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Droplets walking in a rotating frame: from
quantized orbits to multimodal statistics
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We present the results of an experimental investigation of a droplet walking on the
surface of a vibrating rotating fluid bath. Particular attention is given to demonstrating
that the stable quantized orbits reported by Fort et al. (Proc. Natl Acad. Sci.,
vol. 107, 2010, pp. 17515–17520) arise only for a finite range of vibrational
forcing, above which complex trajectories with multimodal statistics arise. We first
present a detailed characterization of the emergence of orbital quantization, and
then examine the system behaviour at higher driving amplitudes. As the vibrational
forcing is increased progressively, stable circular orbits are succeeded by wobbling
orbits with, in turn, stationary and drifting orbital centres. Subsequently, there is a
transition to wobble-and-leap dynamics, in which wobbling of increasing amplitude
about a stationary centre is punctuated by the orbital centre leaping approximately
half a Faraday wavelength. Finally, in the limit of high vibrational forcing, irregular
trajectories emerge, characterized by a multimodal probability distribution that reflects
the persistent dynamic influence of the unstable orbital states.
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1. Introduction
Louis de Broglie (1926, 1987) proposed a pilot-wave theory for microscopic

quantum particles known as the ‘double-wave solution’, according to which particles
are guided by an extended monochromatic wave field, and the resulting particle motion
is consistent with the statistical predictions of standard quantum theory. Recently,
Y. Couder and co-workers discovered the first macroscopic pilot-wave system, a
hydrodynamic system in which an oil droplet propels itself laterally on the surface
of a vibrating fluid bath by virtue of a resonant interaction with its own wave field
(Protière, Boudaoud & Couder 2006; Eddi et al. 2011). Despite the complexity of
the underlying pilot-wave dynamics, it has been demonstrated in two hydrodynamic
quantum analogue experiments that a coherent multimodal statistical behaviour may
emerge, in single-particle diffraction (Couder & Fort 2006) and for walkers in confined
geometries (Harris et al. 2013). The current study explores a third hydrodynamic
quantum analogue system that exhibits multimodal statistics and is the first to
systematically characterize their emergence.

Coalescence of a droplet placed on the surface of a fluid bath can be prevented
by vertical vibration of the bath (Walker 1978; Couder et al. 2005). The air layer
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FIGURE 1. (Colour online) (a) An oil droplet bouncing on the surface of a vibrating fluid
bath. (b) A droplet walking laterally across the surface of the bath, self-propelled by a
resonant interaction with its own Faraday wave field. The drop diameter is approximately
0.9 mm in both images. Photographs by D. M. Harris.

separating the droplet and the bath is sustained provided the drop’s contact time is
less than the time required for the intervening air layer to drain to a critical thickness
at which van der Waals forces initiate coalescence. There is a critical value of the
forcing acceleration, below which the drop coalesces with the bath, and above which
it bounces with the forcing frequency f . As the driving acceleration is increased
progressively, millimetric droplets exhibit a rich dynamics that may include a period
doubling cascade, temporal chaos and other quasi-periodic bouncing states (Protière
et al. 2006; Eddi et al. 2008; Moláček & Bush 2013a; Wind-Willassen et al. 2013).

In the absence of a droplet, provided a critical acceleration amplitude is exceeded,
γ > γF, the surface of a fluid bath subjected to a vertical acceleration γ sin(2πft)
becomes unstable to a field of Faraday waves with frequency f /2 (Faraday 1831;
Benjamin & Ursell 1954). Below this Faraday threshold, γ < γF, a localized field
of waves can still be excited by a bouncing droplet. When the drop’s bouncing
frequency is commensurate with that of its Faraday wave field, f /2, resonance is
achieved between the droplet and the bath. If the waves are of sufficient amplitude, the
bouncing state can be superseded by a walking state (figure 1) in which the droplet
moves laterally along the surface of the bath, nudged along at each bounce by its
own wave field (Protière et al. 2006; Eddi et al. 2011; Moláček & Bush 2013b). In
the absence of boundaries or external forces, the walking droplet, henceforth ‘walker’,
may move along the surface of the bath in a straight line at a uniform speed. In
addition to the simple resonant walking states in which the droplet’s vertical motion
and its wave both have frequency f /2, several exotic walking states with relatively
complex vertical dynamics have now been predicted and observed (Moláček & Bush
2013b; Wind-Willassen et al. 2013).

