its stability results from interactions
between the fluid and solid (e.g. Van der Waals)

Figure 18.2: The precursor film of a
spreading drop.

Physical picture
Force at Apparent Contact Line: F = γ + γSL −
γ cos θd − γSL = γ(1 − cos θd) ≈ γ

θ2d
2 for small

θd.

Note: F � S. Now recall from last class: FU = 3µ`D
θd

U2.

Letting F → γθ2d
2 , we find U = dR

dt = θd
3`Dµ

F = U∗

6`D
θ3
d, where

U∗ = γ
µ . Since the drop is small, it is a section of a sphere, so

that
U =

π

4
R3θd (18.4)

Hence 3
R
dR
dt = − 1

θd
dθd
dt . Substituting in dR

dt from above, we find:
1
θd
dθd
dt = −U∗

R θ3
d.

Now substitute R = Lθ
−1/3
d ≈ (U/θd)

1/3
and L ≡ U1/3 ⇒ dθd

dt = −U
∗

L θ
13/3
d ⇒

θd =

(
L

U∗t

)3/10

(Tanner′s Law) (18.5)

so using (18.4) yields R ∼ L
(
U∗t
L

)1/10

, which is consistent with observation.

18.2 Immiscible Drops at an Interface Pujado & Scriven 1972

Gravitationally unstable configurations can arise (ρa < ρb < ρc or ρc < ρa < ρb).

• weight of drops supported by interfacial tensions.

• if drop size R < lbc ∼
√

γbc
(ρb−ρc)g , it can be suspended by the interface.

Sessile Lens, ρa < ρc < ρb: stable for drops of any size, e.g. oil on water.

Figure 18.3: An immiscible liquid drop floats on a liquid bath.
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18.3 Oil Spill

3 Distinct phases:

Phase I Inertia vs. Gravity: U ∼
√
g′h(t) ⇒ R(t) ∼ (g′U0)

1/4
t1/2

Phase II Viscosity vs. Gravity : as previously, R ∼
(
ρg′V 3

0

ν

)1/8

t1/8

Phase III Line tension vs. Viscosity: For S < 0, an equilibrium configuration arises ⇒ drop takes the
form of a sessile lens. For S > 0 the oil will completely cover the water, spreading to a layer of molecular
thickness.

Phase IIIa Viscous resistance from dissipation within oil. As previously:

µU
h πR

2 ∼ 2πRS ⇒ R ∼
(
SU
µ

)1/4

t1/4

Phase IIIb Spreading driven by S, resisted by viscous dissipation in the underlying fluid.
Blasius boundary layer grows on base of spreading current like δ ∼

√
νt.

µUδ πR
2 ∼ S · 2πR where δ ∼

√
νt ⇒ R dR

dt ∼
S
µ

√
νt1/2 ⇒ R ∼

(
S
µ

)1/2

ν1/4t3/4.

18.4 Oil on water: A brief review

When an oil drop is emplaced on the water surface, its behaviour will depend on the spreading coefficient

S ≡ σaw − σoa − σow (18.6)

For S > 0, the droplet will completely wet the underlying liquid, and so spread to a layer of molecular
thickness.
References: Franklin (1760); Fay (1963); DePietro & Cox (1980); Foda & Cox (1980); Joanny (1987);
Brochard-Wyart et al. (1996); Fraaije & Cazabat (1989).

For S < 0, an equilibrium configuration arises: the drop assumes the form of a sessile lens.
The statics of the sessile lens have been considered by Langmuir (1933) and Pujado & Scriven (1972).
their dynamics has been treated by Wilson & Williams (1997) and Miksis & Vanden-Broeck (2001).

Figure 18.4: An oil drop spreading on the water surface.
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18.5 The Beating Heart Stocker & Bush (JFM 2007)

.
When a drop of mineral oil containing a small quantity of non-ionic, water-insoluble surfactant (Tergitol)

Figure 18.5: An oil drop oscillates on the water surface. Note the ring of impurities that marks the edge
of the internal circulation.

is so emplaced, a sessile lens with S < 0 is formed. However, no equilibrium shape emerges; the lens
is characterized by periodic fluctuations in radius, and so resembles a beating heart.

The phenomenon was first reported by Buetschli (1894), a professor of Zoology at the University of
Heidelberg, in his treatise Investigations on Protoplasm. It was subsequently described qualitatively by
Sebba (1979, 1981).

Motivation: “The ultimate goal of physiologists is to be able to explain living behaviour in terms of
physicochemical forces. Thus, any expansion of our knowledge of such forces, based on inanimate systems,
should be examined to see whether this might not offer insight into biological behaviour”. Sebba (1979).

