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We present the results of a combined experimental and theoretical study of drop
coalescence in the presence of an initial temperature difference 1T0 between a drop
and a bath of the same liquid. We characterize experimentally the dependence of the
residence time before coalescence on 1T0 for silicone oils with different viscosities.
Delayed coalescence arises above a critical temperature difference 1Tc that depends
on the fluid viscosity: for 1T0 > 1Tc, the delay time increases as 1T2/3

0 for all
liquids examined. This observed dependence is rationalized theoretically through
consideration of the thermocapillary flows generated within the drop, the bath and
the intervening air layer.

Key words: breakup/coalescence, Marangoni convection, thermocapillarity

1. Introduction

When a drop falls onto a bath of a miscible liquid, one expects it to coalesce
immediately upon impact. However, such is not always the case, owing to the
presence of a thin lubricating air layer between drop and bath that must drain to
a critical thickness before coalescence is initiated by intermolecular forces (Walker
1978). Careful observation of raindrops hitting a puddle, lake or sea surface reveal
that some millimetric droplets may bounce, leap and roll along the surface prior
to coalescence (Reynolds 1881; Rayleigh 1899). Everyday experience indicates that
a temperature difference may further delay coalescence. When milk is poured into
hot tea or coffee, drops may linger on the surface, levitating there for up to a few
seconds before merging.

Coalescence has been studied extensively and the influence of relevant physical
quantities (fluid density ρ, surface tension σ , viscosity µ, surface charges, etc.) has
been characterized (e.g. Charles & Mason 1960a,b; Jeffreys & Davis 1971), leading to
a classification of different dynamical regimes (Aryafar & Kavehpour 2006). Advances
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FIGURE 1. A schematic of thermally delayed drop coalescence. (a) A drop approaches
a bath of the same liquid with initial temperature difference 1T0 = Tb − Td. Thermal
gradients induce Marangoni stresses that drive thermocapillary flows within both the liquid
and gas phases. (b) A close-up of the lubrication layer of air between drop and bath.

in high-speed imaging (Thoroddsen & Takehara 2000), experimental techniques
(Mohamed-Kassim & Longmire 2004), and numerical simulations (Blanchette &
Bigioni 2006, 2009) have furthered our understanding of coalescence in various
circumstances, including the effects of concentration-induced Marangoni stresses
(Blanchette, Messio & Bush 2009). The myriad aspects of coalescence were recently
reviewed by Kavehpour (2015).

The influence of thermal effects on drop coalescence has received relatively less
attention. A series of experimental studies have examined the non-coalescence of
two drops maintained at different temperatures owing to the presence of thermally
induced Marangoni stresses (Dell’Aversana, Banavar & Koplik 1996; Dell’Aversana,
Tontodonato & Carotenuto 1997; Dell’Aversana & Neitzel 1998). These studies
demonstrate that above a critical temperature difference, coalescence is precluded
by Marangoni stresses driving recirculating flows inside the drops that enhance the
intervening lubrication pressure (as in figure 1) – a physical picture supported by the
numerical simulations of Monti, Savino & Cicala (1996) and Monti & Savino (1997).
Savino, Paterna & Lappa (2003) confirmed that coalescence of drops floating on a
liquid bath could be delayed by a temperature difference between drop and bath, and
the sustenance of the intervening air film by the associated thermocapillary flows.
Neitzel & Dell’Aversana (2002) and Lappa (2005) have reviewed studies of different
aspects of non-coalescence.

While it has been established that the influence of thermocapillary flows in the
lubricating air layer will resist coalescence between two drops with a temperature
difference above some critical value (Neitzel & Dell’Aversana 2002; Savino et al.
2003), no theoretical model has provided a rationale for this critical temperature
difference. Moreover, previous studies have neither characterized nor rationalized the
dependence of the residence time of a floating droplet (denoted τr henceforth) on the
temperature difference between drop and bath. We focus here on the coalescence of
a drop into a bath of the same liquid, when an initial temperature difference 1T0 is
imposed between the bath and the drop (figure 1a). In § 2 we provide experimental
evidence of a functional relationship between τr and 1T0. In § 3, we rationalize our
observations through theoretical consideration of the thermocapillary flows arising
within the drop, the bath and the intervening air layer.
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FIGURE 2. (a) Schematic of the experimental set-up. (b) Image showing a drop sitting on
a bath of 1 cSt silicone oil with 1T0 = 0 prior to coalescence (see movie 1). (c) Image
captured with a green laser light sheet reveals a recirculating Marangoni flow within a
cold drop (see movie 2).

