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Industrial application:   spray atomization
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Curvature Forces 
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2D Surfaces

E.g.  Force/length on edge of planar sheet
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Stable sheet
(Savart 1833, Taylor 1959)

! sheet radius: balance of surface tension and inertia

! sheet thickness :

! Taylor radius:

! toroidal sheet rim releases drops through Rayleigh instability
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Formation of thin flat sheets of water (Taylor 1960)

! unstable rims eject droplets

! sheet shape prescribed by balance:

! sheet thickness: 

! Taylor radius: 

! flux distribution           deduced experimentally, or calculated
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Sheets with stable rims







Fluid Chains

Physical Picture

! colliding jets generate fluid sheets in 
   orthogonal plane

! sheet develops rims and closes through
   influence of   

! rim jets again collide … ad infinitum

! successive links decrease in size through viscous damping

! chain eventually coalesces into a cylindrical stream

! ubiquitous in high Re sheet motion

e.g. pour wine from a lipped jug
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Rim Dynamics

Mass conservation in rim:

Normal force balance:

Tangential force balance:
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Rim instability 









Fluid Fishbones

! capillarity instability develops on 
bounding rims

!  bulbous regions flung outwards
    by centripetal force

!  fluid tendrils, fishbones drawn out

!  capillary instability of fishbones
    leads to elaborate wake structure

Physical Picture

bones

head

Bush & Hasha (2004)











DIMENSIONAL ANALYSIS

Physical variables:
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R ,Q , ρ ,σ ,ν , β , g

Fundamental units: 
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M ,L , T

Buckingham’s Thm:   4 dimensionless groups

Impact angle:

Reynolds number:

Weber number:

Froude number:
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Sagging sheets







Water bells (Savart 1833, Taylor 1959)

!   form prescribed by balance of inertia, 
     gravity and capillarity
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Energy conservation:
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Continuity: 
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!  bell closes owing to influence of out-of-plane curvature
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Cusps on sheets 





Cusps on sheets

!  in this case, numerical integration of governing equations suggests that
    sheet will be self-intersecting

!  may arise for sheets that are initially concave upwards

!   Bark et al. (1979) suggest that the cusps arise at the lines of intersection
     of these phantom loops

SURELY NOT!

PHANTOM  
LOOPS

SHEET



Lhuissier & Villermaux (2011)

Cusps on sheets

Instability of flapping sheets

The latest word on fluid sheets...



Jets and sheets in rotation 



Instabilities of rotating jets
with Nikos Savva

Peter Rhines

!  thread destabilized by rotation owing
    to influence of centripetal force

!   above a critical                               ,

     most unstable mode is nonaxisymmetric

!   reminiscent of symmetry-breaking in 
     rotating drop

Weidman (1987)

€ 

Σ =
ρΩ2a3

σ







Swirling water bells (Bark et al. 1979)
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Continuity: 
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What forms do we expect?

Rain drop hits a puddle

Martin Waugh



Fluid-fluid impact

What forms do we expect?

The Edgerton crown



How do we rationalize the resulting forms?

Fluid-fluid impact







Photo essay



“I never before realized so strongly the splendour and beauty of the mere 
physical forms of Nature. 

A wonderful thing is the curious repetition of the same forms, of the same 
design almost, in the shape of the falling water.

It gave me a sense of how completely what seems to us the wildest liberty of 
Nature is restrained by governing laws.”

                                            

                                             - Oscar Wilde, on viewing Niagara Falls
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Why the flat stripes?



The suppression of capillary waves by surfactant

!  wave motion generates regions of surface divergence

!  concomitant surfactant gradients generate Marangoni stresses

!  resulting small scale flows extremely dissipative

!  flat ship wakes first remarked upon by Pliney the Elder

!  now used to track submarines: flat wakes visible on satellite images 
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!  examined by Benjamin Franklin, motivated by Bermudan spear fishermen
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