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We present the results of a numerical investigation of the emergence of chaos in the orbital

dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three

different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational

forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and

eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the

external force. When acted upon by Coriolis or Coulomb forces, the droplet’s orbital motion

becomes chaotic through a period-doubling cascade. In the presence of a central harmonic poten-

tial, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964350]

A droplet may walk on the surface of a vertically

vibrated fluid bath, propelled by the waves generated by

its previous impacts. The resulting hydrodynamic pilot-

wave system exhibits features that were once thought to

be peculiar to quantum mechanics, such as tunneling,

orbital quantization, and single-particle diffraction.

Experimental evidence generally indicates that these

quantum-like features become more pronounced as the

forcing acceleration is increased, when the droplet is

more strongly influenced by its wavefield. When sub-

jected to external forces, walking droplets may execute

stable circular orbits, provided the forcing acceleration is

sufficiently low. As the forcing is progressively increased,

these periodic orbits destabilize into wobbling orbits,

then aperiodic and eventually chaotic trajectories. We

here present the results of a theoretical exploration of

this transition to chaos for three different pilot-wave sys-

tems, specifically droplets walking in the presence of

Coriolis, linear spring, or Coulomb forces. Particular

attention is given to detailing the manner in which stable

circular orbits give way to chaotic motion as the forcing

acceleration is increased. Our theoretical results are

related to existing experiments whenever possible.

I. INTRODUCTION

A millimetric droplet can bounce in place indefinitely1

on the surface of an oscillating fluid bath with vertical accel-

eration c cos ð2pftÞ. Provided c < cF, where cF is the Faraday

instability2 threshold, the surface would remain flat in the

absence of the drop. When the bouncing drop becomes syn-

chronized with its wavefield, its bouncing period corre-

sponds to the Faraday period TF ¼ 2=f , and it is said to be

a resonant bouncer. Then, at each impact, it generates a

localized field of Faraday waves with characteristic wave-

length kF prescribed by the standard water-wave dispersion

relation.3 As the forcing amplitude is increased, the bouncing

state destabilizes into a walking state [Fig. 1(a)], as was

discovered a decade ago by Couder and collaborators.4,5

These self-propelling droplets, henceforth “walkers,” move

in response to the wave field generated by their prior impacts

and may exhibit behaviors reminiscent of quantum mechani-

cal systems, such as tunneling,6 single-particle diffraction,7,8

and wave-like statistics in circular corrals.9–11 This hydrody-

namic pilot-wave system and its relation to realist models of

quantum dynamics have been recently reviewed by

Bush.12,13

Orbital pilot-wave dynamics were first examined by

Fort et al.,14 who demonstrated experimentally the quantiza-

tion of orbital radii for walkers in a rotating frame [Fig. 1(b)],

and rationalized this quantization with accompanying simu-

lations. Owing to the identical forms of the Coriolis force

acting on a mass moving in a rotating frame and the Lorentz

force acting on a charge in a uniform magnetic field, the

authors drew the analogy between these quantized inertial

orbits and Landau levels in quantum mechanics. Harris and

Bush15 demonstrated experimentally that these quantized cir-

cular orbits can destabilize into wobbling and chaotic trajec-

tories, features captured in the theoretical models of Oza

FIG. 1. (a) Oblique view of a resonant walker.13 The solid line tracks the

center of the walking droplet. (b) Top view of a walking droplet orbiting on

a rotating bath,15 a system to be explored numerically in Section III.a)Electronic mail: bush@math.mit.edu

1054-1500/2016/26(10)/103107/10/$30.00 Published by AIP Publishing.26, 103107-1
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et al.16,17 Perrard et al.18 explored walkers in a harmonic

potential and reported a double quantization of orbital radius

and angular momentum, features also captured in their simula-

tions.19 In both of these orbital pilot-wave systems, the walker

dynamics becomes complex and presumably chaotic for suffi-

ciently high forcing acceleration c. Nevertheless, traces of the

unstable orbital solutions are evident in the emergent chaotic

trajectories, which exhibit multimodal quantum-like statistics.

The intriguing question raised by this hydrodynamic pilot-

wave system is whether some form of chaotic pilot-wave

dynamics might underlie the statistical behavior of micro-

scopic particles, as described by standard quantum theory.12,13

Mol�aček and Bush20,21 developed a theoretical descrip-

tion of the vertical and horizontal motion of the walking

drops. Oza et al.16 developed an integro-differential trajectory

equation for the horizontal motion by considering that the

vertical dynamics is fast relative to the horizontal dynamics.

The resulting trajectory equation, henceforth referred to as

the “stroboscopic model,” is able to capture the supercritical

pitchfork bifurcation from bouncing to walking, and the sta-

bility of straight-line walking along the direction of motion.

Refined models of the wavefield have recently been devel-

oped by Milewski et al.,22 Blanchette,23 and Si�efert et al.24 A

reduced dynamical model for the horizontal dynamics of a

constrained walker has been developed by Gilet10 and exam-

ined by Rahman and Blackmore,25 showing evidence of

chaos.

Oza et al.26 performed a linear stability analysis of

orbital solutions to the stroboscopic trajectory equation in a

rotating frame, predicting that all circular orbits are stable

for sufficiently low forcing acceleration but that orbits of

specific radii become unstable as the acceleration increases.

