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Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits
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We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating
fluid bath under the influence of a harmonic potential. The walking droplet’s horizontal motion is described by
an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the
dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably
with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The
predicted dependence of the orbital stability on system parameters is compared with experimental data and the
limitations of the model are discussed.
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I. INTRODUCTION

There has been considerable recent interest in the dy-
namics of silicone oil droplets bouncing on the surface of
a vibrating fluid bath [1,2]. As discovered a decade ago in
the laboratory of Couder and Fort, these droplets may move
horizontally, or “walk,” across the fluid surface, propelled
by the waves they generate at each bounce [1,3]. These
walkers, comprising a bouncing droplet and an associated
guiding wave field, exhibit behaviors reminiscent of quantum
mechanical phenomena, including single-particle diffraction
and interference [4], tunneling [5], Zeeman-like splitting [6],
orbital quantization in a rotating frame [7,8], and wavelike
statistics in a confined geometry [9,10]. The walking droplet
system represents a hydrodynamic realization of the pilot-
wave dynamics championed by de Broglie as an early model
of quantum dynamics [11,12]. The relationship between this
hydrodynamic system and more modern realist models of
quantum dynamics is explored elsewhere [2,13].

We consider here an experiment performed by Perrard
et al. [14], in which the walking droplet moves in a two-
dimensional harmonic potential. The experimental setup is
shown in Fig. 1; the details have been presented elsewhere [14].
The droplet encapsulates a small amount of ferrofluid and
acquires a magnetic moment when placed in the spatially
homogeneous magnetic field induced by two large Helmholtz
coils. It is then attracted toward the symmetry axis of a
cylindrical magnet suspended above the fluid bath. Provided
the walker is not too far from the magnet’s axis, a radially
inward force is generated on the drop. The force F = −kx
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increases linearly with distance from the magnet’s axis, where
x is the displacement from the origin, and the constant k may
be tuned by adjusting the vertical distance between the magnet
and the fluid bath.

Perrard et al. [14] reported that the walker dynamics in a
harmonic potential is sensitive to the memory parameter, as
prescribed by the proximity to the Faraday threshold, which
determines the longevity of the standing waves generated by
the walker [15]. In the low-memory limit, in which the waves
decay relatively quickly, the walker executes circular orbits
whose radii decrease monotonically with increasing spring
constant k. As the memory parameter is increased, the orbital
radii become quantized. The authors also reported the exis-
tence of other periodic and quasiperiodic trajectories, such as
the trefoil and lemniscate. The various trajectories were found
to be quantized in both mean radius and angular momentum. In
the high-memory limit, the walker exhibits a chaotic dynamics
characterized by intermittent transitions between a set of
quasiperiodic trajectories [16]. Labousse et al. [17] linked this
complex dynamics to the self-organization of its wave field.

The first theoretical model of the walker system, developed
by Protière et al. [3], captured certain features of the observed
behavior, including a transition from bouncing to walking.
The understanding of richer phenomena required the inclusion
of memory effects [15], in which the past bounces are
encoded in the surface wave field. Through an analysis of
the droplet impact and the resulting standing waves, Moláček
and Bush [18–20] derived a trajectory equation for the walker
that includes both its vertical and horizontal dynamics. By
averaging out the vertical dynamics, Oza et al. [21] derived an
integro-differential form for the horizontal motion referred
to as the stroboscopic model. This theoretical framework
provides a valuable platform for analytical investigations.
For example, the resulting equation was used to derive
reduced trajectory equations appropriate in the limits of
low-memory [22] and weak horizontal acceleration [23].

Fort et al. [7] and subsequently Harris and Bush [8] exam-
ined droplets walking in a rotating frame. The walkers were
found to execute circular inertial orbits provided the memory
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FIG. 1. (a) Schematic of the experimental setup, in which an oil
droplet encapsulates a small amount of ferrofluid and is trapped in
a harmonic potential Ep = kr2/2. The harmonic potential remains
a good approximation up to distances of approximately 3λF �
14 mm (see [14] for details). The fluid bath is driven vertically
with acceleration γ cos(2πf t). (b) Top view of the walker and
its associated wave field. The inset shows a characteristic circular
trajectory. The scale bar λF = 4.75 mm.