The walker’s lateral velocity is influenced by the local slope of the interface at
impact, this slope being determined by the sum of the waves generated by its previous
impacts. Specifying the properties of the droplet at a given instant is thus insufficient
to predict its evolution: one must also have a complete description of the underlying
wave field, which depends explicitly on the walker’s history. Eddi et al. (2011) thus
characterized the dynamics in terms of the walker’s ‘path memory’. For long path
memory or equivalently ‘high memory’ (i.e. near the Faraday threshold), the walker’s
trajectory is more strongly influenced by its history (Eddi et al. 2011; Moláček &
Bush 2013b). To study the walker’s dynamics theoretically, Moláček & Bush (2013b)
developed a trajectory equation, which was recast into integro-differential form by
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Oza, Rosales & Bush (2013b). The resulting theory rationalizes both the observed
dependence of walking speed on memory, and the stability of the walking states.

Several experiments have demonstrated that in the long path-memory regime, the
behaviour of walking droplets is reminiscent of that of quantum particles (Bush
2010). Couder & Fort (2006) investigated individual walkers impinging on both
single- and double-slit geometries. In both cases, they observed a distinct wavelike
statistical pattern in the walker’s deflection angle, a pattern that emerges after many
repetitions of the same experiment with similar initial conditions. The wavelike
statistical pattern was shown to correspond closely to the far-field amplitude of a
plane wave with the Faraday wavelength passing through the slit geometry. Harris
et al. (2013) examined a single walker confined to a circular geometry or ‘corral’
and demonstrated that, while the resulting trajectory is highly disordered, a coherent
wavelike statistical pattern emerges to describe the walker’s position. This statistical
pattern is well described by the amplitude of the most unstable Faraday wave mode
of the corral. The corral system is thus reminiscent of the quantum corral experiments
(Crommie, Lutz & Eigler 1993), provided the Faraday wavelength is identified with
the de Broglie wavelength of the trapped electrons. In each of the experiments, the
wavelike probability distribution assumes a multimodal form, with the spacing of the
peaks defined by the wavelength of the guiding wave field. Here, we will discuss a
third experimental configuration in which multimodal statistics emerge from walker
dynamics in the high-memory limit.

The motion of droplets walking on a rotating bath was first considered by Fort
et al. (2010), who observed that walkers follow circular orbits in the rotating frame
of reference. One expects an object moving with constant speed u0 in a rotating
frame to follow circular orbits with a radius that varies continuously with the imposed
rotation rate. Specifically, balancing the radially inwards Coriolis force FΩ = 2mΩu0

and the inertial force Fc = mu2
0/r0 indicates an inertial orbit with radius r0 = u0/2Ω

and frequency ω = u0/r0 = −2Ω . In what follows, we shall refer to an inertial orbit
as a circular orbit in which the Coriolis and inertial forces balance. Fort et al. (2010)
demonstrated that, at low memory, the orbital radius of the walker indeed varies
continuously with the rotation rate. However, at high memory, only discrete bands
of possible orbital radii exist, the spacing between them being roughly equal to half
the Faraday wavelength. They demonstrated that the observed orbital quantization
results from the droplet’s interaction with its own wave field. While they documented
the transition from continuous to discrete orbits, they did not examine the system
behaviour in the high-memory limit, where, as we shall see here, the orbits become
unstable. Moreover, they did not report the precise amplitudes of the vibrational
forcing used, making quantitative comparison to the present study or our group’s
associated theoretical developments (Oza et al. 2013a) difficult. As we shall see in
what follows, the system behaviour is extremely sensitive to the forcing amplitude in
the long memory limit.

Owing to the analogous form of the Coriolis force acting on a mass in a rotating
frame and the Lorentz force acting on a charge in the presence of a uniform magnetic
field, Fort et al. (2010) were able to draw an analogy between their quantized orbits
and Landau levels, with the Faraday wavelength playing the role of the de Broglie
wavelength. Eddi et al. (2012) demonstrated that the distance between a pair of
orbiting walkers is likewise quantized, but can be modulated by rotating the bath.
Specifically, the orbital radius increases or decreases continuously with the rotation
rate, according to whether the orbiting pair is co- or counter-rotating relative to the
bath. The same Coriolis–Lorentz analogy suggests that this orbital level splitting is
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FIGURE 2. (Colour online) (a) Schematic of the experimental set-up. An electromagnetic
shaker drives a rotating fluid tray, interfaced by a thin coupling rod and linear air bearing. The
shaker is mounted onto a massive levelling platform (not shown). (b) Sample trajectory of a
walker in the laboratory frame of reference with γ /γF = 0.822± 0.006, u0 = 9.0 mm s−1 and
Ω = 0.61 rad s−1. (c) Same trajectory in the rotating frame of reference. The origin (x = 0,
y= 0) in panels (b) and (c) represents the bath’s centre of rotation.

analogous to the Zeeman effect whereby spectral lines are split in the presence of a
magnetic field (Eddi et al. 2012).

