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Abstract. We report the results of a theoretical investigation of the stability of a toroidal vortex bound by
an interface. Two distinct instability mechanisms are identified that rely on, respectively, surface tension
and fluid inertia, either of which may prompt the transformation from a circular to a polygonal torus. Our
results are discussed in the context of three experiments, a toroidal vortex ring, the hydraulic jump, and
the hydraulic bump.

1 Introduction

Polygonal instabilities have been observed and reported in
a variety of hydrodynamic systems across a wide range of
scales [1–15]. In many cases, the mechanism of instability
remains poorly understood. We here shed some light on
this class of problems by considering the instability of a
fluid torus bound by an interface.

One of the most striking examples of polygonal insta-
bility is that of the hydraulic jump, as discovered by Elle-
gaard et al. [2]. Usually, when a vertical jet of fluid strikes
a horizontal plate, the flow spreads radially and a circular
hydraulic jump arises at a critical radius [16–20]. However,
in certain parameter regimes, the axial symmetry is bro-
ken, leading to a polygonal jump (see fig. 3a). The number
of sides is strongly dependent on the fluid properties and
the depth as well as the incoming flow rate [4, 21]. Bohr
et al. [22,23] Andersen et al. [24] and Watanabe et al. [25]
noted that a roller vortex downstream of the jump is a
prerequisite for the formation of the polygonal pattern.
Ellegaard et al. [2] suggested that this polygonal transi-
tion may be induced by a weak line tension associated
with the vortex that acts to minimize the circumference.
Bush et al. [4] and Teymourtash and Mokhlesi [21] have
investigated this system across a wide range of Reynolds
and Weber numbers, and highlighted the critical role of
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surface tension. Indeed, Bush et al. [4] reported that the
addition of surfactant can suppress the polygonal insta-
bility entirely. The authors suggested that the instability
may be due to a Rayleigh-Plateau-like instability of the
inner surface of the jump. This suggestion was pursued
by Martens et al. [26], who developed a nonlinear model
for the instability and successfully applied it, but did not
consider the role of the roller vortex in the pressure dis-
tribution. Taken collectively, these studies suggest that
surface tension and the roller vortex both play a crucial
role in the polygonal instability.

Labousse and Bush [5] reported that below a critical
incoming flow rate, a plunging jet can give rise to a surface
deflection called the hydraulic bump. The flow is marked
by a subsurface poloidal vortex that is circular at low
flow rates, but may destabilize into a polygonal form (see
fig. 4a). Owing to the relatively modest surface signature
of the vortex, the structure is termed the hydraulic bump.
We note that polygonal hydraulic bumps can also be ob-
served in the presence of the hydraulic jump, presumably
owing to the instability of the roller vortex downstream
of the jump [4,25]. One may thus obtain polygonal jumps
bound by polygonal bumps [5] (e.g. see the six-sided outer
surface structure in fig. 3a).

Another striking example of polygonal instabilities has
been discovered by Perrard et al. [1], and is illustrated
in fig. 2a. A fluid torus is contained in a circular trench
heated beyond the Leidenfrost threshold [27]: the fluid is
thus levitated on the substrate and heated vigorously from
below, resulting in a vigorous poloidal motion. The result-
ing fluid form is unstable: symmetry-breaking instabilities
give rise to a polygonal inner surface (see fig. 2a).
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Fig. 1. a) The model system is described in terms of toroidal
coordinates r, θ, ϕ. There is a poloidal rotation with angular
speed ω. b) A section view of the torus of radius a and the
toroidal basis vectors. c) A schematic illustration of an octag-
onal instability.

In all three of these systems, vorticity and surface ten-
sion would appear to be significant. We proceed by devel-
oping a theoretical model that captures the physics com-
mon to each of these three systems. We first introduce
the theoretical framework in sect. 2. Then we evaluate
the linear stability of a fluid torus in sect. 3, the prob-
lem being an extension of Rayleigh-Plateau to the case
of a toroidal geometry and an associated poloidal vortex
(fig. 1). Two distinct stability mechanisms are identified
in sect. 4 that rely on, respectively, surface tension and
the poloidal swirl, and simple scaling laws are proposed
to quantify the relative importance of these two destabi-
lizing effects. When possible, the results are compared to
previously reported data [1, 3–5] in sect. 5.

2 Theoretical framework

2.1 System parameters and dimensionless groups

We consider a fluid torus with radii R and a, density ρ,
viscosity η and surface tension γ. The main geometrical
features of a torus are summarized in appendix A. As
sketched in fig. 1, the motion of the torus is defined by a
poloidal swirling motion

ω = ωeϕ (1)

the latter being referred to as the poloidal vorticity. The
local Reynolds number

Re = ρωa2/η (2)

is assumed to be sufficiently large that the effect of vis-
cosity is negligible (see table 1). The relative magnitude
of surface tension and inertia is prescribed by the Weber
number, defined as

We =
ρω2a3

γ
. (3)

We neglect the effect of gravity. The dimensionless radius
is defined by r = r/R, the aspect ratio of the torus by

χ = a/R (4)

and the dimensionless distance from the z-axis by

β = β(r, θ) = 1 + r cos θ. (5)

χ and r are taken to be small (0 < r ≤ χ < 0.3). For the
sake of simplicity, we consider a torus with circular section.
The key system parameters and dimensionless groups are
summarized in table 1.