2. Experiments

Consider a drop with initial temperature Td approaching a bath of the same liquid
with temperature Tb (figure 1a). The drop is released sufficiently close to the bath
surface that the effect of its initial velocity is negligible. The initial temperature
difference between the drop and the bath, 1T0 = Tb − Td, is prescribed. Owing to
the dependence of surface tension σ on temperature T , thermal gradients along the
interface result in Marangoni stresses that drive thermocapillary flows within both the
liquid and gas phases, of the general form sketched in figure 1. The majority of our
experiments were performed with 1T0 > 0, as in the case of a cold milk drop on the
surface of hot coffee. We also performed several experiments with 1T0 < 0.

2.1. Materials and methods
Figure 2(a) shows a schematic of our experimental set-up. The bath consists of a
liquid pool in a customized square cell of dimensions 3.175 cm by 3.175 cm by
1.9 cm deep. The cell, with acrylic walls and a metallic substrate, is placed on
a dual cold/hot plate (Teca AHP-301 CPV) that allows for precise control of the
temperature at the base of the cell. The temperature of the bath surface (Tb) and that
of the drop (Td) are monitored with a hand-held thermometer equipped with a K-type
thermocouple. In the range of 1T0 considered, the influence of convective overturning
within the bath was negligible. Drops are dispensed through a needle centred above
the cell at a height of approximately one drop diameter above the bath. The liquid
is pushed by a syringe pump at a flow rate of 0.07 ml min−1, the drop then gently
released onto the bath in order to insure a negligible approach speed. A BD stainless
steel standard bevel needle 16G was used, fixing the drop radius to be R= 0.6 mm.
A Phantom high-speed camera, mounted on a 3-axis positioning stage, recorded each
experiment, typically at 2000 f.p.s. Figure 2(b) shows a digital video frame of a drop
floating on a bath prior to coalescence (see movie 1 as a supplementary material
available online at https://doi.org/10.1017/jfm.2017.686). Back-lighting with a white
LED was used in all measurements (see movie 3), but a halogen lamp proved more
effective in visualizing the rapid dynamics of the coalescence process, as shown
in figure 3 (see also movies 4 and 5). The residence time τr was measured as the
interval between drop detachment from the needle and the onset of coalescence (see
first two images in figure 3a,b), which is readily identified by the appearance of
capillary waves on the surface of the droplet. The acquisition rate guarantees that
the error on τr is on the order of 1 ms, and so negligible relative to the variability
between successive measurements.
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FIGURE 3. Montage of typical experiments for two different silicone oils with kinematic
viscosities (a) νo = 20 cSt and (b) νo = 1 cSt (see also movies 4 and 5). The first two
frames correspond to drop detachment from the needle (t=0) and initiation of coalescence
(t= τr). Subsequent images show the coalescence process. The difference between the two
sequences is striking: the 20 cSt drop coalesces directly, while the 1 cSt drop executes
a coalescence cascade (Thoroddsen & Takehara 2000) with up to five to six daughter
droplets, only two of which are shown here.

In order to visualize the thermocapillary flow within the drop, the 5 cSt oil was
seeded with TiO2 particles with an average diameter of 3 µm. A drop was then
formed, pinned in place by the dispensing needle and illuminated with a green laser
sheet (see movie 2). A synthetic streak image obtained by superposing 100 digital
video frames taken at 30 f.p.s. prior to coalescence is shown in figure 2(c). The
particle pathlines are clearly evident and reveal a poloidal motion with characteristic
speed of ∼5 mm s−1 in the interior of the drop for 1T0 = 5 ◦C. This vortical
circulation is initiated when the droplet detaches from the needle (see movie 2). A
complementary thermocapillary flow is expected to arise within the bath (Savino et al.
2003, see figure 1).

