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unstable to Faraday waves. Couder et al. (2005) and Protière 
et al. (2006) discovered that in certain experimental regimes, 
the droplets may self-propel along the surface of the bath due 
to interactions with their own wave fields. These walking 
droplets, henceforth walkers, are spatially extended objects 
that exhibit several phenomena reminiscent of quantum sys-
tems (Couder and Fort 2006; Eddi et al. 2009, 2011; Bush 
2010, 2015a, b; Fort et al. 2010; Harris et al. 2013; Perrard 
et al. 2014a, b; Oza et al. 2014; Harris and Bush 2014).

While the droplet, of typical radius 0.4 mm, is read-
ily discerned by eye, the waves excited by the droplet, 
of typical amplitude of 1–20 μm, are relatively diffi-
cult to observe and quantify. Various theoretical models 
have been developed to describe the waves created by a 
bouncing droplet (Eddi et al. 2011; Molácek and Bush 
2013a, b; Oza et al. 2013; Labousse 2014; Milewski 
et al. 2015; Gilet 2016; Blanchette 2016), on the basis 
of which much headway has been made in rationalizing 
the behavior of the walkers in a variety of settings [see 
Bush (2015a, b) for reviews]. Nevertheless, theoretical 
developments would benefit from quantitative measure-
ments of the wave field. In particular, walker-boundary 
interactions as arise in a number of key quantum ana-
logues (Couder and Fort 2006; Eddi et al. 2009; Harris 
et al. 2013; Harris 2015) remain poorly characterized 
and understood. Specifically, some theoretical models 
of walkers near boundaries apply a zero-wave-amplitude 
boundary condition (Gilet 2016; Blanchette 2016) while 
others apply a zero slope boundary condition (Duber-
trand et al. 2016).

We here report the results of an experimental effort to 
measure the surface topography in the walking drop system 
using the surface synthetic Schlieren technique originally 
developed by Moisy et al. (2009), as was applied by Eddi 
et al. (2009, 2011). Specifically, we utilize the refracted 

Abstract A free-surface synthetic Schlieren (Moisy et al. 
in Exp Fluids 46:1021–1036, 2009; Eddi et al. in J Fluid 
Mech 674:433–463, 2011) technique has been implemented 
in order to measure the surface topography generated by a 
droplet bouncing on a vibrating fluid bath. This method 
was used to capture the wave fields of bouncers, walkers, 
and walkers interacting with boundaries. These wave pro-
files are compared with existing theoretical models and 
simulations and will prove valuable in guiding their future 
development. Specifically, the method provides insight into 
what type of boundary conditions apply to the wave field 
when a bouncing droplet approaches a submerged obstacle.

1 Introduction

A millimetric drop placed onto a vibrating liquid bath can 
bounce indefinitely on the fluid surface due to a thin film of 
air that prevents coalescence and is replenished with each 
bounce (Walker 1978; Couder et al. 2005; Terwagne et al. 
2007; Vandewalle et al. 2006). The drop dynamics depends 
critically on the forcing acceleration of the bath γ relative 
to the critical threshold γF, at which the interface becomes 
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image of a random dot pattern visualized through the inter-
face to quantify the micrometric scale waves at the surface 
of the bath and adjoining its boundaries.

2  Experimental methods

The experiment consists of a bath of ν = 20 cSt silicon oil 
vibrated sinusoidally at ω0 = 80 Hz with a peak accelera-
tion γ (see Fig. 1). The apparatus is detailed in Harris and 
Bush (2015). The oil layer is typically 10–15 mm deep. 
Droplets are generated using piezoelectric actuation (Har-
ris et al. 2015) and are 0.38 mm in radius. Unless other-
wise specified, the range of accelerations γ used in experi-
ments is such that the drop exhibits a period-doubled mode: 
Its impact phase relative to the vibrating bath may thus 
lie anywhere in the range 0°–720°. The experiments were 
recorded from above at 16 fps using a CCD camera (Manta 
G-125) placed at a height of H = 1.1 m from the bath that 
resolved an area of 55 × 74 mm and 964 × 1292 pixels. 
The same computer that drives the vibration of the bath 
was used to trigger the camera capture so that images at 
any phase of the driving cycle may be obtained.