2.2 Operators in a toroidal basis

The toroidal coordinates are expressible in terms of their
Cartesian counterparts (X,Y, Z) in standard form

⎧

⎪

⎨

⎪

⎩

X = (R + r cos θ) cos ϕ = Rβ cos ϕ,

Y = (R + r cos θ) sin ϕ = Rβ sin ϕ,

Z = r sin θ = Rr sin θ.

(6)

The form of the differential operators in the toroidal
coordinates (r, θ, ϕ), are summarized in appendix A. In
the toroidal basis, (er, eθ, eϕ), for an inviscid fluid, the
Euler equations and the mass conservation can be written

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Du

Dt
− 1

R

[

v2

r
+

cos θw2

β

]

= − 1

Rρ

∂P

∂r
+

fr

ρ
, (7a)

Dv

Dt
+

1

R

[

v u

r
+

sin θw2

β

]

= − 1

Rρ

1

r

∂P

∂θ
+

fθ

ρ
, (7b)

Dw

Dt
+

1

R

[

w u cos θ

β
− sin θw v

β

]

=

− 1

ρ

1

Rβ

∂P

∂ϕ
+

fϕ

ρ
, (7c)

1

rβ

∂rβu

∂r
+

1

rβ

∂βv

∂θ
+

1

β

∂w

∂ϕ
= 0, (7d)

with P the pressure, v = (u, v, w) the velocity, ρ the den-
sity and D/Dt = ∂/∂t + v · ∇. We denote by f the ad-
ditional force field required for the basic state to be in
equilibrium.
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Table 1. Typical parameters and dimensionless numbers.

Parameter Notation Polygonal torus Polygonal jump Polygonal bump

Density (kg/L) ρ ≃ 0.96 ≃ 1.1 ≃ 1.1

Viscosity (cP) ν 0.24 1–35 60–70

Surface tension (mN m−1) γ 58 60–70 68

Vortex radius (cm) R ≃ 2–3 ≃ 1–4 ≃ 2–5

Vortex radius (mm) a 4–8 1–10 2–4

Dimensionless group

Aspect ratio χ = a/R ≃ 0.1 0.1–0.2 ≃ 0.05–0.08

Local Weber number We = ρω2a3/γ ∼ 1–10 ∼ 1–10 ∼ 1–10

Local Reynolds number Re = ρωa2/η ∼ 100 ∼ 10–150 ∼ 10–50

Theoretical parameters Notation Range

Toroidal coordinates (r, θ, φ) [0; a] × [0; 2π]2

Dimensionless toroidal coordinates (r = r/R, θ, φ) [0; χ] × [0; 2π]2

Distance to the z-axis R + r cos θ [R − a; R + a]

Dimensionless distance to the z-axis β(r, θ) = 1 + r cos θ [1 − χ; 1 + χ]

βπ β(r = χ, θ = π) = (1 − χ)

Curvature C(0) = 1
a

+ cos θ
R+a cos θ

3 Polygonal instabilities

We proceed by analyzing the stability of the fluid torus. In
subsect. 3.1, we define the steady state and the mechanical
balance. In subsect. 3.2 we analyze the linear stability of
the torus. We discuss two asymptotic limits of the model
in a last subsect. 3.3.

3.1 Steady state

By way of capturing the essential common feature of the
three flows of interest, we choose a purely poloidal vortical
flow for the basic state velocity field v. It is oriented along
eθ and so may be expressed as v = veθ. The continuity
equation imposes the condition

∂βv

∂r
= 0, (8)

which dictates that v = F(r)/β. The final form of F is
found by prescribing a constant vorticity along eϕ, specifi-
cally ω = ωeϕ = (1/2)rot v, which yields F = ωr = ωrR.
Consequently, the basic state velocity field may be ex-
pressed as

v =
ωr

β
eθ =

ωr

β
Reθ . (9)

This steady state flow corresponds to a solid body rotation
in a toroidal geometry, the simplest form that captures the
essential features of the three systems of interest.

The total curvature of torus is the sum of the poloidal
and azimuthal contributions:

C(0) = ∇ · er = C
(0)
θ + C(0)

ϕ , (10)

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
(0)
θ =

1

a
=

1

Rχ
,

C(0)
ϕ =

cos θ

R + a cos θ
=

1

R

cos θ

β(r = χ, θ)
.

(11)

If unbalanced by external forces, surface tension will
cause the torus to collapse into a sphere [28]. We note
that in the three physical systems of interest, the radial
force resisting this collapse has different origins. For ex-
ample, in the Leidenfrost torus, the resisting radial force
originates in the topography [1]. We here consider a body
force density of the form

f = (fr(r, θ), fθ(r, θ), 0). (12)

This force is required to maintain the toroidal shape of
the ring, simultaneously exerting a radial force that re-
sists collapse, and satisfying the normal stress boundary
condition on the toroidal surface. It must thus satisfy the
following relations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R

∫ r

0

fr(r, θ)dr =
γ

R

(

1

χ
+

cos θ

β(r, θ)

)

,

R

∫ θ

0

rfθ(r, θ̃)dθ̃ =
γ

R

(

1

χ
+

cos θ

β(r, θ)

)

,

(13)

in the bulk to meet the boundary conditions.
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The steady form of the governing set of eqs. (7) can be
expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂P

∂r
= ρω2R2 r

β2
+ Rfr,

∂P

∂θ
= Rrfθ,

∂P

∂ϕ
= 0.

