
18.357: Problem Set 1

Do any 5 of the 6 following problems. Each is worth 20 points. Due March 16, 2016.

1. Drops and bubbles

a) Consider a spherical water drop of radius a, density ρ, viscosity ν and surface tension σ
vibrating in a vacuum. It is perturbed from spherical, and oscillates such that its motion is
characterized by a large Reynolds number. What mode of vibration do you expect to be most
persistent, and why? Make an estimate for the frequency of this most unstable mode of vibration
via scaling arguments. Use the above result to assess the frequency of the most unstable mode of
oscillation of a rain drop.

b) Beaming. An optical effect causes incident light to be focused by drops, resulting in a beam
of light being emitted by the droplet (T. Timusk, Applied Optics, 48, 1212, 2009). Given the
frequency of oscillation of a raindrop along with its fall speed, assess whether or not the image of
rain attached below is real or fake.

c) A spherical drop of radius a = 1cm is placed on a bath of the same fluid. At time t = 0,
it merges with the bath. Assume that the drop remains spherical as its contents are evacuated.
Estimate the initial exit velocity, and so a characteristic Reynolds number. On the basis of this
inference, deduce the dependence of the bubble radius on time, R(t), through consideration of the
dominant force balance. When do you expect your solution to break down?

d) Consider now a soap bubble of radius a = 5cm with the same gas inside as out. Estimate its
frequency of vibration. Describe what happens when it lands on a planar soap film, merges, then
evacuates its contents across the film. How does its radius evolve with time during this evacuation
process? How and why are these results similar to or different from those for a droplet?

2. Capillary rise in a wedge

a) Consider an oil that wets glass, so that its equilibrium contact angle θe < π/2. This oil
is bound in a thin gap of thickness δ between two flat glass plates, forming a horizontal circular
pancake of radius R >> δ. Assuming the capillary length `c >> δ so that gravity is negligible,
calculate the cross-gap shape of the meniscus between the oil and air, and the associated Laplace
pressure jump across it, in terms of δ and θe.

A pair of vertical glass plates are arranged so as to form a wedge with a small opening angle α.
The plates are placed in a bath of the same oil such that the corner of the wedge is vertical.

b) Demonstrate that the resulting meniscus bound inside the plates takes the form of a hyper-
bola. Assume that the cross-gap curvature, as calculated in part (a), is dominant.

c) Calculate the work done by surface forces in forming the meniscus.

3. Capillary rise between parallel plates

A pair of vertical plates are placed in a fluid bath, the gap spacing being much less than the
capillary length.

a) Deduce the rise height of the fluid between the plates as a function of the equilibrium contact
angle θe and interfacial tension σ.

b) Describe the dynamics in the viscous limit where inertial effects are negligible.

c) Describe the dynamics in the inertial limit where viscous effects are negligible. For the sake
of simplicity, consider the long-time regime where added mass effects are negligible.



4. Chemical propulsion

Gradients in wettability may lead to spatial gradients in surface energy that generate propulsive
forces. We consider here a solid substrate with a linear chemical gradient such that the equilibrium
contact angle θe increases linearly with distance along the substrate. Neglect the influence of gravity
throughout.

a) If a small hemispherical drop is placed on a plane composed of this surface such that its
contact line is circular, calculate the resulting force on the drop.

b) Assuming that the resulting motion arises at low Reynolds number (so is resisted primarily
by viscous stresses), estimate the rate of dissipation incurred by the drop motion via a scaling
argument. Use an energy balance to estimate the speed of propulsion of the droplet.

b) This surface is now rolled up into a small cylindrical tube of radius R such that there is a
wettability gradient along its length. If a fluid volume V � 4πR3/3 is deposited inside the tube,
it takes the form of a roughly cylindrical slug of length L. What is the resulting driving force on
the slug?

c) Assuming that the principal resistance to motion comes from viscous dissipation resulting
from the Poiseuille-type flow within the bulk of the slug, calculate its speed via a scaling argument.

5. Geometric propulsion

Gradients in geometry may also lead to spatial gradients in surface energy that generate propul-
sive forces. Consider a fluid-filled wedge with small opening angle α. A bubble of volume V is
placed in the wedge, forming a roughly penny-shaped form of radius R � h (h being the local
gap width) whose center is a distance x from the corner. The fluid completely wets the solid, so
we assume that there is an extremely thin fluid layer separating the bubble from the plate. The
curvature at the bubble’s edge is thus prescribed by the local gap width.

a) Calculate the surface energy of the system as a function of x. Thereby deduce the force on
the bubble. Does the bubble move towards or away from the corner?

b) As the bubble moves, it induces a flow around it. To leading order, provided the bubble is
sufficiently far from the corner and α sufficiently small, this may be described as flow around a
circular disc in a Hele-Shaw cell (see course notes in 18.355 or 2.25). By calculating the rate of
dissipation associated with such a flow, deduce the dependence of bubble speed on distance from
the corner.

c) Now orient the wedge vertically, so that its corner is horizontal, and the bubble feels the
influence of gravity. Consider gravitational and surface energies in order to deduce the distance
from the corner at which the bubble will be in equilibrium.



6. The origins of surface tension

The van der Waals force is an intermolecular force considered to be long-range, in that it acts
over distances long relative to the molecular size, typically 10−10 to 10−8m. The Van der Waals
potential is given by φ = −k/r6 , where k is some constant. (It is the Van der Waals force that
initiates the coalescence of fluid drops when they get sufficiently close to a fluid surface).

a) Show that the Van der Waals potential of a fluid molecule a distance h above the horizontal
surface of a fluid with ρ molecules per unit volume is φ = −kρπ/6h3.

b) Show that the Van der Waals potential per unit area between two planar fluid layers separated
by a thin air layer of thickness d is φ = −kπρ2/(12d2) , and that the associated attractive force per
unit area F = −A/(6πd3) , where A = kπ2ρ is called the Hamaker constant.

c) Show that the total Van der Waals force between a small spherical fluid drop of radius b and
a fluid plane separated by a distance d is given by F = Ab/6d2.

d) Consider the Van der Waals potential acting on a fluid molecule inside a spherical drop
of radius b, a distance h << b from its surface. Calculate the potential arising as a result of
the interfacial curvature; specifically, deduce the potential difference arising due to the removal
of molecules (of density ρ) from the tangent plane. Show that this potential is φ = πρ/(4bh2)
Calculate the resulting force per unit volume. Show that, in equilibrium, this must be balanced by
a pressure gradient dp/dh = A/(2πbh3 ). Noting that this becomes singular at h = 0, integrate the
pressure gradient from h to the molecular dimension ε. Thus show that when h >> ε, the pressure
inside the fluid, the Laplace pressure: P = σ/b , where σ = A/(4πε2) is the surface tension.