was sufficiently low. In the low-memory limit, the orbital
radius decreased monotonically with the applied rotation rate.
As the memory was progressively increased, the circular orbits
became quantized in radius. Fort et al. [7] presented numerical
simulations that captured the emergence of orbital quantization
with increasing memory. This quantization was rationalized in
terms of a theoretical model based on considering the com-
posite effect of wave sources on a circle in the high-memory
limit. Oza et al. [24,25] augmented the stroboscopic model [21]
through inclusion of the Coriolis force FCor = −2m� × ẋp in
order to rationalize the orbital stability thresholds and complex
dynamics reported in the experimental study of Harris and
Bush [8]. We adopt here a similar methodology, based on
the stroboscopic model, in order to rationalize the orbital
quantization of circular orbits arising in a harmonic potential,
as reported in the experiments of Perrard et al. [14].

The paper is organized as follows. We first present the
integro-differential trajectory equation for the walker in the
presence of an external confining potential and show that it
admits orbital solutions. We compare our model with the exist-
ing experimental data obtained for a harmonic potential [14].
We restrict our investigation to the circular orbits. We then
analyze the linear stability of the orbital solutions and compare
our results to laboratory experiments of walkers in a harmonic
well. We use the stability analysis to rationalize the emergence
of quantization of circular orbits and discuss the discrepancies
between the theoretical predictions and experimental data.
Finally, we link the orbital instabilities to wave modes excited
by the walker. We conclude by discussing future directions.

II. EXISTENCE OF QUANTIZED ORBITS

A. Trajectory equation

Consider a drop of mass m and undeformed radius Rd

walking on the surface of a vertically vibrating fluid bath
of density ρ, surface tension σ , kinematic viscosity ν, mean
depth H , and vertical acceleration γ cos(2πf t). We restrict
our attention to the regime γ < γF , γF being the Faraday
instability threshold [26–30], below which the fluid surface
would remain flat in the absence of disturbances. Theoretical

treatments have been developed to rationalize the drop’s
bouncing dynamics [18,19,31–37]. We restrict our study to
the particular case in which the drop is in a perfectly period-
doubled bouncing state, as is typically the case in the walking
regime [20]. The drop’s bouncing period TF = 2/f is then
commensurate with its subharmonic Faraday wave field [3,27].
Assuming that the drop hits the bath with a constant phase rel-
ative to the vibrational forcing, we may consider the simplified
strobed dynamics for the droplet’s horizontal motion [21].

Let xp(t) = (xp(t),yp(t)) be the horizontal position of the
walker at time t . During each impact, the walker experiences
a propulsive force proportional to the local slope of the fluid
interface and a drag force opposing its motion. Time averaging
these forces on the drop over the bouncing period TF yields
the equation of motion [20]

mẍp + D ẋp = F − mg∇h(xp,t), (1)

where h(x,t) is the height of the fluid interface and F is
an arbitrary external force on the drop. The time-averaged

drag coefficient D has the form [20] D = Cmg

√
ρRd

σ
+

6πμaRd (1 + ρagRd

12μaf
), where μa and ρa are the dynamic

viscosity and density of air, respectively, and the coefficient
C = 0.17 is inferred from the drop’s tangential coefficient of
restitution. The first term in D accounts for the direct transfer
of momentum from drop to bath during impact and the second
accounts for air drag.

The wave field resulting from the drop’s prior impacts may
be written as [15,20]

h(x,t) =
�t/TF �∑
n=−∞

AJ0(kF |x − xp(nTF )|)e−(t−nTF )/MeTF , (2)

where the memory parameter Me is given by Me(γ ) =
Td

TF (1−γ /γF ) . The hydrodynamic analysis of Moláček and
Bush [20] demonstrated that the wave amplitude may be

expressed as A = 1
2

√
ν
TF

k3
F

3k2
F σ+ρg

mgTF sin �. The Faraday

wave number kF is defined through the standard water-wave
dispersion relation (πf )2 = (gkF + σk3

F /ρ) tanh(kF H ). Here
� is the mean phase of the wave during the contact time
and Td ≈ 0.0182 s the viscous decay time of the waves in
the absence of forcing for ν = 20 cS [20]. We note that the
phase sin � may be deduced from the experimentally observed
free walking speed [21]. The memory parameter Me increases
with the forcing acceleration γ and determines the extent to
which the walker is influenced by its past [15]. Indeed, the
dominant contribution to the wave field (2) comes from the
drop’s n ∼ O(Me) prior bounces.