Many biological systems exhibit periodic behaviour; e.g. oscillations of cells of nerves and muscle
tissue, oscillations in mitochondria, and biological clocks. Conversion of chemical into mechanical energy
is one of the main processes in biological movements; e.g. chloroplast movements and muscle contraction.

Observations:

• lens behaviour is independent of water depth, strongly dependent on surfactant concentration Γ

• for Γ = 0 no beating - stable sessile lens

• for moderate Γ steady beating observed

• for high Γ drop edges become unstable to fingers

• for highest Γ, lens explodes into a series of smaller beating lenses.

• beating marked by slow expansion, rapid retraction

• odour of Tergitol always accompanies beating
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• placing lid on the chamber suppresses the oscillations ⇒ evaporation is a critical ingredient.

Physical picture

Stage I: Slow expansion of drop.
Adsorption of surfactant onto oil-water interface ⇒ σow decreases. Evaporation of surfactant from air-
water surface ⇒ σaw increases.

Stage II: Rapid retraction.
Flushing of surfactant onto air-water interface ⇒ σaw decreases and σow increases. BUT WHY?

Figure 18.6: Internal circulation of the “beat-
ing heart”.

Internal circulation: confined to the outer extremities
of the lens, absent in the flat central region. Marangoni
flow associated with gradient in Γ - indicates Γ is low-
est at the drop edge. Consistent with radial gradi-
ent in adsorption flux along surface. Reflects geomet-
ric constraint - less surfactant available to corners than
bulk.
Such Marangoni shear layers are unstable to longitu-
dinal rolls or transverse waves (as in the wine glass).
The flushing events are associated with breaking Marangoni waves (Frenkel & Halpern 2005 ).

Another surfactant-induced auto-oscillation: The Spitting Drop (Fernandez & Homsy 2004)

• chemical reaction produces surfactant at drop surface

• following release of first drop, periodic spitting

• rationalized in terms of tip-streaming (Taylor 1934), which arises only in the presence of surfactant
(de Bruijn 1993) for µ/µd ≈ 104 and Ca = µG/σ > 0.4
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19. Water waves

We consider waves that might arise from disturbing the surface of a pond.

Figure 19.1: Waves on the surface of an inviscid ir-
rotational fluid.

We define the normal to the surface: n =
(−ζx,1)

(1+ζ2x)1/2

Curvature: ∇ · n = −ζxx

(1+ζ2x)3/2

We assume the fluid motion is inviscid and irrota-
tional: u =∇φ. Must deduce solution for velocity
potential φ satisfying ∇2φ = 0.
B.C.s:
1. ∂φ

∂z = 0 on z = −h
2. Kinematic B.C.:
Dζ
Dt = uz ⇒ ∂ζ

∂t + ∂φ
∂x

∂ζ
∂x = ∂φ

∂z on z = ζ.
3. Dynamic B.C. (time-dependent Bernoulli ap-
plied at free surface):

ρ∂φ∂t + 1
2ρ |∇φ|

2
+ ρgζ + pS = f(t), independent of x

where ps = p0 + σ∇ · n = p0 − σ ζxx

(1+ζ2x)3/2
is the surface pressure.

Recall: unsteady inviscid flows Navier-Stokes:

ρ
∂u

∂t
+ ρ

[
∇
(

1

2
u2

)
− u× (∇× u)

]
= −∇ (p+ Ψ) (19.1)

For irrotational flows, u =∇φ, so that u · ∇
[
ρ∂φ∂t + 1

2ρ |∇φ|
2

+ p+ Φ
]

= 0.

Time-dependent Bernoulli: ρ∂φ∂t + 1
2ρ |∇φ|

2
+ p+ Φ = F (t) only.

Now consider small amplitude waves and linearize the governing equations and BCs (assume ζ, φ are
small, so we can neglect the nonlinear terms φ2, ζ2, φζ, etc.)
⇒ ∇2φ = 0 in −h ≤ z ≤ 0.
Must solve this equation subject to the B.C.s
1. ∂φ

∂z = 0 on z = −h
2. ∂ζ

∂t = ∂φ
∂z on z = 0.

3. ρ∂φ∂t + ρgζ + p0 − σζxx = f(t) on z = 0.

Seek solutions: ζ(x, t) = ζ̂eik(x−ct) , φ(x, z, t) = φ̂(z)eik(x−ct)

i.e. travelling waves in x-direction with phase speed c and wavelength λ = 2π/k.