The present work builds upon the work of Fort et al. (2010), but focuses on the
system behaviour in the high-memory limit. In § 2, the experimental methods are
described. In § 3, we present a detailed experimental exposition of the emergence
of quantized orbital radii, the number of which are shown to increase with system
memory. Subsequently, in § 4, focus is given to characterizing the behaviour of walkers
at higher memory than previously considered, where quantized orbits give way to
wobbling states of increasing complexity. Finally, in § 5, it is shown that, at even
higher memories, the walker may escape its confinement to a single orbital level and
carry out complex motion marked by multimodal statistics. Our results are summarized
in § 6.

2. Experimental methods
A schematic of the experimental set-up is shown in figure 2(a). For the present

experiments, we use a circular tray of inner diameter 146 mm and depth 38 mm filled
to a depth of H = 7.0 mm with a silicone oil of density ρ = 950 kg m3, surface
tension σ = 0.0206 N m−1 and kinematic viscosity ν = 20.9± 0.1 cS. The viscosity is
highly sensitive to temperature and is estimated using fluid temperature measurements,
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made with an infrared thermometer, and an empirical relationship between temperature
and viscosity provided by the oil manufacturer (Clearco). A shallow border of depth
1.0 mm and width 9.5 mm surrounds the deeper central part of the fluid bath, which
avoids complications that would otherwise arise from the meniscus at the tray’s outer
wall, a technique that has been employed in previous investigations of walking droplets
(Eddi et al. 2009; Harris et al. 2013). The fluid tray is vibrated sinusoidally at
frequency f = 80 Hz with an acceleration amplitude γ . Above a critical acceleration
amplitude γF, standing Faraday waves spontaneously form with frequency f /2 and
wavenumber kF that can be estimated using the standard water-wave dispersion relation
(Kumar 1996)

(πf )2 =
(

gkF + σk3
F

ρ

)
tanh kFH, (2.1)

where g is the gravitational acceleration. For our parameters, this approximation yields
a Faraday wavelength λF = 2π/kF = 4.75 mm, consistent with that observed. The
Faraday threshold γF is measured to be 4.08 ± 0.07g with the variation resulting
from the high sensitivity of the Faraday threshold to temperature (here approximately
0.08g ◦C−1), as arises through the temperature dependence of surface tension and
viscosity. The Faraday threshold and temperature were measured and recorded at the
beginning and end of each experiment. All experiments reported in this work are
conducted below the Faraday threshold; thus, in the absence of a droplet, the bath
would remain flat.

The present experiments require high resolution and careful control of the
vibrational forcing. We use an air-cooled electromagnetic shaker (Data Physics, V55)
with an external power amplifier (Data Physics, PA300E) to drive the fluid bath.
Regrettably, most shakers feature flexure-type suspensions that are plagued with
undesirable resonances that often lead to non-uniform and multi-directional vibration.
In order to avoid such effects, we employ a system similar to that developed by
Goldman (2002) for studies of vibrated granular materials (de Bruyn et al. 2001; Reis,
Ingale & Shattuck 2007). The system includes a linear air bearing with square cross-
section (Nelson Air Corp., 10.2 cm × 10.2 cm cross-section) interfacing the payload
and the driver, effectively restricting the motion to a single vertical axis while also
minimizing any undesirable angular motion. The air bearing carriage is mounted onto
a heavy aluminium platform, which can be levelled using three micrometer screws
resting on an optical table with a centred through-hole. The slider bar (which slides
through the fixed air bearing carriage) is connected to the shaker via a thin coupling
rod that is designed to avoid buckling, but to be relatively compliant laterally. The
lateral stiffness of the air bearing is several orders of magnitude greater than that of
the coupling rod, so that any non-axial motion generated by the shaker is taken up
in deflection of the coupling rod and thereby not transmitted to the payload. We use
two miniature piezoelectric accelerometers (PCB, 352C65) mounted in diametrically
opposed locations atop the slider bar to measure the vibration amplitude, which is
specified and monitored using a data acquisition system (NI, USB-6343) and custom
Labview software. Closed loop feedback control maintains the vibration amplitude to
within ±0.005g.