Provided the time scale of horizontal motion TH ∼ λF /|ẋp|
is much greater than the bouncing period TF , as is the case
for walkers, we may approximate the sum in Eq. (2) by an
integral [21]

h(x,t) = A

TF

∫ t

−∞
dT J0(kF |x − xp(T )|)e−(t−T )/MeTF . (3)

This continuous approximation will allow us to compute ana-
lytical time-dependent behaviors by considering a perturbative
approach. It therefore provides a framework for investigating a
pilot-wave dynamics closely related to the walker’s dynamics.
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The limits of validity of the continuous approximation will be
discussed in what follows.

We introduce the dimensionless variables x̂ = kF x and
t̂ = t/(TF Me). The external central force F may be expressed
in dimensionless form as F = (kF MeTF /D)F. The dimen-
sionless trajectory equation (1) thus assumes the form

κ x̂′′
p + x̂′

p = F + β

∫ t̂

−∞
dT̂ ut,T J1(|x̂p(t̂) − x̂p(T̂ )|)

× e−(t̂−T̂ ), (4)

where primes denote differentiation with respect to t̂ , κ =
m/(TF MeD) and β = mgAk2

F TF M2
e /D are the dimensionless

mass and wave force coefficient, respectively, and ut,T denotes
the unit vector pointing from x̂p(T̂ ) to x̂p(t̂).

We now seek orbital solutions to the trajectory equation and
so substitute x̂p(t̂) = r0(cos ωt̂, sin ωt̂) into Eq. (4), where ω

and r0 are the dimensionless angular frequency and orbital
radius, respectively. Dropping all carets, we obtain in polar
coordinates (r,θ ) the system of algebraic equations

−κr0ω
2 = β

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−zdz + Fr ,

r0ω = β

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−zdz + Fθ .

(5)

B. Orbital solutions in a harmonic potential

For a harmonic potential, we have F = −kxp or
equivalently F = −ξ x̂p, ξ = kTF Me/D being the
dimensionless strength of the harmonic potential. Equation (5)
thus takes the form

−κr0ω
2 = β

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−zdz − ξr0,

r0ω = β

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−zdz.

(6)

Given the experimental parameters that determine κ , β,
and ξ , these equations can be solved numerically using
computational software (MATLAB), which yields the orbital
radius r0 and frequency ω of the circular orbit. The dependence
of the orbital radius on the dimensionless potential width
� = V/(λF

√
k/m) is shown in Fig. 2 for two different values

of forcing acceleration γ , V being the walker’s time-averaged
horizontal speed. At low memory γ /γF � 0.92 [Fig. 2(a)], the
orbital radius increases monotonically with the potential width
�. The linear dependence may be understood from the balance
of the attractive force and the centripetal acceleration. The
slope exceeding one is a signature of the wave-induced added
mass, which may be expressed in terms of a hydrodynamic
boost factor [23]. At higher memory [Fig. 2(b)], the orbital
radius exhibits a nonmonotonic dependence on the potential
width �, leading to pronounced plateaus with forms consistent
with those reported by Perrard et al. [14]. In the following
section we will see that the yellow branches of the solution
curves in Fig. 2(b) correspond to unstable solutions.

C. Orbital solutions for any central force in the limit Me � 1

For the sake of generality, we now examine the condition for
the existence of quantized circular orbits for any axisymmetric

FIG. 2. Evolution of the orbital radius R/λF = r0/(2π ) with
the potential width � = V/(�λF ), where � = √

k/m. (a) At low
memory γ /γF � 0.92, the radius increases linearly with the potential
width. (b) In the high-memory regime γ /γF = 0.979, the orbital
radii converge to regularly spaced plateaus. The curves indicate the
theoretical predictions based on Eq. (6) and the colors refer to the
linear stability analysis of orbital solutions described in Sec. III. Black
denotes stable orbits, green denotes unstable orbits that destabilize
via an oscillatory instability, and yellow indicates the coexistence of
oscillatory and nonoscillatory unstable modes. The lower and upper
horizontal crosscuts evident in Fig. 3 correspond to the two data sets
shown here in (a) and (b), respectively.