Substitute φ into ∇2φ = 0 to obtain φ̂zz − k2φ̂ = 0
Solutions: φ̂(z) = ekz, e−kz or sinh(z), cosh(z).

To satisfy B.C. 1: ∂φ̂
∂z = 0 on z = −h so choose φ̂(z) = A cosh k(z + h).

From B.C. 2:
ikcζ̂ = Ak sinh kh (19.2)

From B.C. 3:
(
−ikcρA cosh kh+ ρgζ + k2σζ̂

)
eik(x−ct) = f(t), independent of x, i.e.

−ikcρA cosh kh+ ρgζ̂ + k2σζ̂ = 0 (19.3)

(19.2)⇒ A = icζ
sinh kh ⇒ into (19.3) ⇒ c2 =

(
g
k + σk

ρ

)
tanh kh defines the phase speed c = ω/k.

Dispersion Relation:

ω2 =

(
gk +

σk3

ρ

)
tanh kh (19.4)
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Chapter 19. Water waves

Note: as h → ∞. tanh kh → 1, and we obtain deep water dispersion relation deduced in our wind-over-
water lecture.

Physical Interpretation

• relative importance of σ and g is prescribed by the Bond number Bo = ρg
σk2 = σ(2π)2

ρgλ2 = (2π)2 `
2
c

λ2

where `c =
√
σ/ρg is the capillary length.

• for air-water, Bo ∼ 1 for λ ∼ 2π`c ∼ 1.7cm.

• Bo� 1, λ� 2π`c: surface effects negligible ⇒ gravity waves.

• Bo� 1 : λ� 2π`c: influence of g is negligible ⇒ capillary waves.

Special Cases: deep and shallow water. Can expand via Taylor series: For kh � 1, tanh kh =
kh− 1

3 (kh)3 +O
(
(kh)5

)
, and for kh� 1, tanh kh ≈ 1.

A. Gravity waves Bo� 1: c2 = g
k tanh kh.

Shallow water (kh� 1) ⇒ c =
√
gh. All wavelengths travel at the same speed (i.e. non-dispersive), so

one can only surf in shallow water.
Deep water (kh� 1) ⇒ c =

√
g/k, so longer waves travel faster, e.g. drop large stone into a pond.

Figure 19.2: Deep water capillary waves,
whose speed increases as wavelength de-
creases.

B. Capillary Waves: Bo� 1, c2 = σk
ρ tanh kh.

Deep water kh � 1 ⇒ c =
√
σkρ so short waves travel

fastest, e.g. raindrop in a puddle.

Shallow water kh� 1 ⇒ c =
√

σhk2

ρ .

An interesting note: in lab modeling of shallow water waves

(kh � 1) c2 ≈
(
g
k + σk

ρ

) (
kh− 1

3k
3h3 +O

(
(kh)5

))
=

gh +
(
σh
ρ −

1
3gh

2
)
k2 + O

(
(kh)4

)
gh. In ripple tanks,

choose h =
(

3σ
ρg

)1/2

to get a good approximation to

nondispersive waves. In water,
(

3σ
ρg

)1/2

∼
(

3·70
103

)
1/2 ∼

0.5cm.

From c(k) can deduce cmin =
(

4gσ
ρ

)1/4

for kmin =
(
ρg
σ

)1/2
.

Group velocity: when c = c(λ), a wave is called dispersive
since its different Fourier components (corresponding to different k or λ) separate or disperse, e.g. deep
water gravity waves: c ∼

√
λ. In a dispersive system, the energy of a wave component does not propagate

at c = ω/k (phase speed), but at the group velocity:

cg =
dω

dk
=

d

dk
(ck) (19.5)

Deep gravity waves: ω = ck =
√
gk. cg = ∂

∂kω = ∂
∂k

√
gk = 1

2

√
g/k = c

2 .

Deep capillary wave: c = σ/ρ
k

1/2
, ω =

√
σ/ρk3/2 ⇒ cg = ∂ω

∂k = 3
2

√
σ/ρk1/2 = 3

2c.
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Chapter 19. Water waves

Flow past an obstacle.
If U < cmin, no steady waves are generated by the obstacle.
If U > cmin, there are two k−values, for which c = U :

1. the smaller k is a gravity wave with cg = c/2 < c ⇒ energy swept downstream.

2. the larger k is a capillary wave with cg = 3c/2 > c, so the energy is swept upstream.

Figure 19.3: Phase speed c of surface waves as a function of their wavelength λ.
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