A similar approach was followed by Labousse and Perrard27

to examine orbital dynamics in a central harmonic potential.

Oza et al.17 numerically investigated the rich dynamical

behavior of walkers in a rotating frame and concluded that

for certain parameters the circular orbits may destabilize into

wobbling, drifting, and eventually chaotic orbits, as seen

experimentally.15 We here detail the manner in which stable

circular orbits, as arise in the presence of Coriolis, linear

spring or Coulomb forces, give way to chaotic trajectories as

the forcing acceleration is increased progressively.

In Section II, we review the stroboscopic model and

numerical method used to simulate the drop’s trajectories.

We present the evolution from circular orbits to chaotic tra-

jectories for drops subject to Coriolis (Section III), linear

spring (Section IV), and Coulomb (Section V) forces. In

Section VI, we discuss the two routes to chaos observed, spe-

cifically the classic period-doubling cascade for orbits in the

presence of Coriolis and Coulomb forces, and a path to chaos

reminiscent of the Ruelle-Takens-Newhouse scenario for

orbital dynamics in the presence of a linear spring force.

II. TRAJECTORY EQUATION AND NUMERICAL
METHOD

We first summarize the stroboscopic trajectory equation

of Oza et al.16 which forms the basis of our numerical inves-

tigation. We consider a resonant walker of mass m, bouncing

with frequency f=2 on a vertically vibrated fluid bath shaken

with forcing acceleration c cos ð2pftÞ and subjected to an

applied force F . We denote its horizontal position at time t
by xpðtÞ ¼ ðxpðtÞ; ypðtÞÞ. As shown by Mol�aček and Bush21

and Oza et al.,16 time-averaging the vertical dynamics leads

to the integro-differential equation for the horizontal motion

m€xp þ D _xp ¼ �mgrhðxpðtÞ; tÞ þF ; (1)

with the wavefield

h x; tð Þ ¼
A

TF

ðt

�1
J0 kFjx� xp sð Þj
� �

e� t�sð Þ=TM ds;

where g is the gravitational acceleration, TF ¼ 2=f is the

Faraday period, and kF ¼ 2p=kF is the wavenumber of the

most unstable Faraday wave. We assume that the fluid bath

consists of silicone oil with viscosity �¼ 20 cS, driven at

f¼ 80 Hz, and that the walker has radius RD ¼ 0:4 mm and

mass m ¼ 0:25 mg. For this particular case, the time-averaged

drag D ¼ 2:0 mg=s and the wave amplitude A ¼ 3:5 lm were

calculated from system parameters.16,21 We note that A
depends on the droplet’s bouncing phase U, chosen such that

sin U ¼ 0:2 to provide the best fit between predicted and

observed walking speeds.16

In addition to the applied force F , the walker experien-

ces a drag force opposing its motion and a propulsive force

proportional to the local slope of the interface. The wavefield

h is expressed as the sum of waves generated by all prior

droplet impacts. Contributions to the wavefield from previ-

ous impacts are exponentially damped over the memory

timescale TM ¼ Td=ð1� c=cFÞ, where Td is the wave decay

time in the absence of forcing.21,28 Note that the memory

time is a monotonically increasing function of the forcing

acceleration for c < cF, so we will use the terms memory

and vibrational forcing interchangeably in what follows.

We non-dimensionalize according to x̂ ! kFx; t̂ !
t=TM and F̂ ! kFTMF=D. Dropping carets yields the

dimensionless system

j€xp þ _xp ¼ �brhðxpðtÞ; tÞ þF ;

hðx; tÞ ¼
ðt

�1
J0ðjx� xpðsÞjÞe�ðt�sÞ ds; (2)

where j ¼ m=DTM and b ¼ mgAk2
FT2

M=DTF. This system is

solved numerically by a fourth-order Adams-Bashforth lin-

ear multistep method, the details of which are reported else-

where.17 We initialize the simulations in a circular orbit,

xpðtÞ ¼ r0ðcosðxtÞ; sinðxtÞÞ, where the orbital radius r0 and

angular frequency x are solutions of the algebraic equations

�jr0x
2 ¼ b

ð1
0

J1 2r0 sin
xz

2

� �
sin

xz

2
e�z dzþF � r̂ ;

r0x ¼ b
ð1

0

J1 2r0 sin
xz

2

� �
cos

xz

2
e�z dzþF � ĥ; (3)

where r̂ and ĥ are the unit vectors in the radial and tangential

directions, respectively. Eq. (3) guarantees that xpðtÞ ¼
r0ðcosðxtÞ; sinðxtÞÞ is an exact solution of Eq. (2), which is
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stable for sufficiently low forcing acceleration c=cF. After

initializing the simulation in a stable circular orbit, we

increase the forcing acceleration in increments of Dðc=cFÞ,
using the results from the previous simulation as the initial

data. In order to resolve the bifurcations, we adapt the step

value Dðc=cFÞ, decreasing it as c=cF increases. Each simula-

tion is run using a dimensionless time step Dt ¼ 2�6 and up

to a dimensionless time t ¼ 104 in order to integrate beyond

any transient behaviors.