The methodology employed to measure the waves in 
the system is the free-surface synthetic Schlieren (FSSS) 
method developed by Moisy et al. (2009). FSSS relies on 
the refraction of light and the apparent displacement of a 
random dot background image to infer the local slope of 
the fluid interface (Fig. 2). In our case, the background 
image was inserted beneath the 6.35-mm thick acrylic base 
plate of the bath (Fig. 1).

We denote by h(x, y, t) the height of fluid in the system. 
Given a reference image of the dot pattern obtained when 

the bath is quiescent and the depth constant, h = h0, and an 
image of the dot pattern when the surface has waves, digital 
image correlation is used to calculate the field displacement 
vectors, u (see Fig. 2b, c). These vectors are related to the gra-
dient field, ∇h, of the interface. The inverse gradient of this 
field is used to reconstruct the surface height in the system via

where n denotes the optical index of each phase. The sur-
face cannot be resolved directly beneath the droplet, owing 
to its projected shadow. However, all conditions required 
for the validity of the FSSS method (Moisy et al. 2009) are 
satisfied by our system. Specifically, the distance from the 
camera to the background image, H = 1.1 m, is much larger 
that the field of view, of typical width 74 mm, thereby 
ensuring that the paraxial approximation is satisfied. The 
wave slope φ may be approximated as the ratio of the wave 
amplitude A and wavelength �. In our system, A < 25 μm 
and � = 4.75mm yielding φ ≃ A/� ≪ 1, so the weak-slope 
approximation required for the FSSS is satisfied (Moisy 
et al. 2009). Finally, the small-amplitude approximation is 
satisfied as deformations of the interface are of the order of 
microns while the fluid depth h0 ≈ 10 mm.

As the FSSS method resolves the fluid interface height 
based on small distortions of the background image, spuri-
ous inferred wave fields may be produced by small relative 
motions between the camera and the background image, as 
may originate, for example, as a result of vibrations asso-
ciated with the camera ventilation system. In the present 
study, three filters are applied to the raw data in order to 
solve the aforementioned problem. Those filters are applied 
in the following order.

(1)h(x, y) = h0 −
∇−1u

h0(1− nair/noil)
,

Fig. 1  Layout of our experimental setup (Harris and Bush 2015) 
comprising an electromagnetic shaker (1) interfaced to the bath via a 
rod (2) and a linear air bearing (3). The air bearing carriage is fixed to 
an optical table (4) via a leveled platform (5). The bath acceleration is 
monitored via two accelerometers (6) and is surmounted by a lid (7). 
The bath (8) comprises a pattern printed on paper inserted below a 
transparent lower plate so that the pattern may be used as an imaging 
background
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Fig. 2  The FSSS method (Moisy et al. 2009): a A sloped inter-
face causes an apparent displacement of the points on a background 
image, u(x, y). The refraction angle is denoted by ψ and the interface 
slope by φ. The background image is a random dot pattern (b) and the 
apparent displacement of the pattern creates a gradient field (c) that is 
used to reconstruct the surface topography (d)
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(a) Horizontal surface filtering Excluding waves excited 
by the droplet, the fluid surface remains horizontal since 
experiments are conducted below the Faraday threshold 
(Faraday 1831), γ < γF. However, ambient vibrations 
of the system contribute a mean translation to the gradi-
ent field, which results in a sloped fluid interface after 
surface height reconstruction. This spurious inference is 
filtered by removing any mean translation from the raw 
vector field, u∗, before computing the inverse gradient via 
u = u∗ −<u∗>. The final filtering is performed by sub-
tracting the plane of best fit from the resulting wave field 
(see Supplementary Information for examples of the effect 
of this filtering step on raw data).