(14)

The aspect ratio of the torus remains small, so eqs. (7)
can be expressed to leading order in r as detailed in ap-
pendix B. This set of equations can be integrated, using
eqs. (13), to yield

P (r, θ) = P0 + ρ
ω2R2

2

(

r2 − χ2
)

+
γ

R

(

1

χ
+

cos θ

β(r, θ)

)

+ O
(

r3
)

, (15)

with P0 being a constant pressure. The resulting pressure
P can be simply seen as resulting from the combined effect
of inertia and surface tension. Note that eq. (13) ensures
that the normal stress condition

P (r = χ, θ) − P0 = γC(0) (16)

is satisfied: the Laplace pressure corresponds to that of a
liquid torus with a local curvature C(0).

3.2 Stability

The perturbations of the steady state in pressure p̃ and
velocity vector ε = (εr/β, εθ/β, εϕ) are defined through

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Vtotal = v +

⎛

⎜

⎜

⎜

⎜

⎝

εr(r)

β
εθ(r)

β

εϕ(r)

⎞

⎟

⎟

⎟

⎟

⎠

= v +

⎛

⎜

⎜

⎜

⎜

⎝

εr,0(r)

β
εθ,0(r)

β

εϕ,0(r)

⎞

⎟

⎟

⎟

⎟

⎠

eσteinϕ,

Ptotal = P + p̃ = P + p̃0e
σteinϕ,

(17)
where σ is the growth rate, and n the number of sides of
the associated polygonal form. We assume that p̃ ≪ P and
‖ε‖ ≪ ‖v‖. The 1/β factor in the r and θ components of
ε can be simply seen as a trick to compute easily the first-
order expansion of the conservation equation ∇·ε = 0. We
restrict the class of perturbations to azimuthal modes and
neglect the poloidal ones, in which case the disturbance
amplitudes (εi,0)i are independent of θ.

By taking into account the Euler (eqs. (7a)-(7c)) and
continuity equations (eq. (7d)), a first-order expansion in
ε and p̃ leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Aεr − Bεθ = −∂p̃

∂r
, (18a)

Cεθ + εrD = 0, (18b)

Eεϕ = −inp̃, (18c)

1

r

∂rεr

∂r
+ inεϕ = 0. (18d)

All the terms A,B,C,D,E, depending on r̄ and β, are
detailed in appendix C. The set of eqs. (18) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

εr = −F
∂p̃

∂r
, (19a)

εθ = −D

C
εr , (19b)

εϕ = − in

E
p̃, (19c)

1

r

∂

(

rF
∂p̃

∂r

)

∂r
− n2

E
p̃ = 0, (19d)

with F = C/(AC +BD). We restrict our angular parame-
ter to θ = π which corresponds approximately to the angle
at which polygonal patterns are observed in the three ex-
periments of interest. Evaluated at angle θ = π, eq. (19d)
leads to a second order equation in p̃

r2 ∂2p̃

∂r2 + r
∂p̃

∂r
− r2ñ2p̃ + O

(

r4
)

= 0, (20)

with

ñ = n

√

1 + 4
(ω

σ

)2

. (21)

The passage from eq. (19d) to eq. (20) is detailed in ap-
pendix D. Note that eq. (20) has been evaluated at θ = π
for the sake of simplicity but could be extended for any
poloidal angle θ.

An analytical solution of (20) can be computed by us-
ing power series. A second order expansion in r leads us to

p̃ = ξ0 · I0(ñr) + O
(

r3
)

, (22)

with ξ0 constant and Iν the modified Bessel function of
the first kind of order ν.

Determining the growth rate of the mode n as a func-
tion of the control parameters requires considering the
boundary conditions. We denote by

H(r, θ, t) = (r − χ) −
∫ t

0

dt ε · er

= (r − χ) − εr(r, t) − εr(r, 0)

Rβσ
(23)

the surface functional with H = 0 on the perturbed sur-
face. We denote εχ = εr,0(r = χ). The curvature of the
perturbed surface is given by the divergence of its normal
vector n = (∇H)/‖∇H‖, specifically

C = ∇ · n = C(0) +
εχ

σβ
C(1), (24)

with
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C(0) =
1

R

(

1

χ
+

cos θ

β(r = χ, θ)

)

,

C(1) =
−1

R

(

cos θ

χβ(χ, θ)
+

(

sin θ

β(χ, θ)

)2

−
(

n

β(χ, θ)

)2
)

.