confining potential. Let us start with Eq. (5), which represents
the radial and tangential balance of force balance equations.
As the memory increases, the radial terms of Eq. (5) scale as

−κr0ω
2 ∼ O(Me),

F ∼ O(Me), (7)

β

∫ ∞

0
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−zdz ∼ O(M2

e )
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and therefore act on different time scales. At high memory, the
long-time-scale terms dominate, yielding∫ ∞

0
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−zdz = O

(
1

Me

)
. (8)

As in the case of inertial orbits [24], Eq. (8) admits a set of
orbital solutions

r
(n)
0 = j0,n + O

(
1

Me

)
, (9)

where j0,n is the nth zero of the Bessel function J0. These
orbital solutions correspond to the plateaus observed in
Fig. 2(b). Provided F is not singular in r

(n)
0 , a set of quantized

orbital solutions will arise at high memory. The O(1/Me)
corrections depend on the form of the potential and will
determine the exact value of r

(n)
0 but will not affect the existence

of solutions. We thus turn to the stability of these orbital
solutions using the continuous approximation.

III. LINEAR STABILITY OF ORBITAL SOLUTIONS

A. General case

We perform a linear stability analysis of circular orbital
solutions in the presence of an arbitrary radial force F(r,ξ ),
where r = |x̂| and ξ is a parameter that controls the strength of
the force. For the harmonic force of interest, F(r,ξ ) = −ξr .
We linearize the trajectory equation (4) around the orbital
solution defined by Eq. (5), substituting r = r0 + εr1(t) and
θ = ωt + εθ1(t) into Eq. (4) and retaining terms to leading
order in ε. We note that the presence of the convolution
product in the linearized equations of motion indicates the
presence of long-range temporal correlations in the dynamics
that complicate the stability analysis.

We take the Laplace transformL of the linearized equations
and obtain a system of algebraic equations for R(s) = L[r1]
and �(s) = L[θ1]:(

A(s) −B(s)

C(s) D(s)

)(
R(s)

r0�(s)

)
=

(
cr

r0cθ

)
, (10)

where

A(s) = κs2 + s − κω2 − ∂F
∂r

∣∣∣∣
r0

−β

(∫ ∞

0

[
f (t) cos2 ωt

2

+g(t) sin2 ωt

2

]
dt+L

[
g(t) sin2 ωt

2
−f (t) cos2 ωt

2

])
,

B(s) = 2κωs −
(

κω + F(r0,ξ )

r0ω

)

− β

2
L[[f (t) + g(t)] sin ωt],

C(s) = 2κωs + 2ω + κω + F(r0,ξ )

r0ω

− β

2
L[[f (t) + g(t)] sin ωt],

D(s) = κs2 + s − 1 − βL
[
f (t) sin2 ωt

2
−g(t) cos2 ωt

2

]
.

(11)

FIG. 3. Stability of orbital solutions in a harmonic potential.
Colored regions indicate the linearly unstable parameter regime, as
predicted theoretically. Red indicates solutions that destabilize via a
nonoscillatory instability, green indicates solutions that destabilize
via an oscillatory instability, and yellow indicates solutions with
coexisting oscillatory and nonoscillatory unstable modes. Blue solid
circles are the experimental data from Perrard et al. [14]. The
horizontal crosscuts correspond to the data reported in Figs. 2(a)
and 2(b). Characteristic error bars are shown.

Here f (t) = J1(2r0 sin ωt
2 )

2r0 sin ωt
2

e−t , g(t) = J ′
1(2r0 sin ωt

2 )e−t , and we

have used Eq. (5) to simplify some of the integrals. The
constants cr and cθ are defined through the initial conditions
by r1(0) = cr/κ and θ1(0) = cθ/κ , respectively [24]. The
poles of the linearized equation (10) are the roots of the
function G(s; r0) ≡ A(s)D(s) + B(s)C(s). If all of the roots
satisfy Re(s) < 0, the orbital solution of radius r0 is stable
to perturbations, while a single root in the right half plane is
sufficient for instability. To assess the stability of an arbitrary
orbital solution, we find the roots of G(s; r0) numerically.
Since G(s; r0) has poles at s = −1 + inω for integers n,
we instead find the roots of the function G̃(s; r0) = (1 −
e−2π(s+1)/|ω|)G(s; r0), which is an entire function of s. We
find the roots of G̃ numerically by implementing the integral
method of Delves and Lyness [38]. We took the precaution of
benchmarking this root tracking method in order to assess the
precision of our numerical method.