Silicone oils allowed us to tune viscosity without substantially altering other
properties of the liquid phase (see table 1 in Kavehpour, Ovryn & McKinley 2002).
Five different silicone oils were tested, with kinematic viscosities (νo) of 1, 5, 10, 20
and 500 cSt. All the oils are assumed to have density ρo = 0.9 g cm−3 and thermal
diffusivity αo= 7× 10−4 cm2 s−1. The surface tension is assumed to decrease linearly
with increasing temperature: σ(T) = σ0 − σT(T − T0) where σ0 = 20 dyn cm−1 and
σT = ∂σ/∂T = 5 × 10−2 dyn (cm ◦C)−1. The air is characterized by its dynamic
viscosity µa = 0.018 cP, density ρa = 1.2 × 10−3 g cm−3 and thermal diffusivity
αa = 0.2 cm2 s−1. In our theoretical developments, density and viscosity are assumed
to be independent of temperature: the only property that changes significantly over
the range of temperatures considered is surface tension.

2.2. Measurements of the residence time
In figure 4(a) we report the residence times τr for the five oils at different 1T0.
The dashed line indicates the isothermal reference value that is independent of the
oil viscosity and assumes a nearly constant value τ 0

r ' 160 ± 50 ms for all liquids
considered and for the given R. Two important features should be noted. First, as in
the case of complete non-coalescence of drops (Dell’Aversana et al. 1996), there is
a critical temperature difference below which the residence time τr is comparable to
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FIGURE 4. (a) Measurements of the residence time τr as a function of the absolute value
of the initial temperature difference |1T0| for the five different silicone oils considered.
Open symbols represent the cases where 1T0 < 0. Each data point corresponds to an
average over 30 drops and error bars are equivalent to two standard deviations. (b) The
delay time τd, non-dimensionalized by the characteristic thermal diffusion time τth=R2/αo,
as a function of the initial Marangoni number Ma0. Symbols correspond to data from
(a). The solid line is the theoretical prediction from the model described in § 3.2 with
β = 1/4. The dashed line is an approximate closed-form expression derived in the limit
of t>

√
3/γ̇ .

τ 0
r , as indicated by the points lying close to the reference dashed line. This critical

value, henceforth denoted 1Tc, increases monotonically with the fluid viscosity. While
the 5 cSt oil has 1Tc ' 1 ◦C, the 500 cSt oil has a value of 1Tc much higher than
those accessible with our set-up; thus we never observed delayed coalescence with this
oil. Second, above 1Tc, for all viscosities the residence time monotonically increases
with the initial temperature difference with a characteristic power law such that τr ∼

1T0.66±0.10
0 .

To isolate the influence of thermocapillary flows, we introduce the delay time
τd = τr − τ

0
r and rescale the initial temperature difference in terms of the initial

Marangoni number Ma0 = |1σo|R/µoαo = |σT1T0|R/µoαo, which prescribes the
relative magnitudes of the characteristic time scales of thermal diffusion and
convection within the drop – respectively, τth = R2/αo and τconv = Rµo/(σT1T0).
In figure 4(b) we recast the data of figure 4(a) in terms of these two variables,
with the delay time non-dimensionalized by the characteristic thermal diffusion time
τth. The data all collapse onto a single curve that approaches a line with slope
2/3 at large Ma. We note that the threshold below which no delayed coalescence
is observed, previously characterized in terms of a viscosity-dependent 1Tc, may
now be expressed in terms of a single critical Marangoni number, Mac ' 100 ± 50.
Consequently, the delay time may be expressed as τd/τth ' 0.01(Ma0 −Mac)

2/3. We
also note that the points in figure 4(a) with τr ∼ τ

0
r are automatically shifted to

Ma�Mac and so are beyond the limits of the plot. In order to rationalize both Mac
and the resulting power law scaling of τd with Ma, we proceed by considering the
thermocapillary flows generated within the system.