(25)
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The boundary conditions link εχ = εr,0(r = χ) with p̃(r =

χ, θ = π) and its derivative ∂rp̃(r = χ, θ = π) as follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

εχσ

βπ

(

1 + 4K
ω2

σ2

)

= − 1

Rρ

(

∂p̃

∂r

)

r=χ,θ=π

, (26a)

P + p̃ = γ

(

C(0) +
εχ

βπσ
C(1)

)

, (26b)

with K = 1 + 5χ/2 + 9χ2/2 + O(χ3). The origin of K is
given in appendix D. Note that eq. (26a) arises from the
combination of the linearised eqs. (18a) and (18b). Equa-
tion (26b) is the pressure boundary condition. Combining
eqs. (26a) and (26b) with eq. (22) gives a relation for the
growth rate σ as a function of the control parameters and
the mode number n. This relation takes the form

(σ

ω

)2
√

1 + 4K
(ω

σ

)2

=

χn

1 − χ

I1(ñχ)

I0(ñχ)

{

1 +
1

We
[1 − Cχ]

}

, (27)

with Cχ = χ/(1 − χ) + (nχ)2/(1 − χ)2. The term (1 −
Cχ)/We denotes the dimensionless surface tension contri-
bution, and the constant 1 is the dimensionless signature
of the poloidal vortex. In accordance with the results of
Hocking et al. [29], Ponstein [30], Pedley [31] and Ku-
bitschek et al. [33] for the case of a cylinder of fluid, the
poloidal vorticity ω destabilizes the system. The vortic-
ity also extends the range of unstable wavelengths below
that of the standard Rayleigh-Plateau threshold. By ap-
proximating I1(ñχ)/I0(ñχ) ≃ I1(nχ)/I0(nχ), as is valid
provided ω ≪ σ, the maximum growth rate is found nu-
merically. For a given Weber number We, the maximum of
the real part of the growth rate σ2 and the corresponding
n are found.

3.3 Rayleigh-Plateau and Ponstein/Hocking/Pedley
limits

For We ≪ 1, the standard Rayleigh-Plateau (indexed as
R-P) instability is recovered. Indeed, taking the limit of
a cylinder, χ → 0, and keeping the product nχ constant,
yields

σ2
R-P = ka

I1(ka)

I0(ka)

γ

ρa3

(

1 − (ka)2
)

+ O(χ), (28)

where k is the wave number of the disturbance given by
k = nχ/a. This result corresponds precisely to the relation
found by Rayleigh [32]. Moreover, for We ≪ 1, Rayleigh’s
instability criteria indicates that ka ∼ 1, that is, nχ ∼ 1
in the present case.

In the limit of the cylindrical case and We ≫ 1, one
can replace nχ in the growth rate eq. (27) by ka, which
gives

σ2
P

ω2

(

1 + 4
ω2

σ2
P

)

=
k′aI1(k

′a)

I0(k′a)

(

1 +
1

We
(1 − (ka)2)

)

,

(29)

with k′2 = k2(1 + 4(ω/σP)2) and thus we recover
the results of Ponstein [30] (indexed P), Hocking and
Michael [29] and Pedley [31]. In this regime, the most un-
stable mode is given by [31]

(ka)2 ≃ 1 + We

3
. (30)

We note that for small aspect ratios (χ < 0.1), our pre-
dictions converge to the cylindrical case, as expected.

4 Instability mechanism

4.1 Scaling laws

The polygonal shape arises from the combined destabi-
lizing influences of the surface tension and the poloidal
vortex. Imagine a perturbation to the torus giving rise to
constricted and expanded regions near points B and A,
respectively (see fig. 1c).

In the capillary regime We ≪ 1, surface tension dom-
inates the inertial terms and we recover the standard
Rayleigh-Plateau instability. The mechanism is associated
with the difference of the Laplace pressure between the
constricted and expanded regions. One of the principal
radii of curvature is positive in the zone A, and negative
in the zone B. The resulting pressure difference between
these two points drives flow away from the constriction,
thus amplifying the initial perturbation. The presence of
the poloidal vorticity may likewise prompt instability.

In the inertial regime We ≫ 1, the dynamic pressure
difference dPv dominates the Laplace pressure. The con-
servation of circulation Γ requires that 2πva = Γ , which
indicates that the variation of speed squared dv2 depends
on the variation in radius δ as dv2 ∼ Γ 2δ/a3. Also, the dy-
namic pressure difference scales as dPv ∼ ρΓ 2δ/a3 while
the difference of curvature pressure can be expressed as
γδ/λ2. The balance of these two pressure differences yields
γ/λ2 ∼ ρω2a i.e. (a/λ)2 ∼ ρω2a3/γ, from which it follows

that nχ ≃ ka ∼
√

We, in accordance with the results of
Pedley [31].

4.2 Effect of the asymmetry

The system is further destabilized by the toroidal ge-
ometry, specifically by the asymmetry between the inner
(θ = π) and the outer (θ = 0) sides of the torus. In the
capillary regime (We ≪ 1), the difference of curvature
pressure

γ
(

C(0)(θ = π) − C(0)(θ = 0)
)

= − γ

R

(

1

1 − χ
+

1

1 + χ

)

= − 2γ/R

(1 − χ2)
< 0 (31)

imposes a pressure difference that tends to straighten
out the roller locally. Similarly, in the inertial regime
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Fig. 2. a) The polygonal Leidenfrost torus [1]. A torus is fixed
in a hot toroidal channel that induces poloidal vorticity within
the core. Evaporation is compensated for by injection of fluid.
The inner surface changes from circular to polygonal. Scale
bar, 2 cm. b) A schematic defines the principal geometrical
features used in our theoretical model. We schematize in the
dashed lines the osculating torus. Our theoretical steady state
describes reasonably well the physical situation at the inner
side of this torus. c) The observed dependence of the number of
polygonal sides n on

√
We + 1/χ ·▽ indicate the experimental

data from Perrard et al. [1], and ◦, our predictions for the most
unstable mode. Panel a) is used with Permission from Perrard
et al. [1].