III. CORIOLIS FORCE

We first consider the pilot-wave dynamics of a walking

droplet in a frame rotating with angular frequency X ¼ Xẑ.

The walker experiences a Coriolis force, F ¼ �2mX� _xp,

which assumes the dimensionless form F ¼ �X̂ � _xp,

where X̂ ¼ 2mX=D. It was demonstrated in prior experi-

ments14,15 that, in certain parameter regimes, the walkers

execute circular orbits in the rotating frame of reference,

xpðtÞ ¼ r0ðcos xt; sin xtÞ. Above a critical value of the forc-

ing acceleration, certain radii are forbidden; thus, the stable

orbits are quantized in radius, roughly separated by half-

integer multiples of the Faraday wavelength kF. The linear

stability of the system, as elucidated by Oza et al.,26 is sum-

marized in Fig. 2. Laboratory experiments15 and numerical

simulations17,29 revealed that, as the forcing acceleration is

progressively increased, the quantized circular orbits destabi-

lize into wobbling orbits, characterized by a periodic oscilla-

tion in the radius of curvature. As the memory is increased

further, wobbling orbits then destabilize into drifting orbits,

in which the orbital center drifts on a time scale that is long

relative to the orbital period. Above a critical value of mem-

ory, the orbital dynamics becomes chaotic. We here charac-

terize the progression from wobbling to drifting to chaotic

dynamics as the memory is increased progressively.

Since the applied force is the Coriolis force, the circular

orbits are not necessarily centered at the origin, so we cannot

characterize the orbits simply by the radius rðtÞ ¼ jxpj. We

instead use the radius of curvature RðtÞ ¼ j _xpj3=j _xp � €xpj.
Fig. 3 shows the trajectories obtained by numerically inte-

grating Eq. (2) for a fixed dimensionless rotation rate X̂ ¼
0:6 and progressively increasing memory. The resulting path

through parameter space is indicated by the white curve in

Fig. 2. In this parameter regime, the circular orbits have

radius r0 � 0:8kF and period T � 6TM. The linear stability

analysis26 of these orbits (see Fig. 2) indicates that they are

stable for c=cF < 0:951.

For c=cF � 0:951, the circular orbit destabilizes into a

wobbling orbit with an oscillatory radius of curvature R(t),
as shown in Fig. 3(a). The frequency spectrum of R(t) shows

a single peak at the wobbling frequency xwobble � 2x. As

the memory is increased, the wobbling orbits destabilize into

drifting orbits, where the radius of curvature R(t) evidently

undergoes a period-doubling bifurcation. These drifting

orbits consist of roughly circular loops of radius Oðr0Þ and

orbital period T � 2p=x that slowly drift, such as those

highlighted in red in the first column of Figs. 3(b)–3(e).

Since the drifting is slow relative to T, we can define the

orbital center for any loop

xc tð Þ � 1

T

ðtþT

t

xp sð Þ ds; (4)

where T corresponds to the strongest peak in the power spec-

trum of xpðtÞ.
The orbital center for drifting orbits traces a circle on a

timescale long relative to the orbital period (tdrift � 100T).

Fig. 3(c) shows a period-4 drifting orbit at a still higher value

of memory, which is confirmed by the presence of additional

frequencies and their integer linear combinations in the

frequency spectrum of R(t). As the memory is increased pro-

gressively, the trajectories undergo a period-doubling cas-

cade and eventually become chaotic, as suggested by the

broadband frequency spectrum of R(t) evident in Fig. 3(d).

As one might expect, the trajectory of the orbital center xcðtÞ
is aperiodic for chaotic orbits.

Within the regime of chaotic trajectories, c=cF � 0:95994,

we observe a periodic window consisting of period-10 orbits,

an example of which is shown in Fig. 3(e). The period-

doubling cascade observed along the white path shown in

Figure 2 is analogous to that seen in 1-dimensional unimodal

maps. As the forcing acceleration is increased beyond the white

curve, our system departs from the behavior of unimodal maps.

In particular, we do not observe period-3 or period-5 windows

for the parameters explored herein, but instead observe exotic

orbits. An extensive numerical study of these exotic orbits in

the case of a rotating frame is presented in Ref. 17.

The period-doubling cascade may be seen more clearly

in the bifurcation diagram shown in Fig. 4. The points shown

FIG. 2. Linear stability diagram26 of orbital solutions of radius r0 arising in

the presence of a Coriolis force F ¼ �2mX� _xp. c is the driving accelera-

tion, cF is the Faraday threshold, and kF is the Faraday wavelength. The

droplet’s radius is RD ¼ 0:4 mm, impact phase sin U ¼ 0:2, viscosity �¼ 20

cS, and forcing frequency 80 Hz. Blue regions indicate stable circular orbits.

Green regions correspond to circular orbits that destabilize via an oscillatory

instability. Red regions correspond to orbits that destabilize via a nonoscilla-

tory instability. The transition to chaos is found by starting with an initially

stable solution ðr0;x;XÞ to Eq. (3) and increasing the dimensionless forcing

acceleration c=cF progressively while keeping X constant, following the pro-

cedure described in Section II. The white curve indicates the path through

parameter space for the results shown in Section III. The transition to chaos

through a period-doubling cascade appears to be generic in this system; spe-

cifically, it arises in passing from blue to green regions with increasing

memory.
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correspond to local maxima Rm > r0 in the radius of curva-

ture R(t), corresponding to the circles in the plots of R(t)
(middle column of Fig. 3). We note that the trajectory has

secondary local maxima that are present throughout the

period-doubling cascade and do not seem to affect it.