3. Theoretical modelling

In § 3.1, we first describe the air flow in the gap between the drop and the bath
using a lubrication analysis from which the critical Marangoni number Mac is deduced.
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In § 3.2, we then rationalize the functional relationship between the residence time and
the initial temperature difference through a description of the mixing dynamics within
the drop.

3.1. Lubrication flow within the air gap
Our analysis rests on a series of simplifying assumptions. Figure 2(b,c) suggest that
the geometry of the flow is non-trivial due to the bath curvature induced locally by the
drop’s weight. Previous studies (Dell’Aversana et al. 1997; Neitzel & Dell’Aversana
2002; Savino et al. 2003) have pointed out that in these conditions the underside
of the drop may deform such that the height of the gap is not constant. We avoid
such geometrical complexities by treating the gap as a cylindrical disk with height
h(t) and radius Rd, where Rd = R2/lc is the effective contact radius (Mahadevan &
Pomeau 1999), and lc =

√
σ/ρog is the capillary length of the oil; an approximation

one expects to be valid provided Bo=ρogR2/σ < 1. In our experiments Bo= 0.17 and
Rd = 0.25 mm' 0.4R. The initial height of the gap is h(0) and h(t)� (R, Rd) at all
times.

We also assume that Rea(h/R)� 1, where Rea= ρaVh0/µa is the Reynolds number
of the air flow, so that the lubrication approximation can be invoked and the Navier–
Stokes equations simplified to:

0'−
∂p
∂r
+µa

∂2vr

∂z2
, 0'−

∂p
∂z
, (3.1a,b)

where p is the pressure field and vr the radial velocity. While both boundaries are
free, µo/µa � 1 so we can apply no-slip boundary conditions, specifically vr(0) =
vb, the surface speed of the bath, and vr(h(t)) = vd, the surface speed of the drop.
Note that vb and vd can be positive or negative depending on the sign of 1T0. If
1T0 > 0, vb < 0 while vd > 0, and vice versa (see figure 1). In isothermal conditions,
one may assume that vb = 0= vd, and the problem reduces to the classic lubrication
squeezing flow between two parallel disks (Stefan 1874). However, in the presence
of thermal gradients, both interfaces have radial flows driven by Marangoni stresses
with characteristic magnitude U0∼ σT1T/µo, leading to the following mixed Couette–
Poiseuille velocity profile within the gap:

vr(r, z)=
1

2µa

(
−
∂p
∂r

)
[zh− z2

] + (vd − vb)
z
h
+ vb. (3.2)

After imposing conservation of mass for a control volume within the gap and the
kinematic boundary condition vz = −ḣ at z = h, one can use the velocity profile to
derive an ordinary differential equation (ODE) for the pressure field:

−
∂p
∂r
=

6µa(−ḣ)
h3

r+
6µa1v

h2
, (3.3)

where 1v = −(vd + vb) > 0 regardless of the sign of 1T0 (Monti et al. 1996).
Integrating (3.3) with the boundary condition p(Rd)= pa yields:

p(r)− pa =
3µa(−ḣ)

h3
(R2

d − r2)+
6µa1v

h2
(Rd − r). (3.4)
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Thermal delay of drop coalescence

The form of the pressure field indicates that the Marangoni flow augments the pressure
within the gap, thus resisting the settling of the drop, independent of the sign of
1T0. Assuming that the drop acceleration is negligible, so that its weight is supported
quasistatically by the pressure field, we deduce:

ρo
4
3
πR3g= 2π

∫ Rd

0
[p(r)− pa]r dr=

3πµaR4
d

2h3
(−ḣ)+

2πµaR3
d1v

h2
. (3.5)

We thus obtain an ODE for the height of the gap h(t). We define a dimensionless
height h? = h/h0, and a dimensionless time t? = t/τs, where τs = 9µaR4

d/(16ρogR3h2
0)

is the characteristic settling time that would arise in the absence of thermocapillary
effects. A balance between thermocapillary and viscous stresses at the interface allows
us to express 1v as 1v = K|σT1T|/µo, with K ∼ O(1). In the absence of direct
measurements of the surface velocity, we set the constant K to unity. We thus write
the ODE in dimensionless form as:

−
∂h?