(We ≫ 1), the difference of Bernoulli pressure on the in-
ner (θ = π) and outer (θ = 0) sides of the vortex

ρ(v2
θ(θ = π) − v2

θ(θ = 0)) = ρω2a2

(

1

(1−χ)2
− 1

(1+χ)2

)

= 4ρωa2 χ

(1 − χ2)2
> 0 (32)

does likewise. These analogous local tendencies towards a
straight vortex, in conjunction with the global topologi-
cal constraint associated with the toroidal geometry, may
lead to a piecewise straight configuration i.e. a polygonal
pattern.

In what follows, we apply the theoretical developments
of sect. 3 to the three different experiments of interest.

5 Comparison with three related physical
systems

5.1 The Leidenfrost torus

We proceed by considering the experimental investigation
reported by Perrard et al. [1]. Experimentally, the real
base shape is a torus with an ellipitical cross section as
sketched in fig. 2b. Nevertheless, as the polygonal forms
are confined to the inner surface of the vortex (θ ≃ π), we
consider the radius of curvature there. At the inner side of
the osculating torus (see fig. 2b), the curvature and pres-
sure distribution can locally be described by our idealized
steady state. We denote by L the major axis and h the
minor axis. Near θ = π, and near the surface, the flow may
be approximated by our general theoretical framework. a
is defined as the radius of the osculating torus and can be
approximated as the semi-minor axis h/2. Moreover the
torus is confined to a circular trough that accounts for the
required counterforce. Our extrapolation from the theo-
retical framework to this experimental case is described in
table 2(a), where the torus radius is evaluated as a ≃ h/2.

The number of sides n corresponding to the maximum
growth rate is found numerically from the dispersion re-
lation (eq. (a) in table 2) and by using χ and We from
experiments. To simplify the algebra, we make the approx-
imation I1(ñχ)/I0(ñχ) ≃ I1(nχ)/I0(nχ) in (12) which is
valid provided ω/σ ≪ 1. The growth rate will depend in
general on (n, χ,We). However, for the cylindrical case,
Pedley [31] and Hocking and Michael [29] demonstrate

that a two-dimensional representation (n,
√

(We + 1)/χ)
is suitable, which in our case remains a good approxima-
tion provided the aspect ratio is small. Figure 2c indi-
cates the dependence of the number of polygonal sides n
on

√
We + 1/χ. For n = 5 to 9, the theory adequately

collapses the experimental data.

5.2 The hydraulic jump

We next consider the geometry of the hydraulic jump, and
assume a roller vortex just downstream of the jump. As in-
dicated in fig. 3, we denote by Hint and H the fluid depth,
respectively up- and downstream of the jump, which has
a radius rj . The radius of the poloidal vortex ring a can
be approximated by a ≈ (H − Hint)/2. The poloidal vor-
ticity ω can be roughly deduced from mass conservation:
aω ≈ Q/(2π(H − 2a)(Rj + a)), where Q is the total in-
coming flux. The dispersion relation is modified to account
for the difference between the theoretical framework and
the experimental configuration (eq. (b) in table 2). First,
the surface tension only influences the inner surface of the
roller vortex. We thus roughly approximate the curvature
contribution [1 − Cχ]/We (eq. (27)) by [1 − Cχ]/(2We)
(eq. (2b)). Second, the position of the jump and its as-
sociated vortex are determined by the incoming flow. We
note that at the jump position, the Bernoulli pressure,
p ∼ ρv2 ∼ ρ(ωa)2 typically exceeds the radial shear
stress τ ∼ ηv/a by at least an order of magnitude, e.g.
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Table 2. Adaptation of the predicted growth rate of polygonal instability to the three experimental cases of interest: (a) the
Leidenfrost torus, (b) the hydraulic jump and (c) the hydraulic bump. The notations and geometry are specified in figs. 2–4.

Case Growth rate Aspect ratio χ Weber number We

(a) Leidenfrost torus
σ2

ω2

r

1 + 4K
“ω

σ

”2

≃ χn

1 − χ

I1(ñχ)

I0(ñχ)

j

1 +
1

We
(1 − Cχ)

ff

χ =
a

Rint + a
We =

ρv2
πa

γ

(b) Hydraulic jump
σ2

ω2

r

1 + 4K
“ω

σ

”2

≃ χn

1 − χ

I1(ñχ)

I0(ñχ)

j

2 +
1

2We
(1 − Cχ)

ff

χ =
a

rj + a
We =

ρω2a3

γ

(c) Hydraulic bump
σ2

ω2

r

1 + 4K
“ω

σ

”2

≃ χn

1 − χ

I1(ñχ)

I0(ñχ)

j

1 +
1

We
(1 − Cχ)

ff

χ ∼ H/2

rb

We =
ρω2a3

γ

Fig. 3. a) A four-sided hydraulic jump within a six-sided hy-
draulic bump [5]. b) Schematics and notation for the polygonal
hydraulic jump. c) The dependence of the number of polygonal
sides n on

√
We + 1, where We = ρω2a3/γ. The experimen-

tal data ▽ of Ellegaard et al. [3] are plotted along with our
theoretical predictions: ◦. We now note that the data of Tey-
mourtash and Mokhlesi [21] is consistent with that of Ellegaard
et al. [3].

p/τ ∼ ωa2/(η/ρ) = 5×2π×(4×10−3)2/10−5 ∼ 50. Conse-
quently, we add this incoming Bernoulli pressure term, i.e.
1 in the corresponding dimensionless notation (eq. (2b)).