B. Stability diagram for circular orbits in a harmonic potential

We performed the stability analysis for the specific case
of a harmonic potential F(r,ξ ) = −ξr . In Fig. 3 we present
the results of the orbital stability analysis for a drop of radius
Rd = 0.37 mm and phase sin � = 0.18 walking on a fluid
bath of viscosity ν = 20 cS and forcing frequency f = 80
Hz, the parameters being inferred from the experiments of
Perrard et al. [14]. We note that multiple orbital solutions may
exist for a given value of the spring constant k, but that the
orbital solution is uniquely determined by the orbital radius r0

and forcing acceleration γ /γF , and so plot the orbital stability
properties on the (R/λF ,γ /γF ) plane with R/λF = r0/(2π ).
The stability of a given orbital solution is determined by the
roots of G̃(s; r0), denoted by s∗, and indicated by the following
color code in Figs. 2 and 3. Black in Fig. 2 and white in
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Fig. 3 denote orbital solutions that are stable to perturbations
[Re(s∗) < 0]. Green denotes solutions that destabilize via an
oscillatory instability [Re(s∗) > 0,Im(s∗) �= 0]. Red refers to
unstable cases with a nonoscillatory mechanism [Re(s∗) >

0,Im(s∗) = 0]. Finally, yellow indicates the coexistence of
oscillatory and nonoscillatory unstable modes. Figure 3 shows
adequate agreement between the predictions of our stability
analysis and the experimental results of Perrard et al. [14] in
the sense that none of the experimental data points indicating
stable circular orbits fall within the red or yellow regions.

The principal discrepancy between our theoretical pred-
ications and the observed orbital stability is evident in the
data points arising at high memory (γ /γF > 0.95) within the
green regions, where the linear theory predicts an oscillatory
instability. In the investigation of quantization of inertial
orbits [24], stable orbits were also observed in a regime
predicted to be unstable via linear stability analysis. There
the orbits were wobbling circular orbits [8], presumed to have
been stabilized by nonlinear effects. Here the observed orbits
were not wobbling significantly, though there are practical
difficulties in distinguishing stable circular orbits from small-
amplitude wobbling orbits. We believe the mismatch arising
at high memory to be due to shortcomings of our theoretical
model, specifically, the stroboscopic approximation.

In our theoretical treatment, we make a number of simpli-
fying assumptions that could explain the discrepancy between
theory and experiment. First, the stroboscopic approxima-
tion (4) rests on the assumption of perfect synchronization
between the drop and wave, a synchronization that may
break down in the high-memory regime, where asynchronous
chaotic walking states may arise [34]. Second, we assume
the phase � to be a constant, whereas it is known to vary
weakly with forcing acceleration [20] and is also expected to
depend on the local wave amplitude. Finally, it is known that
a differential equation and its discretized form may possess
different instabilities [39]. In future work we plan to examine
the stability of orbital solutions with a discretized version of
the trajectory equation (4), thereby assessing the relative merits
of the continuous and discrete approaches.

C. Mode decomposition of orbital instabilities

We now infer a connection between the nature of the radial
force on an orbiting walker and the results of our stability
analysis in Fig. 3. Using Graf’s addition theorem, the radial
force balance in Eq. (6) may be written as

−κr0ω
2 = −β

⎡
⎣ ∂

∂r

∞∑
p=0

(2 − δn,0)

(1 + (pω)2)
Jp(r)Jp(r0)

⎤
⎦

r=r0

− ξr0.