Similar period-doubling cascades were observed for paths

crossing from blue to green regions with increasing memory

for other values of X̂ and larger values of the initial orbital

radius r0.

We now provide a qualitative explanation for why the

period-doubling bifurcation coincides with the transition from

wobbling to drifting orbits. Consider a simple model for a

wobbling orbit, xpðtÞ ¼ r0ð1þ a0 cos axtÞðcos xt; sin xtÞ,
where a0 is the wobbling amplitude and ax is the wobbling

frequency. Our linear stability analysis26 has shown that cir-

cular orbits destabilize into wobbling orbits via a Hopf bifur-

cation as the memory is progressively increased and that the

most unstable eigenvalues have imaginary part 6ax with

a � 2. The linear theory only provides an estimate for the

wobbling frequency near the onset of wobbling, but the

numerical simulations in Fig. 3(a) confirm that the wobbling

frequency is indeed approximately 2x.

A simple model for a period-doubled orbit is thus

given by

FIG. 3. Numerical solutions to the tra-

jectory equation (Eq. (2)) with a

Coriolis force F ¼ �X̂ � _xp, which

describes pilot-wave dynamics in a

rotating frame with dimensionless

angular frequency X̂ ¼ 0:6. The first

column shows the simulated trajecto-

ries xpðtÞ plotted over 100 orbital peri-

ods T (blue), with the last 10 orbital

periods (red) and the orbital center

xcðtÞ (black) superimposed. The sec-

ond column shows the radius of curva-

ture R(t), with the local maxima

greater than r0 indicated by the red

circles. The third column shows the

frequency spectrum of R(t). The rows

correspond to (a) a wobbling orbit

(c=cF ¼ 0:957), (b) a period-2 drifting

orbit (c=cF ¼ 0:959), (c) a period-4

drifting orbit (c=cF ¼ 0:9595), (d) a

chaotic trajectory (c=cF ¼ 0:96004),

and (e) a period-10 orbit (c=cF

¼ 0:960066) in a periodic window

within the chaotic regime.
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xpðtÞ ¼ r0½1þ a0 cosðaxtÞ
þ a1 cosðaxt=2Þ	ðcos xt; sin xtÞ; (5)

where a0 is the wobbling amplitude and a1 is the amplitude

of the new period-doubled frequency. Note that, because a is

close to 2; xpðtÞ will consist of loops that do not close.

Plugging the expression for xpðtÞ into Eq. (4) yields an

expression for the orbital center of the trajectory

xc tð Þ ¼ r0

2

X1

i¼0

X1

j¼0

ai

sin pbij

pbij

cos bijH tð Þ
� �

; sin bijH tð Þ
� �� �

;

(6)

where HðtÞ ¼ xtþ p and bij ¼ a=2i þ ð�1Þj. Because

a � 2; b00 � 3; b10 � 2; b01 � 1, and b11 � 0. Hence, the

coefficients sinðpbijÞ=pbij in Eq. (6) all nearly vanish, except

for that corresponding to b11, which leads to

xc tð Þ � � 1

2
a1r0 cos b11 xtþ pð Þ½ 	; sin b11 xtþ pð Þ½ 	ð Þ: (7)

This formula shows that the orbital center approximately

traces out a circle of radius proportional to a1 (the period-

doubled amplitude), whose period 2p=ðb11 xÞ is necessarily

long relative to the orbital period T. In order for this argu-

ment to hold, the following conditions must be met.

Criterion 1: a must be close to but not exactly equal to 2.

Criterion 2: A period-doubling bifurcation must happen

after the wobbling state emerges.

This argument provides a new rationale for the onset of

period-doubling coinciding with the onset of drifting, a fea-

ture highlighted in previous experiments15 and simulations.17

IV. SIMPLE HARMONIC POTENTIAL

We next consider the pilot-wave dynamics of a droplet

walking in a harmonic potential. In this scenario, the walker

is subjected to a radial spring force, F ¼ �kxp. This system

was realized experimentally by Perrard et al.18,30 by encap-

sulating a small amount of ferromagnetic fluid in a walking

droplet and exposing this compound droplet to a radially

non-uniform vertical magnetic field. They demonstrated that,

as the forcing amplitude is increased progressively, quan-

tized circular orbits emerge, followed by more complex peri-

odic and aperiodic trajectories. A key observation was the

emergence of orbits that were quantized in both mean radius

and angular momentum, a quantum-like feature also cap-

tured in their simulations. They also noted that in certain

parameter regimes, an intermittent switching between the

quantized periodic states could be observed.