∂t?
= h?

(
h?2

2
−

4
3
τs

τth

R
Rd

Ma
)
, (3.6)

where τth = R2/αo is the thermal diffusion time and Ma = |σT1T|R/µoαo is the
Marangoni number. Under isothermal conditions (Ma = 0), equation (3.6) yields the
well-known solution h?(t?) = 1/

√
1+ t? for squeezing flow between two disks under

constant force (Stefan 1874).
If Ma 6= 0, equation (3.6) indicates that there is a critical value Mac above which

the gap height does not decrease in time. Using values of fluid properties listed in
§ 2.1 and an estimated initial height of h0 = 1.5 µm (Monti & Savino 1997) we
obtain τs= 0.0078 s and τth= 5.14 s, which gives Mac= 3τthRd/(8τsR)' 100, in good
agreement with the experimental results. The value of Mac can be used to estimate
1Tc for any viscosity. In particular, for νo = 5 cSt the critical temperature difference
is 1Tc = Macµoαo/σTR ' 1 ◦C, in agreement with our experiments, while for νo =

500 cSt, 1Tc ' 115 ◦C, which is well beyond the maximum accessible 1T0 and so
again consistent with our experiments. We further note that the exact value of Mac
depends on the quantities h0 and K, which have only been estimated here. Precise
measurements of both would be required for a more accurate estimate of Mac.

3.2. Mixing and its effect on the residence time
The flow induced by Marangoni stresses acting on the air within the gap accounts for
the existence of a critical Marangoni number. To rationalize the dependence of the
thermal delay time on 1T0, we need to estimate the time required for such stresses
to diminish, i.e. for temperature differences to decrease such that Ma<Mac. Formally,
this requires the combined solution of the energy equation and the Navier–Stokes
equations. However, a relatively expedient route may be found with appropriate
simplifications.

Figure 2(c) provides direct evidence of convection and the resulting thermal
homogenization by highlighting the recirculating flow inside the drop prior to
coalescence. Assuming that the characteristic velocity is that of the interface
U0 ∼ |σT1T0|/µo, one obtains an estimate of the convective time scale τconv ∼

R/U0∼Rµo/|σT1T0| ∼ τth/Ma0. Given that Ma0 >Mac' 100, we infer that τconv� τth
so that convection dominates in the initial stages of thermalization. This suggests that
when the drop gets close to the bath its lower extremities are warmed up (or cooled
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FIGURE 5. (a) Streamlines (blue) and velocity field (red) of the potential flow solution
corresponding to Hill’s spherical vortex. (b) Simulation of a fluid element being deformed
and convected with the assumed potential flow (with 1T0 = 10 ◦C, νo = 5 cSt, see
also movie 6). The accompanying schematic indicates the reference system of (3.9). (c)
Predicted decay of temperature obtained through (3.12) for 1T0 = 26 ◦C and νo = 5 cSt
(solid black line). Approximation of the solution for early times (t→ 0, solid blue line)
and for long times (t>

√
3/γ̇ , dashed red line).

down, depending on the sign of 1T0) and a poloidal convective motion is established
that rapidly transports these fluid elements while deforming them into elongated
filaments, or lamellae. Only on longer time scales does thermal diffusion become
effective and the drop equilibrate thermally.