(b) Rotation filtering Similarly, vibrations also create 
small rotations between the camera and the background 
image, resulting in a spurious solid body rotation added to 
the gradient vector field. This rotation is likewise filtered 
by computing and subtracting out the mean solid body rota-
tion from the gradient field. Setting the center of the field 
as the origin of a polar coordinate system, we denote each 
vector in the gradient field as ui(r), where r is the distance 
from the origin. The angular rotation about the center of 
each vector is evaluated as

where eθ is the unitary orthoradial polar vector. We evalu-
ate the mean solid body rotation � as the average angular 
rotation of each vector (see Supplementary Information for 
examples of the effect of this filtering step on the data).

(c) Band-pass filtering The bouncing droplet generates 
a predominantly monochromatic wave field as the domi-
nant sustained waves in the system are those at the Faraday 
wavelength (Molácek and Bush 2012). We thus selectively 
apply a band pass filter around the Faraday wavelength, 
� = 4.75mm in the bath, to remove high and low frequency 
noise (Gonzalez and Woods 2002). We convert the wave 
field into the spectral domain and then apply a 2D Butter-
worth filter before converting back into the spatial domain. 
For cases of variable bottom topology, the depth-depend-
ence of the Faraday wavelength is such that � typically 
decreases by 1 mm in shallow regions, where the depth is 
typically a fraction of a millimeter (h0 = 0.3 mm with our 
obstacles). Our filtering thus adequately resolves waves 
in both the depth and shallow regions (see Supplementary 
Information for examples of the effect of this filtering step 
on the data).

3  Bouncer wave profiles

We first measured the axially symmetric wave field gener-
ated by a stationary bouncing droplet bouncing in (2, 1)2 
mode (see the star in Fig. 3). The inferred wave field is 

(2)�i = ui · eθ /r.

shown in Fig. 4. These results are obtained using relatively 
small values of the acceleration, γ � 0.78 γF for our drops, 
so that the droplets, henceforth bouncers, do not propel 
themselves across the bath. Isocontours of the wave field 
are used to identify the droplet center location. We leverage 
the system’s spatial and temporal periodicity to average our 
measurements (see Fig. 4).

By recording 24 videos at different phases of the bounc-
ing cycle, the temporal evolution of the wave field created 
by a period-doubled bouncing droplet was resolved to 
0.52 ms. A selection of waveforms at different phases of 
the bouncing cycle is presented in Fig. 4. The maximum 
recorded amplitude outside the shadow region in the entire 
bouncing cycle was 22 μm, less than 1 % of the droplet 
radius (0.38 mm). The amplitude of the waves evidently 
decays rapidly and is nearly indistinguishable from the 
mean surface height beyond four wavelengths from the 
center. The spatial decay rate is a function of the forcing 
acceleration: the stronger the forcing, the weaker the decay 
(Eddi et al. 2011).

Experiments were conducted to quantify the effect of 
the forcing acceleration on the amplitude of the waves 
excited by a bouncing droplet. The nondimensional forc-
ing acceleration, γ /γF, was varied from 0.36 to 0.72, and 
the results are shown in Fig. 5. As expected, an increase 
in forcing acceleration increases the wave amplitude. At 
a greater forcing acceleration, the droplet bounces higher 
and a greater force is imparted to the fluid interface during 
impact. Moreover, the increased acceleration reduces the 
damping of the waves in both time and space.