We here confine our attention to the stability of the

quantized circular orbits. As in Section III, we examine the

transition from a stable circular orbit to a chaotic wobbling

orbit as the forcing acceleration is increased. We proceed to

demonstrate that the transition to chaos is qualitatively dif-

ferent. We characterize the orbits in terms of their local

FIG. 4. Bifurcation diagrams showing the transition to chaos for a walker in

a rotating frame with dimensionless angular frequency X̂ ¼ 0:6. For each

value of the dimensionless forcing acceleration c=cF, the points correspond

to local maxima Rm in the radius of curvature R(t). Panel (b) shows a magni-

fied view illustrating the period-doubling cascade for c=cF > 0:9594. The

color-coded vertical lines correspond to the trajectories shown in Fig. 3.

The dimensionless forcing acceleration is changed in increments of

Dðc=cFÞ ¼ 10�3 for c=cF 2 ½0:950; 0:956	; Dðc=cFÞ ¼ 10�4 for c=cF 2
½0:9561; 0:9594	; Dðc=cFÞ ¼ 10�5 for c=cF 2 ½0:95941; 0:95980	, and

Dðc=cFÞ ¼ 10�6 for c=cF 2 ½0:959801; 0:960099	.

FIG. 5. Linear stability diagram26 of orbital solutions of radius r0 arising in

the presence of a linear spring force F ¼ �kxp. c=cF is the dimensionless

driving acceleration, and kF is the Faraday wavelength. The drop’s radius is

RD ¼ 0:4 mm, impact phase sin U ¼ 0:2, viscosity �¼ 20 cS, and forcing

frequency 80 Hz. Blue regions indicate stable circular orbits. Green regions

correspond to circular orbits that destabilize via an oscillatory instability.

Red regions correspond to orbits that destabilize via a nonoscillatory insta-

bility. The white curve indicates the path through parameter space for the

results shown in Section IV. The transition to chaos is generic in this system;

specifically, it arises in passing from blue to green regions with increasing

memory.
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radius rðtÞ ¼ jxpðtÞj, the distance to the center of the fixed har-

monic potential, as well as the associated frequency spectrum.

The dimensional spring constant is here fixed to be

k ¼ 3:2 lN/m which results in circular orbital solutions of

radius r0 � 0:8kF for our choice of system parameters. For

c=cF < 0:948, these circular orbits are stable, in accordance

with the linear stability analysis19 summarized in Fig. 5. For

c=cF � 0:948, the circular orbit destabilizes into a wobbling

orbit (Fig. 6(a)) whose radius oscillates with a single well-

defined frequency f1 that is approximately twice the orbital

frequency x=2p. When the forcing acceleration is increased

to c=cF ¼ 0:9482, a second independent frequency f2 appears

in the wobbling spectrum as shown in Fig. 6(b). Note that

the additional peaks apparent in the spectrum of r(t) corre-

spond to integer linear combinations of the two base frequen-

cies f1 and f2. As the forcing acceleration is increased

further, the ratio of these frequencies changes continuously

until they lock onto a fixed integer ratio at c=cF ¼ 0:9495

(Fig. 6(c)). For the simulations at higher memory, f2 remains

locked with f1 in a ratio f2=f1 ¼ 1=4. When the forcing accel-

eration reaches c=cF ¼ 0:9610, an additional incommensu-

rate frequency f3 (along with its integer linear combinations

with f1 and f2) appears as shown in Fig. 6(d). Shortly after

the appearance of this new frequency, for c=cF � 0:9613, the

spectrum begins to show evidence of broadband noise and

the trajectory becomes chaotic, as shown in Fig. 6(e).

Similar transitions to chaos were observed in other tongues

for paths crossing from blue to green regions with increasing

memory. We note that evidence of this particular route to

chaos has also been observed in experiments.31

In summary, we observe a transition from a base

state (circular orbit), to a single-frequency state (W1), to a

FIG. 6. Numerical solutions to the tra-

jectory equation (Eq. (2)) with a spring

force F ¼ �kxp and a fixed dimen-

sional spring constant k ¼ 3:2 l N/m

which describes pilot-wave dynamics in

a harmonic potential. The first column

shows the simulated trajectories xpðtÞ
plotted over many orbital periods (blue)

along with the last few orbital periods

(red). The second column shows the

orbital radius rðtÞ ¼ jxpðtÞj. The third

column shows the frequency spectrum

of r(t). The rows correspond to (a) a

wobbling orbit (c=cF ¼ 0:9573), (b) a

quasiperiodic wobbling orbit (c=cF

¼ 0:9583), (c) a frequency-locked wob-

bling orbit (c=cF ¼ 0:9600), (d) a

frequency-locked wobbling orbit with

an additional incommensurate fre-

quency (c=cF ¼ 0:9610), and (e) a cha-

otic trajectory (c=cF ¼ 0:9613).
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two-frequency quasiperiodic state (W2), to a two-frequency

frequency-locked state (W2*). Thereafter, a state with an

additional incommensurate frequency emerges (W3), fol-

lowed by a chaotic orbital state (C). This evolution can be

summarized by the emergence of independent peaks in the

frequency spectrum of r(t) as shown in Fig. 7. This transition

from a stable circular orbit to a chaotic wobbling orbit is

notably different from the classic period-doubling transition

but instead appears similar to the Ruelle-Takens-Newhouse

route to chaos.32,33 In the Ruelle-Takens-Newhouse scenario,

a finite sequence of bifurcations gives rise to additional fre-

quencies in the spectrum and after three such bifurcations, it

is likely (but not guaranteed) that a strange attractor appears

in phase space.34

V. 2D COULOMB POTENTIAL

Finally, we consider a walking droplet subject to a two-

dimensional radial Coulomb force F ¼ �Qxp=jxpj2. Such a

force would correspond to a walking droplet with electric

charge q attracted to an infinite line charge with charge density

K placed at the origin normal to the fluid bath where Q ¼
qK=2p�0 (with electric constant �0 ¼ 8:8� 10�12 F/m). In the

dimensionless form,F ¼ �Q̂xp=jxpj2, where Q̂ ¼ Qk2
FTM=D.