One then expects that the growth rate at θ = π can be
written as described in table 2(b).

Figure 3c compares the experimental results from Elle-
gaard et al. [3] with the theoretical predictions. The theo-
retical model agrees qualitatively with the data; however,
the substantial scatter in the data precludes a strong con-
clusion. This scatter underscores the limitations of our
model in describing this relatively complex fluid configu-
ration. First, we note that we have neglected hydrostatic
pressure, whose influence on the polygonal jump has been
demonstrated by Bush et al. [4] and Martens et al. [26].
Including the data set of Bush et al. [4], who explored
a wider range of Weber and Bond number, only increases
the scatter. Another limitation arises from the uncertainty
on the radial extent of the roller vortex, and the associ-
ated uncertainty in the aspect ratio χ, to which our model
predictions are quite sensitive. Thus, while our simplified
theoretical approach does capture some features of the
polygonal jump instability, it also reaches its limits for
this relatively complex configuration.

5.3 The hydraulic bump

Given the relatively small surface signature of the hy-
draulic bump [5], we expect the subsurface vortex to be
primarily responsible for the polygonal instability (see
fig. 4a). As sketched in fig. 4b, we denote the bump radius
by rb, the bump height by δH and the outer depth by H.
The vortex ring has radius a ∼ δH with a poloidal vortic-
ity ω that may be approximated as Q/(2πrb(H + δH)δH)
(see [5] for experimental details). The resulting growth
rate is indicated in table 2(c). Figure 4c compares the
experimental results from Labousse and Bush [5] with
the theoretical predictions. We only select the data cor-
responding to polygonal bumps in the absence of inner
jumps. The theoretical model adequately describes the rel-
atively sparse experimental data.

6 Conclusion

We have developed a theoretical model with a view to
rationalizing the instability of toroidal vortices with free
surfaces. Two distinct regimes were identified, those dom-
inated by the destabilizing influence of surface tension
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Fig. 4. a) Illustration of the five sided polygonal bump [5].
b) Schematic of the hydraulic bump. c) The dependence of
the number of polygonal sides n on

√
We + 1/χ. Data from

Labousse and Bush [5] ▽ are presented with the results of our
model predictions (◦).

(We ≪ 1) and inertia (We ≫ 1). Provided the aspect
ratio is sufficiently small (χ ≃ 0.1), our results are consis-
tent with those of previous studies for a cylindrical config-
uration [29–31,33]. The model predictions have been suc-
cessfully applied to the toroidal Leidenfrost experiment,
where the theoretical predictions are in good agreement
with the experimental data [1]. Finally, the model predic-
tions have been compared to existing experiments on the
hydraulic jump and the hydraulic bump. As these configu-
rations may exhibit more elaborate subsurface flow struc-
tures, our model is not likely to apply directly. Neverthe-
less, our results do suggest that both vorticity and surface
tension are likely to play an important role in this class of
polygonal instabilities.

The authors acknowledge the generous financial support of
the National Science Foundation through grant number DMS-
0907955. The authors are grateful to José Bico, Marc Fer-
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Perrard and Laurent Limat from the MSC laboratory for the
interesting discussions and the experiments which inspired this
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his useful remarks about the hydraulic jump.

Table 3. Geometrical features of a torus of radii a and R with
a < R. r = r/a is the dimensionless distance to the core of the
torus. The aspect ratio of the torus is denoted χ = a/R. β =
1 + r cos θ corresponds to a dimensionless toroidal corrective
term.

Elementary Integrated

Surface dS = R2β dϕ dθ S = 4π2R2χ

Volume dτ = R3β dϕr dθ dr V = 2π2R3χ2

Table 4. Differential operators in a toroidal frame of radii a
and R with a < R. r = r/a is the dimensionless distance to the
core of the torus. The aspect ratio of the torus is denoted χ =
a/R. β = 1 + r cos θ corresponds to a dimensionless toroidal
corrective term.

Displacement dl R(drer + r dθeθ + β dϕeϕ)

Gradient ∇f
1

R

j

∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

β

∂f

∂ϕ
eϕ

ff

Divergence ∇ · f 1

R

j

1

rβ
∂rβfr

∂r
+

1

rβ

∂βfθ

∂θ
+

1

β

∂fϕ

∂ϕ

ff

Appendix A. Toroidal geometry

Appendix A.1. Operators in toroidal geometry

We recall the geometrical features of a torus in table 3.
The differential operators in toroidal coordinates are

recalled in table 4. If we consider R ≫ r, we recover for-
mulae in cylindrical coordinates. If R = 0 and θ �→ π/2−θ,
we recover formulae in spherical coordinates.