Quantitative measurements of the wave profiles can be 
used to benchmark theoretical models. We find an excel-
lent agreement between our experiments and the model 

Fig. 3  Regime diagram [see Molácek and Bush (2013b) for its deri-
vation] displaying the drop’s bouncing or walking mode as a function 
of the vibration number ω0/

√

σ/ρR3 and driving acceleration γ /g.  
A drop in the (m, n)i mode bounces n times in m forcing periods, 
with the integer i ordering multiple (m, n) states according to their 
total mechanical energy, with i = 1 being the lowest. Here, we have 
ω0 = 80Hz, ν = 20 cSt and fixed drop radius R = 0.38 mm. The red 
symbols indicate the experiments performed in our study
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reported in Molácek and Bush (2013b), which approxi-
mates the wave profile as the superposition of zeroth-order 
Bessel functions that decay exponentially in time while 
being spatially damped. Superposing the effects of each 
bounce one yields an infinite sum that may be replaced by 

an integral. After time integration and taking a mid-impact 
phase we find:

where A = 12.6 μm and b = 0.0053mm−2 are computed 
following Molácek and Bush (2013b) and kF = 1.32 mm−1 
is the Faraday wave number [see Eq. (A.47) in Molácek 
and Bush 2013b for details].

Time-resolved wave profiles generated by simulation 
(Milewski et al. 2015) were also compared with the exper-
imentally recorded wave profiles. The wave profiles agree 
well throughout the entirety of the bouncing cycle. One 
way that agreement is assessed is by analyzing the propa-
gation characteristics of the zero-points of the wave pro-
file where the surface height is equal to that in the undis-
turbed far field. This comparison is presented in Fig. 6b, 
and results again indicate strong agreement between sim-
ulation and experiments. A comparison of wave profiles 
throughout the entire bouncing cycle is included in the 
form of a video in Supplementary Information.

4  Walker wave fields

When the forcing acceleration exceeds the walking 
threshold, the droplet propagates across the bath in a 
straight line provided no obstacles are encountered (Pro-
tière et al. 2006; Oza et al. 2014). This walking thresh-
old, which is a function of drop size, is γ ≈ 3.25 g for 

(3)h(r) = 2A
√
bJ0(kFr)rK1(2

√
br),

Fig. 4  Temporal evolution of the wave field excited by a period-dou-
bled bouncing droplet of radius 0.38 mm. The acceleration of the 20 
cSt oil bath is γ = 0.77 γF and ω0 = 80Hz (see the red star in Fig. 3). 
The wave field is shown at phases a 0°, b 150°, c 300°, d 450° and e 
600°. Phase 0° corresponds to the bath at its maximum vertical dis-

placement. Black lines show a projection of the crosssection of the 
wave field passing through the droplet’s center. The gray cylinders 
indicate the location of the droplet’s projected shadow, where the 
wave field cannot be determined.
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Fig. 5  Dependence of the wave profile of a bouncing droplet on the 
dimensionless forcing accelerations γ /γF where γF denotes the Far-
aday threshold. The drop radius is 0.38 mm, while ω0 = 80Hz and 
ν = 20 cSt. Each experiment is represented by a dot in Fig. 3. The 
wave profile is captured when the bath is at its minimum vertical dis-
placement. The dark vertical band in the vicinity of r = 0 represents 
the droplets projected shadow
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the present study (Wind-Willassen et al. 2013), for which 
γF = 4.15 g (see Fig. 3). Just above the walking thresh-
old, the wave field of a walking droplet is nearly axially 
symmetric about the droplet location. Close to the Fara-
day threshold, conversely, parallel tracks of peaks and 
valleys extend behind the droplet. Between these two 
extremes, the walker produces a wave field that contains 
a checkered wake that may be found by superposing the 
low and high forcing acceleration wave fields (Eddi et al. 
2011). The wave fields of walking droplets were recorded 
at a variety of phases and forcing accelerations. The 
comparison with simulation for a forcing acceleration of 

γ /γF = 0.966 is presented in Fig. 7. The wave field of the 
walker was found to be consistent in terms of both ampli-
tude and structure.
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Fig. 6  Wave profiles generated by a droplet of radius 0.38 mm on 
a 20 cSt silicon oil bath with ω0 = 80Hz (see the star in Fig. 3). a 
Experimental results for h(r) with γ /γF = 0.77, captured mid-impact 
(thick line). Also shown is the prediction obtained using the theo-
retical model of Molácek and Bush (2013b), which includes spatial 
damping, rK1(2