Although this system has yet to be realized experimentally, we

can investigate it numerically using the integro-differential

equation (2), which has been validated against experiments for

walkers in Coriolis 15 and central harmonic18 forces.

Note that circular orbits xpðtÞ ¼ r0ðcos xt; sin xtÞ, with

radius r0 and orbital frequency x, are exact solutions of Eq.

(3) with an external Coulomb force F . We assess linear sta-

bility of these solutions by a procedure analogous to that

used by Oza et al.26 and summarize our results in Fig. 8.

Orbits with radii 0:3 < r0=kF < 0:5 are predicted to be stable

provided c=cF < 0:915. Thus, we initialize the simulation

with c=cF ¼ 0:91 and a fixed charge parameter Q¼ 0.35 nJ

that corresponds to a stable circular orbit of radius

r0 ¼ 0:385kF. We evolve the system as described in Section

II with an initial increment of Dðc=cFÞ ¼ 10�3.

As indicated by the linear stability analysis (Fig. 8), the

circular orbit becomes unstable to a wobbling orbit at

c=cF � 0:920. An example of a wobbling orbit is shown in

the first panel of Fig. 9(a) for c=cF ¼ 0:9375. We use the fact

that the system has an imposed center to characterize the tra-

jectory by its radius rðtÞ ¼ jxpðtÞj, plotted in the second

panel of Fig. 9(a), which exhibits a periodic oscillation

between two values. The frequency spectrum of r(t), shown

in the third panel of Fig. 9(a), indicates that the wobbling fre-

quency is xwobble � 0:65x. Since xwobble=x is not close to 2

(criterion 1), this system does not exhibit drifting orbits.

As the memory is further increased, the frequency spec-

tra shown in the last column of Fig. 9 exhibit evidence of

successive period-doubling bifurcations: half-frequencies

xwobble=2 emerge at c=cF � 0:9394, quarter-frequencies at

c=cF � 0:94141, and eventually a broadband frequency

spectrum at c=cF � 0:941791, evidence of chaotic dynamics.

We also see a period-20 orbit when c=cF � 0:941815 (Fig.

9(e)), an example of a periodic window within the chaotic

regime. The period-doubling cascade is more clearly evident

in Fig. 10, where we plot the local maxima rm of the radius

r(t) as a function of the forcing acceleration c=cF.

Unlike those arising in the presence of a Coriolis force

or a simple harmonic potential, the transition to chaos was

specific to the leftmost green tongue (Fig. 8), where it was

observed for different initial radii 0:3 < r0=kF < 0:5 and

corresponding Q. Chaotic orbits have not been observed

in other isolated regions of oscillatory instability, where

FIG. 7. Diagram detailing the evolution with memory of the independent

peak frequencies in the spectrum of r(t) arising during the transition to chaos

in a harmonic potential with dimensional spring constant k ¼ 3:2 l N/m.

Panel (a) tracks the principal wobbling frequency f1, which first appears

when the circular orbit becomes unstable. As the forcing acceleration is

increased further, a second independent frequency f2 appears, which later

becomes locked with f1 at f2=f1 ¼ 1=4, as shown in panel (b). At higher

accelerations, a third independent frequency f3 appears that precedes the

transition to a broadband spectrum in the chaotic regime, as shown in panel

(c). We label W1 the single-frequency state, W2 the two-frequency quasipe-

riodic state, W2* the two-frequency frequency-locked state, W3 the state

with a third incommensurate frequency, and C the chaotic orbital state.

The dimensionless forcing acceleration is changed in increments of

Dðc=cFÞ ¼ 10�3 for c=cF 2 ½0:945; 0:956	 and Dðc=cFÞ ¼ 10�4 for c=cF

2 ½0:9560; 0:9614	.

FIG. 8. Linear stability diagram of orbital solutions of radius r0 arising in

the presence of a 2D Coulomb force F ¼ �Qxp=jxpj2. c=cF is the dimen-

sionless driving acceleration and kF is the Faraday wavelength. Blue regions

indicate stable circular orbits. Green regions correspond to circular orbits

that destabilize via an oscillatory instability. Red regions correspond to

orbits that destabilize via a nonoscillatory instability. The transition to chaos

is tracked along the white curve by finding an initial stable solution

ðr0;x;QÞ to Eq. (3) and increasing the dimensionless forcing acceleration

c=cF progressively while keeping Q constant.
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unstable orbits tend to spiral into the center or away to infin-

ity instead of undergoing a period-doubling cascade.