Appendix A.2. Euler equation in toroidal coordinates

As toroidal coordinates are not commonly used, we detail
here the derivation of the Euler equation (eqs. (7a)-(7c)).
The difference of momentum δp of an infinitesimal volume
of incompressible fluid of mass ρδV displaced by dr =
drer + r dθeθ + (R + r cos θ)dϕeϕ during a time interval
dt is given by

δp = ρδV[v(t + dt, r + dr) − v(t, r)], (A.1)

with the speed v(t, r) = u(t, r)er +v(t, r)eθ +w(t, r)eϕ =
∑

i viei. We have

δp = ρδV dt

[

∂v

∂t
+ (v · ∇)v

]

= ρδV dt

[

∑

i

(

∂vi

∂t

)

ei + (v · ∇)v +
∑

i

(

∂ei

∂t

)

vi

]

= ρδV dt

[

∑

i

(

Dvi

Dt

)

ei +
∑

i

(

∂ei

∂t

)

vi

]

. (A.2)

To compute every ∂tei, we recall that
⎧

⎪

⎨

⎪

⎩

er = cos θ cos ϕex + cos θ sin ϕey + sin θez,

eθ = − sin θ cos ϕex − sin θ sin ϕey + cos θez,

eϕ = − sin ϕex + cos ϕey,

(A.3)
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which gives
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂er

∂t
= θ̇eθ + ϕ̇ cos θeϕ,

∂eθ

∂t
= −θ̇er − ϕ̇ sin θeϕ,

∂eϕ

∂t
= −ϕ̇(cos θer − sin θeϕ)

(A.4)

or equivalently
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂er

∂t
u =

uv

r
eθ +

uw

R + r cos θ
cos θeϕ,

∂eθ

∂t
v = −v2

r
er −

vw

R + r cos θ
sin θeϕ,

∂eϕ

∂t
w = − w2

R + r cos θ
(cos θer − sin θeϕ).

(A.5)

Finally, the variation of momentum δp = δprer + δpθeθ +
δpϕeϕ can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δpr = ρδV dt

(

Du

Dt
− 1

R

[

v2

r
+

cos θw2

β

])

, (A.6a)

δpθ = ρδV dt

(

Dv

Dt
+

1

R

[

v u

r
+

sin θw2

β

])

, (A.6b)

δpϕ = ρδV dt

(

Dw

Dt
+

1

R

[

w u cos θ

β
− sin θw v

β

])

,

(A.6c)

which justifies equations (7a)-(7c).

Appendix B. Derivation of eq. (15)

To obtain eq. (15), one must integrate the set of eqs. (14).
We first consider Euler equation (7). The speed is pre-
scribed by eq. (9), specifically v = (u, v, w) = (0, ωr/β, 0).
We thus find

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−v2

r
= −1

ρ

∂P

∂r
+

fr

ρ
, (B.1a)

0 = − 1

Rρ

1

r

∂P

∂θ
+

fθ

ρ
, (B.1b)

0 = −1

ρ

1

Rβ

∂P

∂ϕ
+

fϕ

ρ
. (B.1c)

We then expand the remaining inertial term at leading
order in r, yielding

v2

r
=

ω2r

(1 + r cos θ)2
R2 = ω2r(1 − 2r cos θ)R2 + O(r3).

(B.2)
Integrating this term yields

∫ χ

r

dr
v2

r
=

ω2
(

χ2 − r2
)

2
R2 + O(r3). (B.3)

Using this expansion, the integration of eq. (B.1) with
conditions (13) yields eq. (15).

Appendix C. Derivation of eq. (18)

We here derive eq. (18) by a first-order expansion of ε =
(εr/β, εθ/β, εϕ) and p̃. The velocity field is

Vtotal = ωr
R

β
eθ + ε

= ωr
R

β
eθ +

⎛

⎜

⎜

⎝

εr(r)
β

εθ(r)
β

εϕ(r)

⎞

⎟

⎟

⎠

= ωr
R

β
eθ +

⎛

⎜

⎜

⎝

εr,0(r)
β

εθ,0(r)
β

εϕ,0(r)

⎞

⎟

⎟

⎠

eσteinϕ (C.1)

and the pressure distribution

Ptotal = P + p̃ = P + p̃0e
σteinϕ. (C.2)

We insert Vtotal and Ptotal in the Euler and continuity
equations (7) and retain only the first-order terms. The
transport operator in the Euler equation (7) yields

Vtotal · ∇ =
1

Rβ

(

εr

∂

∂r
+ Rω

∂

∂θ
+

εθ

r

∂

∂θ
+ εϕ

∂

∂ϕ

)

.

(C.3)
In the following section we compute the first-order term
of the left hand-side of the Euler equation (7). We de-
note f(β) = (1/β)∂θ(1/β), g(r, β) = (1/β)∂r(r/β) and
(u, v, w) the components of the total velocity. Here we only
retain the first-order term in ε. All the zeroth-order terms
are included in the steady state and denoted by O(1). The
higher-order terms are denoted by the common notation
O(ε2).

Appendix C.1. Derivation of eq. (18a)

Let us focus on the computation of

Du

Dt
− 1

R

[

v2

r
+

cos θw2

β

]

. (C.4)

We compute first

(Vtotal · ∇)
εr

β
=

1

Rβ

(

ωR
∂εr/β

∂θ

)

+ O(ε2)

= ωεrf(β) + O(ε2). (C.5)

Then we compute the cross terms

− 1

R

[

v2

r
+

cos θw2

β

]

= − 1

Rr

(

Rωr

β
+

εθ

β

)2

+ O(ε2)

= −2
ωεθ

β2
+ O(1) + O(ε2). (C.6)

Finally we have

Du

Dt
− 1

R

[

v2

r
+

cos θw2

β

]

=
1

ρR
(Aεr − Bεθ)

+O(1) + O(ε2), (C.7)
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with A = (σ/β + ωf(β))ρR and B = (2ω/β2)ρR. For
the particular angle θ = π, we add a subscript to all the
coefficients. For instance βπ = (1− r). We have f(βπ) = 0
which gives Aπ = (σ/βπ)ρR and Bπ = (2ω/β2

π)ρR.