A mathematical framework to study related advection–diffusion problems has been
developed in the context of mixing by Ottino, Ranz & Macosko (1979) and Ranz
(1979), and recently applied by Meunier & Villermaux (2003) to describe scalar
mixing in an axisymmetric vortex flow. In the following, we apply this method
to the case of thermal homogenization within the drop, assuming that a roughly
symmetric process is also taking place in the bath (Savino et al. 2003). We assume
that the velocity field is expressible in terms of the Hill’s spherical vortex (Batchelor
1967, p. 237). Defining a dimensionless velocity field as v? = v/Ū, where Ū is
a characteristic velocity proportional to U0 and a dimensionless radial coordinate
as r? = r/R, the dimensionless velocity components for this potential flow are
v?r = −(1 − r? 2) cos θ and v?θ = (1 − 2r? 2) sin θ , which are plotted together with
the streamlines (ψ?

= 1/2(r? 2
− 1)r? 2 sin2 θ = const.) in figure 5(a). From these

expressions, we compute the dimensionless strain rate tensor within the drop:

e? =

(
2r? cos θ −3/2r? sin θ
−3/2r? sin θ −r? cos θ

)
. (3.7)

Accounting for the evident spatial variations would substantially complicate the
analysis; hence, we consider an average flow by performing an area-weighted average
of the local shear rate tensor over all angles θ in the range [0,π], obtaining

〈e?〉 =
1
π

∫ π

0

∫ 1

0
e? r? dθ dr? =

(
0 −1/π
−1/π 0

)
. (3.8)

Equation (3.8) suggests that, on average, each element of fluid undergoes a
shearing deformation. To find the dimensional average shear rate γ̇ we consider
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the shear rate at the interface to be that imposed by the gradient in surface tension,
γ̇R = (∂σ/∂θ)/2µoR = |σT1T|/2Rπµo. Computing the maximum shear rate at the
interface (r? = 1, θ = π/2) from (3.7), we deduce Ū = U0/3π and γ̇ = U0/(3π2R).
Following the method introduced by Ottino et al. (1979), we write the energy equation
in the frame of reference (X, Y) of a material element that is convected and deformed
as shown in figure 5(b). Neglecting variations in the X-direction, we write:

∂T
∂t
+ V

∂T
∂Y
= αo

∂2T
∂Y2

. (3.9)

The velocity field V can be written in terms of the thickness of the lamella s(t) based
on the rate of stretching ε̇ = d ln s(t)/dt as V = ε̇Y . For a flow dominated by shear,
s(t) = s0/

√
1+ γ̇ 2t2, where s0 is the initial size of the blob of fluid that has been

warmed up (or cooled down) to a temperature close to Tb as the drop approaches the
bath. An estimate of s0 can be derived by considering that convection can be induced
only when a temperature gradient is established on the drop surface. Consequently, s0
is prescribed by the local balance, at early times, between diffusion from the bath,
at a rate αo/(d`)2 with d` ∼

√
αot independent of the temperature difference, and

deformation by Marangoni stresses, at a rate |σT1T0|/(µos0). When |σT1T0|/(µos0)>
αo/(d`)2, that is for s0'Ma0(d`)2/R, the fluid blob will start moving. As convection
is established, this initial blob of fluid at T ∼ Tb is stretched into a thin lamella that
is wrapped around the drop (see movie 6). Ultimately, the drop is characterized by a
series of alternating warm and cold layers.

By changing variables such that ξ = Y/s(t) and τ =
∫ t

0 αo/s2(t′) dt′, we can
reduce (3.9) to:

∂θ

∂τ
=
∂2θ

∂ξ 2
, (3.10)

where θ = (Tb − T)/1T0 and ξ ∈ [−1/2, 1/2]. The change of variables effectively
rescales the convection–diffusion equation in order to capture the correct length and
time scales over which thermalization acts, specifically those of a stretching and
thinning lamella. By definition, convection dominates diffusion when τ � 1. As τ
approaches O(1), the two become comparable so that conduction across the lamella
becomes important.