√
br), as indicated in Eq. (3). b Comparison between 

the motion of the zeros, zn, of the wave profile in our experiments 
(thick line) and for numerical simulations (Milewski et al. 2015) (thin 
line). The dimensionless time is t/TF, where TF denotes the Faraday 
period

Fig. 7  Comparison between experimental data (left) and simulation 
(right) of the wave field excited for a walking droplet when the bath 
is at its maximum vertical displacement. Droplet radius is 0.38 mm, 
ω0 = 80Hz, ν = 20 cSt and γ /γF = 0.966 (as indicated by the dia-
mond marker in Fig. 3). The comparison shows favorable agreement 
between the observed and predicted field structures, dominant wave-
lengths, and wave amplitudes, although the numerical simulations 
display a more pronounced interference pattern behind the droplet 
than observed in our experiments

Fig. 8  Wave field of a walker (radius of 0.38 mm, ω0 = 80Hz

, ν = 20 cSt) as it approaches and reflects from a planar, submerged 
barrier. The depth changes from h0 = 10mm in the deep region to 
h1 = 0.3mm over the barrier and γ /γF = 0.979 (downward pointing 
triangle in Fig. 3). Still video images from the video are presented in 
increments of 0.875 seconds and correspond to the bath at its maxi-
mum vertical displacement
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Walker-boundary interactions (Couder and Fort 2006; 
Eddi et al. 2009; Harris et al. 2013; Harris 2015) remain 
poorly understood and pose a challenge to theoreticians 
(Gilet 2016; Blanchette 2016; Dubertrand et al. 2016). In 
order to guide theoretical developments, we consider walk-
ers interacting with relatively simple geometries, specifi-
cally, a planar boundary and a circular pillar.

A planar boundary was submerged 0.3 mm below the 
fluid bath interface, and walkers were directed toward the 
boundary. Waves transmitted over the boundary evidently 
die off quickly in the shallow area, typically on the order 
of a Faraday wavelength with our experimental parameters 
(see Fig. 8). At the step between shallow and deep regions, 
we observe that the wave field satisfies neither Dirichlet nor 
Neumann boundary conditions. This result suggests that 
obstacles should not be treated theoretically with a conven-
tional boundary condition, but rather as an abrupt modifi-
cation of the dispersion relation induced by the change of 
topography (Faria 2016). Note that for relatively deep and 
narrow obstacles, transmitted waves have been reported 
to persist long enough to occasionally transport the drop-
let across the barrier, thereby generating a quantum-like 

tunneling effect (Eddi et al. 2009). In our case, owing to 
the relatively shallow and wide boundary, a reflection of 
the droplet is systematically observed (see Fig. 8). After the 
reflection, the droplet follows a curved trajectory that ulti-
mately straightens out (Pucci 2016).

Walkers were also directed toward a submerged pillar, 
above which a similar damping of the waves is apparent 
(Fig. 9). Images of the wave field suggest that the trailing 
wake edge, specifically the curve of local maxima, is effec-
tively tethered to the pillar, resulting in the spiral trajectory 
evident in Fig. 9.

5  Conclusion

The free-surface synthetic Schlieren method (Moisy et al. 
2009) has been applied to the bouncing droplet experi-
ment and was found to be effective in quantifying the sur-
face waves of both bouncing and walking droplets. The 
wave profile of the bouncer was compared with math-
ematical models (Molácek and Bush 2013b) and simula-
tions (Milewski et al. 2015) and was found to be in good 
agreement. These comparisons would seem to confirm the 
reliability of the method and demonstrate that it can be 
used successfully to benchmark existing theoretical mod-
els. Observations of the wave field as a walker interacts 
with boundaries offer new insights that will inform the 
development of accompanying theoretical models (Faria 
2016).
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