Lecture 4

Development of Interfacial BCs

Fluid-Solid Contact: Partial wetting

Equilibrium contact angle θ_e

Energy differential: $dW = dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta_e$

Young's relation:

$$\sigma \, \cos\theta_e = \sigma_{SL} - \sigma_{SG}$$

 $\sigma_{_{SL}}$ θ_{e}

Hydrophobic surface Hydrophilic surface

Partial wetting

Spontaneous motion in response to a wettability gradient

Capillary adhesion in nature

18.357: Lecture 5

I. Interfacial boundary conditions

II. Fluid statics: menisci, floating bodies

John W. M. Bush

Department of Mathematics MIT The governing equations

Surface tension: Geometry

Along a contour C bounding a surface S there is a tensile force per unit length σ acting in the **s** direction

1) normal curvature pressure $\sigma \nabla \cdot \mathbf{n}$ resists surface deformation

2) tangential Marangoni stresses may arise from $\nabla \sigma$

Governing Equations

Navier-Stokes equations:

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{u} \quad , \qquad \nabla \cdot \mathbf{u} = 0$$

Boundary Conditions

Normal stress: $\mathbf{n} \cdot \mathbf{T} \cdot \mathbf{n} \mid = \sigma \nabla \cdot \mathbf{n}$ Tangential stress: $\mathbf{n} \cdot \mathbf{T} \cdot \mathbf{s} \mid = \nabla_s \sigma$

Stress tensor

$$\mathbf{T} = -p\mathbf{I} + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$$

Capillary forces support the weight of water-walking insects.

Marangoni Flows

flows dominated by the influence of surface tension gradients

Recall tangential stress BC: $\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{s} = \nabla \sigma$

• $\nabla \sigma$ may arise due to dependence of $\sigma(T, c, \Gamma)$

Marangoni Flows

- flows dominated by the influence of surface tension gradients
- $\nabla \sigma$ may arise due to dependence of $\sigma(T, c, \Gamma)$

The cocktail boat: fueled by alcohol