VI. CONCLUSIONS

We have characterized the transition from stable circular

orbits to chaos in three pilot-wave systems as the forcing

acceleration is increased progressively. Walking droplets

subject to Coriolis (Section III) and Coulomb (Section V)

forces follow a period-doubling route to chaos, whereby cir-

cular orbits are destabilized into wobbling trajectories of

increasing complexity. The main difference between these

two scenarios, arising from the fact that the rotating system

does not have a fixed center of force, is the existence of drift-

ing orbits in the rotating frame. These orbits emerge when a

wobbling orbit of frequency approximately twice the orbital

frequency undergoes a period-doubling bifurcation. The

rotating system is thus seen to support stable nonlinear states

characterized by a drifting self-orbiting motion, which are

related to the hydrodynamic spin states discussed in Refs.

12, 26, and 35.

The case of a walking droplet in a simple harmonic poten-

tial (Section IV) exhibits an entirely different transition to

chaos. The circular orbits destabilize into wobbling orbits, but

successive bifurcations lead to the appearance of new indepen-

dent frequencies in the power spectrum of the orbital radius.

These independent frequencies eventually lock; subsequently,

just before the chaotic regime, we see the emergence of an

additional incommensurate frequency. The observed transition

is similar to the Ruelle-Takens-Newhouse route to chaos, as

has been observed previously in other fluid systems, including

Rayleigh-Bernard convection36 and Taylor-Couette flow,37 as

well as in simulations of converging-diverging channel flows.38

As noted in the experimental realizations of walking

droplets subject to Coriolis15 and central18 forces, increasing

FIG. 9. Numerical simulations of Eq. (2)

with F ¼ �Qxp=jxpj2, which describes

the pilot-wave dynamics of a walking

droplet subject to a two-dimensional

Coulomb force. The first column shows

the trajectory xpðtÞ ¼ ðxpðtÞ; ypðtÞÞ with

the long term trajectory shown in blue,

and the last few orbits colored red. The

radius of the orbit rðtÞ ¼ jxpðtÞj is plot-

ted in the middle column with local

maxima rm indicated by red circles. The

third column shows the frequency spec-

trum of r(t). The memory parameter is

progressively increased from panels (a)

through (e) with rows corresponding to:

(a) a wobbling orbit (c=cF ¼ 0:9375),

(b) a period-2 wobbling orbit (c=cF ¼
0:9394), (c) a period-4 wobbling orbit

(c=cF ¼ 0:94141), (d) a chaotic trajec-

tory (c=cF ¼ 0:941791), and (e) a

period-20 orbit (c=cF ¼ 0:941815) in a

periodic window within the chaotic

regime.
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the forcing acceleration has the effect of destabilizing circular

orbits. The evolution from stable circular orbits to chaotic tra-

jectories occurs over a small range Dðc=cFÞ � 10�4; thus,

resolving this transition requires extremely precise experi-

ments. In our numerical investigation, we were able to capture

the details of each bifurcation and explore the transition to

chaos by finely adjusting our memory parameter. For Coulomb

and Coriolis forces, we note that the forcing acceleration was

increased by increments as small as Dðc=cFÞ ¼ 10�6, which

allowed us to capture period-16 and period-32 orbits within

exceedingly narrow parameter windows. Such an exploration is

not possible with current experimental capabilities.39

Relating the periodic and quasiperiodic trajectories

observed at low memory to the multimodal statistical behav-

ior of chaotic trajectories in the high-memory limit is the

subject of ongoing research. Establishing a quantitative link

between the unstable periodic orbits and the emergent statis-

tical behavior in the high-memory limit is an objective remi-

niscent of that of Gutzwiller, who related classical periodic

orbits with solutions of the time-independent Schr€odinger

equation.40 It is hoped that this paper, the first theoretical

investigation of routes to chaos in a pilot-wave system, will

attract the attention of the dynamical systems community to

a remarkably rich new class of problems.
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“Orbiting pairs of walking droplets,” (submitted).
25A. Rahman and D. Blackmore, “Neimark-Sacker bifurcations and evi-

dence of chaos in a discrete dynamical model of walkers,” Chaos, Solitons

Fractals 91, 339–349 (2016).
26A. U. Oza, D. M. Harris, R. R. Rosales, and J. W. M. Bush, “Pilot-wave

dynamics in a rotating frame: On the emergence of orbital quantization,”

J. Fluid Mech. 744, 404–429 (2014).

FIG. 10. Bifurcation diagrams showing the route to chaos for a walking

droplet subject to a two-dimensional Coulomb force with charge parameter

Q¼ 0.35 nJ. We track the local maxima rm of the orbital radius rðtÞ ¼ jxpj
as a function of the non-dimensional forcing acceleration c=cF. Panel (b)

gives a magnified view of the upper right corner (delineated by the blue box)

of panel (a), showing the details of the period-doubling cascade immediately

preceding the transition to chaos. Color-coded vertical lines correspond to

the trajectories depicted in Fig. 9. The dimensionless forcing acceleration is

changed in increments of Dðc=cFÞ ¼ 10�3 for c=cF 2 ½0:910; 0:936	;
Dðc=cFÞ ¼ 10�4 for c=cF 2 ½0:9361; 0:9413	; Dðc=cFÞ ¼ 10�5 for c=cF

2 ½0:94131; 0:94161	, and Dðc=cFÞ ¼ 10�6 for c=cF 2 ½0:941611; 0:941900	.