Appendix C.2. Derivation of eq. (18b)

In this subsection, we compute

Dv

Dt
+

1

R

[

v u

r
+

sin θw2

β

]

. (C.8)

We have to compute first

(Vtotal · ∇)
εθ

β
=

1

Rβ

(

ωR
∂εθ/β

∂θ

)

+ O(ε2)

= ωεθf(β) + O(ε2), (C.9)

and then

(Vtotal · ∇)
Rωr

β
=

1

Rβ

[

εr

∂(Rωr/β)

∂r
+ ωR

∂(Rωr/β)

∂θ

+
εθ

r

∂(Rωr/β)

∂θ

]

= εrωg(r, β)+εθωf(β)+O(1). (C.10)

The cross terms yield

1

R

[

v u

r
+

sin θw2

β

]

=
1

Rr

(

Rωr

β
+

εθ

β

)

εr

β
+ O(ε2)

=
ωεr

β2
+ O(ε2). (C.11)

Finally, we have

Dv

Dt
+

1

R

[

v u

r
+

sin θw2

β

]

= Cεθ + Dεr + O(1) + O(ε2),

(C.12)
with C = σ/β + 2ωf(β) and D = ω/β2 + ωg(r, β). At
θ = π, these coefficients become Cπ = σ/βπ and Dπ =
ω/β2

π + ωg(r, βπ).

Appendix C.3. Derivation of eq. (18c)

In this subsection, we compute

Dw

Dt
+

1

R

[

w u cos θ

β
− sin θw v

β

]

. (C.13)

First, we compute

(Vtotal · ∇)εϕ =
1

Rβ

[

εr

∂εϕ

∂r
+ Rω

∂εϕ

∂θ

+
εθ

r

∂εϕ

∂θ
+ εϕ

∂εϕ

∂ϕ

]

=
ω

β

∂εϕ

∂θ
+ O(ε2)

= O(ε2), (C.14)

then the cross terms

1

R

[

wu cos θ

β
− sin θw v

β

]

= − sin θ

R

w v

β
+ O(ε2)

= − sin θ

R
εϕ

(

Rωr

β
+

εϕ

β

)

+O(ε2)

= − sin θ

β
ωrεϕ+O(ε2). (C.15)

Finally we have

Dw

Dt
+

1

R

[

w u cos θ

β
− sin θw v

β

]

=
E

ρRβ
εϕ, (C.16)

with E = ρRβ(σ − ωr sin θ/β). Evaluated at θ = π, we
have Eπ = ρRβπσ.

Appendix D. Derivation of eq. (20) from
eq. (19d)

We here simplify eq. (20)

1

r

∂

(

rF
∂p̃

∂r

)

∂r
− n2

E
p̃ = 0. (D.1)

Let us recall that F = C/(AC + BD). For the sake of
simplicity and because the instability will be studied at
θ = π, we directly consider the equation

1

r

∂

(

rFπ

∂p̃

∂r

)

∂r
− n2

E
p̃ = 0 (D.2)

with

Fπ =
Cπ

AπCπ + BπDπ

=
βπ/(ρσR)

1 + 4ω2

σ2

[

1

β2
π

(

1 +
r

2βπ

)] .

(D.3)
A second-order expansion in r gives

1

β2
π

(

1 +
r

2βπ

)

= 1 +
5

2
r +

9

2
r2 + O(r3). (D.4)

Note that this term, once evaluated at r = χ gives the
coefficient K in eqs. (26) and (27). We denote

F0 =
1

(ρRσ)

(

1 + 4
ω2

σ2

) (D.5)

and expand F in r, yielding

Fπ = F0,πP(r) (D.6)

with the polynomial

P(r) = 1 − r(1 + 5G) + r2(25G2 − 4G), (D.7)
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where

G =
1/2

1 +
σ2

4ω2

. (D.8)

The differential equation (D.2) yields

r
∂

∂r

(

rP(r)
∂p̃

∂r

)

− n2

(

1 + 4
ω2

σ2

)

r2

1 − r
p̃ = 0. (D.9)

Using a power series expansion p̃ =
∑

n∈N
ξnrn, we can

show that

p̃ = ξ0

(

1 +
1

4
(ñr)2

)

+ O(r3). (D.10)

One recognizes the expansion of I0(ñr), the modified
Bessel function of the first kind of order 0, which leads to

p̃ = ξ0I0(ñr) + O(r3). (D.11)

Let us recall that I0(ñr) satisfies the differential equation

r2 ∂2I0

∂r2 + r
∂I0

∂r
− ñ2r2I0 = 0. (D.12)

We conclude that for determining p̃ to second order in r,
one can replace the polynomial terms P(r) and (1− r) by
1 in eq. (D.9). We thereby justify eq. (20).
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