To characterize the thermal equilibration of the drop, we solve (3.10) from the
perspective of a lamella originally at Td, in contact at its boundaries with fluid at Tb.
In terms of dimensionless quantities this means that θ(τ = 0)= 1 inside the lamella
(for |ξ | < 1/2), and θ(τ = 0) = 0 outside (for |ξ | > 1/2). The resulting analytical
solution of (3.10) thus emerges:

θ(ξ, τ )=
1
2

[
erf
(
ξ + 1/2

2
√
τ

)
− erf

(
ξ − 1/2

2
√
τ

)]
. (3.11)

From (3.11) we can compute the evolution of the maximum temperature difference
arising at the centre of the lamella ξ = 0:

θM(0, t)=
1Tlamella(t)
1T0

= erf
(

1
4
√
τ(t)

)
= erf

(
s0

4
√
αot+ αoγ̇ 2t3/3

)
. (3.12)

Equation (3.12) is plotted in figure 5(c) for the case of 1T0 = 26 ◦C and νo = 5 cSt.
The temperature difference is initially constant since fluid elements are first convected
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and deformed into lamellae before diffusion becomes significant. When 4
√
τ ∼ 1,

thermal diffusion acts effectively across the thickness of the lamella, altering the
local temperature and ultimately leading to thermal homogenization of the drop. At
long times (3.12) shows that 1T(t)lamella ∼1T0

√
3/(4παo)(s0/(γ̇ t3/2)). This suggests

that the delay time should scale as τd ∼ 1T2/3
0 ∼ Ma2/3

0 . We note that the same
scaling applies provided the kinematics of the flow field do not have elongational
characteristics such that fluid elements separate exponentially quickly in time.

Using (3.12) for a fixed viscosity, we can obtain an estimate for the delay time as
a function of 1T0. We expect the temperature difference across a lamella before
coalescence (at t ' τd) to be comparable to the critical temperature difference
measured for the entire drop at uniform temperature, i.e. 1Tlamella(τd) = β1Tc with
β ∼ O(1). The resulting estimate for the delay time τd obtained by solving this
nonlinear equation is shown in figure 4(b) with a solid curve computed with β = 1/4.
Comparison with the data shows that, notwithstanding the simplifying assumptions,
our analytical model effectively captures the main physical phenomena, rationalizing
the observed dependence of τd on Ma0. Finally, we note that a closed form for τd

can be obtained from 1Tlamella(τd) = β1Tc in the limit t >
√

3/γ̇ . In this case we
have τ̃d = (

√
31T0s0/(

√
4παoβ1Tcγ̇ ))

2/3, as shown as a dashed line in figure 4(b).
As Ma0 → Mac, this approximation is no longer valid because it is based on the
neglect of the linear term in t in (3.12) that becomes significant for small γ̇ .

4. Summary and conclusions

We have investigated the role of temperature differences between drop and bath in
delaying drop coalescence. Experiments indicate a minimum temperature difference,
dependent on the oil viscosity, below which no appreciable difference with the
isothermal case exists and above which the residence time increases as a function of
the initial temperature difference. We have demonstrated that the observed behaviour
is described by a unique curve: above a critical Marangoni number Mac the delay
time τd increases as τd/τth ∼ (Ma0 −Mac)

2/3.
By analysing the lubrication air flow within the gap, we have shown that the critical

Marangoni number is prescribed by the minimum velocity that must be established for
the pressure field, induced by the recirculating air flow within the gap, to sustain the
drop’s weight. Due to the symmetry of the pressure field, the effect is independent of
the sign of 1T0, as indicated by our experiments. By considering the kinematics of
thermal mixing in a frame deforming with the fluid elements, we have calculated the
characteristic time scale for thermal homogenization within the drop, rationalizing the
observed dependence of τd on Ma0 (and therefore on 1T0).

Our study suggests that a similar formulation can be applied to the case of drop
flotation (Savino et al. 2003) and also to the case of impinging drops (Dell’Aversana
et al. 1996) provided the drop weight is replaced by the applied load. The onset of the
coalescence cascade should be delayed but otherwise largely unaffected by an initial
temperature difference between the mother droplet and the bath. Once the first drop
has coalesced, following the thermal mixing process elucidated here, the temperature
of its daughter droplets should be comparable to that of the bath. Finally, we note that
thermally delayed drop coalescence may prove useful in levitating drops on vibrating
baths (Bush 2015).
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