(12)

That is, the orbiting walker experiences a potential energy
comprised of the weighted sum of modes J 2

p (r0). Plots of
these modes for p = 0, 1, and 2 are shown in Fig. 4, along
with the orbital stability diagram from Fig. 3. Note that the
red instability regions originate (point A) near the zeros of
J 2

1 (r0) and the green ones (point C) near the zeros of J 2
2 (r0).

This seems to suggest that the primary and secondary orbital
instabilities occur for orbits that receive little energy from the
p = 1 and 2 modes, respectively. We also observe that the

FIG. 4. Striking link between the points of the stability diagram
(left) and the Bessel modes (right). The black curve corresponds to
J 2

0 (2πR/λF ), the blue curve to J 2
1 (2πR/λF ), and the red curve to

J 2
2 (2πR/λF ).

intersection of neighboring instability regions may be related
to the points at which these energetic modes assume the same
value. Indeed, point B in Fig. 4 corresponds to the intersection
between the p = 0 and 1 modes and point D to that between the
p = 1 and 2 modes. Establishing a precise connection between
the modes J 2

p (r) and the walker’s orbital stability properties is
beyond the scope of this paper. For the time being, we simply
hypothesize that the small number of modes involved in the
orbital instability is directly connected to the low-dimensional
chaos observed in laboratory experiments of walker dynamics
in a harmonic potential [16] and a rotating frame [8].

IV. CONCLUSION

We have presented a theoretical investigation into the orbital
dynamics of a walking droplet subject to a harmonic force
F = −kx. The integro-differential trajectory equation (4) for
the walker’s horizontal motion was shown to have orbital
solutions, in which a walker follows a circular trajectory of
radius r0 with a fixed angular frequency ω. The predicted
dependence of r0 on the dimensionless potential width �

adequately matches the experimental data of Perrard et al. [14],
as shown in Fig. 2. This analysis thus serves to rationalize the
quantization of orbital radius r0, as observed in laboratory
experiments [14].

The results of the stability analysis are summarized in
Fig. 3, which shows the dependence of the walker’s orbital
stability characteristics on the orbital radius r0 and vibrational
forcing γ /γF . The match between our theoretical predictions
and the experimental data is encouraging, although a number of
circular orbits were observed within the theoretically predicted
green instability regions at high memory. Although the
continuous equation gives an adequate framework to deal with
the integro-differential equation of motion, some discrepancies
still need to be explored and understood. Possible sources of
this discrepancy have been discussed.

While the linear stability analysis presented herein helps
to delineate the parameter regimes in which circular motion
is unstable, it does not provide a rationale for any of the
other reported forms of stable motion (such as lemnis-
cates and trifoliums) or for the complex walker dynamics
arising within the unstable regions. These regions appear
to be characterized by a self-organization mechanism be-
tween the drop trajectory and its associated wave field [17].
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Consequently, in the high-memory limit, an ordered chaos
in the walker dynamics underlies the observed multimodal
statistical behavior [8,10,14,16,25]. Much remains to be done
in terms of rationalizing the connection between the dynamics
and statistics in the high-memory limit.
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R7 (2014).
[24] A. U. Oza, D. M. Harris, R. R. Rosales, and J. W. M. Bush,

J. Fluid Mech. 744, 404 (2014).
[25] A. U. Oza, Ø. Wind-Willassen, D. M. Harris, R. R. Rosales, and

J. W. M. Bush, Phys. Fluids 26, 082101 (2014).
[26] M. Faraday, Philos. Trans. R. Soc. London 121, 299 (1831).
[27] T. Benjamin and F. Ursell, Proc. R. Soc. London Ser. A 225,

505 (1954).
[28] S. Douady, J. Fluid Mech. 221, 383 (1990).
[29] S. Douady and S. Fauve, Europhys. Lett. 6, 221 (1988).
[30] N. Perinet, D. Juric, and L. Tuckerman, J. Fluid Mech. 635, 1

(2009).
[31] D. Terwagne, N. Vandewalle, and S. Dorbolo, Phys. Rev. E 76,

056311 (2007).
[32] D. Terwagne, T. Gilet, N. Vandewalle, and S. Dorbolo, Phys.

Mag. 30, 161 (2008).
[33] S. Dorbolo, D. Terwagne, N. Vandewalle, and T. Gilet, New J.

Phys. 10 113021 (2008).
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