103107-9 Tambasco et al. Chaos 26, 103107 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  74.75.223.43 On: Sat, 15 Oct 2016

13:24:42

http://dx.doi.org/10.1038/scientificamerican0678-151
http://dx.doi.org/10.1098/rspa.1954.0218
http://dx.doi.org/10.1098/rspa.1996.0056
http://dx.doi.org/10.1098/rspa.1996.0056
http://dx.doi.org/10.1038/437208a
http://dx.doi.org/10.1017/S0022112006009190
http://dx.doi.org/10.1103/PhysRevLett.102.240401
http://dx.doi.org/10.1103/PhysRevLett.97.154101
http://dx.doi.org/10.1103/PhysRevE.92.013006
http://dx.doi.org/10.1103/PhysRevE.88.011001
http://dx.doi.org/10.1103/PhysRevE.88.011001
http://dx.doi.org/10.1103/PhysRevE.90.052917
http://dx.doi.org/10.1103/PhysRevE.93.042202
http://dx.doi.org/10.1063/PT.3.2882
http://dx.doi.org/10.1073/pnas.1007386107
http://dx.doi.org/10.1017/jfm.2013.627
http://dx.doi.org/10.1017/jfm.2013.581
http://dx.doi.org/10.1063/1.4891568
http://dx.doi.org/10.1038/ncomms4219
http://dx.doi.org/10.1038/ncomms4219
http://dx.doi.org/10.1103/PhysRevE.93.033122
http://dx.doi.org/10.1017/jfm.2013.279
http://dx.doi.org/10.1017/jfm.2013.280
http://dx.doi.org/10.1017/jfm.2015.386
http://dx.doi.org/10.1063/1.4942446
http://dx.doi.org/10.1016/j.chaos.2016.06.016
http://dx.doi.org/10.1016/j.chaos.2016.06.016
http://dx.doi.org/10.1017/jfm.2014.50


27M. Labousse and S. Perrard, “Non-Hamiltonian features of a classical

pilot-wave dynamics,” Phys. Rev. E 90, 022913 (2014).
28A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder,

“Information stored in Faraday waves: The origin of path memory,”

J. Fluid Mech. 675, 433–463 (2011).
29D. M. Harris, “The pilot-wave dynamics of walking droplets in con-

finement,” Ph.D. thesis, Massachusetts Institute of Technology,

Department of Mathematics, 2015.
30S. Perrard, M. Labousse, E. Fort, and Y. Couder, “Chaos driven by inter-

fering memory,” Phys. Rev. Lett. 113, 104101 (2014).
31S. Perrard, “A wave-mediated memory: Eigenstates, chaos and proba-

bilities,” Ph.D. thesis, Universit�e Paris Diderot, 2014.
32D. Ruelle and F. Takens, “On the nature of turbulence,” Commun. Math.

Phys. 20, 167–192 (1971).
33S. Newhouse, D. Ruelle, and F. Takens, “Occurrence of strange axiom A

attractors near quasi periodic flows on Tm; m � 3,” Commun. Math. Phys.

64, 35–40 (1978).

34J.-P. Eckmann, “Roads to turbulence in dissipative dynamical systems,”

Rev. Mod. Phys. 53, 643 (1981).
35M. Labousse, “Etude d’une dynamique �a m�emoire de chemin: une exp�eri-

mentation th�eorique,” Ph.D. thesis, Universit�e Pierre et Marie Curie-Paris

VI, 2014.
36J. Gollub and S. Benson, “Many routes to turbulent convection,” J. Fluid

Mech. 100, 449–470 (1980).
37J. P. Gollub and H. L. Swinney, “Onset of turbulence in a rotating fluid,”

Phys. Rev. Lett. 35, 927 (1975).
38A. Guzm�an and C. Amon, “Transition to chaos in converging–diverging

channel flows: Ruelle–Takens–Newhouse scenario,” Phys. Fluids 6,

1994–2002 (1994).
39D. M. Harris and J. W. Bush, “Generating uniaxial vibration with an elec-

trodynamic shaker and external air bearing,” J. Sound Vib. 334, 255–269

(2015).
40M. C. Gutzwiller, “Periodic orbits and classical quantization conditions,”

J. Math. Phys. 12, 343–358 (1971).

103107-10 Tambasco et al. Chaos 26, 103107 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  74.75.223.43 On: Sat, 15 Oct 2016

13:24:42

http://dx.doi.org/10.1103/PhysRevE.90.022913
http://dx.doi.org/10.1017/S0022112011000176
http://dx.doi.org/10.1103/PhysRevLett.113.104101
http://dx.doi.org/10.1007/BF01646553
http://dx.doi.org/10.1007/BF01646553
http://dx.doi.org/10.1007/BF01940759
http://dx.doi.org/10.1103/RevModPhys.53.643
http://dx.doi.org/10.1017/S0022112080001243
http://dx.doi.org/10.1017/S0022112080001243
http://dx.doi.org/10.1103/PhysRevLett.35.927
http://dx.doi.org/10.1063/1.868206
http://dx.doi.org/10.1016/j.jsv.2014.09.015
http://dx.doi.org/10.1063/1.1665596