In addition to continuously vibrating the fluid tray, we rotate the tray about a
vertical axis with angular rate Ω using a stepper motor (Mercury Motors, SM-
42BYG011) mounted in the vibrating frame, whose speed and sense are specifiable
via software. The rotation rate Ω is varied from 0 to 5.5 rad s−1 in the current
experiments. At the maximum rotation rate considered, the fluid surface assumes a
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parabolic shape with minimum depth at the centre of the tray of 2.9 mm. Nevertheless,
the Faraday and walking thresholds remain nearly unchanged, provided the depth
exceeds 2.5 mm (Eddi et al. 2009). We also note that the radially outward centrifugal
force resulting from the system rotation is precisely balanced by the inward interfacial
force imparted during impact on the parabolic bath surface, so that a stationary
bouncing droplet will remain stationary in the rotating frame (Fort et al. 2010; Oza
et al. 2013a). Our two principal control parameters are thus the relative forcing
acceleration amplitude γ /γF and the rotation rate of the bath Ω . The acceleration
amplitude of the forcing γ is related to the memory parameter, which can be defined
as

Me(γ /γF)= Td

TF(1− γ /γF)
, (2.2)

where Td is the decay time of the waves in the absence of vibration and TF = 2/f
is the period of the Faraday waves (Eddi et al. 2011; Moláček & Bush 2013b).
The memory parameter Me gives an indication of the number of previous bounces
that contribute to the instantaneous guiding wave field. Note that γ /γF and Me are
monotonically related for the parameter regime of interest (γ /γF < 1), and that, as
γ /γF approaches 1, Me approaches ∞. Thus ‘high memory’ is synonymous with ‘high
forcing amplitude’, and the two are used interchangeably henceforth.

We create droplets of radius Rd = 0.40–0.43 mm by rapidly extracting a submerged
needle from the fluid bath (Protière et al. 2006). A transparent lid is placed on the
tray to avoid the effects of ambient air currents. We then measure the walking speed
u0 of the droplet in the absence of rotation, which is found to be between 9.5 and
12.6 mm s−1. The vertical motion of the walkers used in this study is completely
period-doubled and corresponds to the (2, 1)2 walking mode (Moláček & Bush 2013b;
Wind-Willassen et al. 2013). Rotation is then applied and, before data are collected,
we wait at least one minute, which significantly exceeds both the spin-up time of
the fluid (h2

0/ν ∼ 2.5 s) and the characteristic decay time of the walker’s wave field
(TFMe < 4 s). The walker’s motion is filmed from above at 20 frames per second by
a charge-coupled device (CCD) camera (AVT, Manta G-125) that has been levelled
and aligned with the rotation axis of the tray. The trajectory of the walker in the
laboratory frame is then determined using particle tracking software. In order to
minimize spurious boundary effects, if the walker passed within 5.5λF (26.1 mm) of
the submerged barrier, the data were discarded. Within this distance, the trajectory
was noticeably influenced by the boundary at high memory; otherwise, the walker’s
motion and statistical behaviour were independent of its proximity to the boundary.
A marker on the outer edge of the tray is also tracked, allowing for determination
of the angle of the tray in each image, and for the transformation of the trajectory
into the rotating frame. An example of a walker trajectory in the laboratory frame
is given in figure 2(b), with the corresponding trajectory in the rotating frame in
figure 2(c). Orbital radii and the local radius of curvature are calculated using the
method described in the Appendix, with α = π/4 for data presented in figures 4–9
and α = π/2 for figures 10–12. Unless otherwise noted, error bars represent plus and
minus one standard deviation of the measured quantity of interest.

3. The emergence of quantization
How does memory, specifically the proximity to the Faraday threshold, influence the

dynamics of a walker in a rotating frame? Sample wave fields corresponding to an
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FIGURE 3. Wave fields generated by a walking droplet of radius Rd = 0.4 mm in a rotating
frame (Ω = 0.79 rad s−1) as the driving acceleration is increased: (a) γ /γF = 0.862 ± 0.006;
(b) γ /γF = 0.968± 0.006; (c) γ /γF = 0.984± 0.006; (d) same conditions as (c), image taken
10.1 s later.

identical walker with increasing memory are shown in figure 3(a–d). At low memory
(figure 3a) the wave field is nearly centred on the droplet, prescribed primarily by its
most recent impact. As the memory is increased (figure 3b), the wave field is more
persistent; consequently, in executing a circular orbit, the droplet interacts with its own
wake. There is thus an influence of the walker’s previous orbit on its present dynamics.
At very high memory, as in figure 3(c,d), the wave field is considerably more complex,
the form of which both reflects and perpetuates an irregular trajectory. The images in
figure 3(c,d) are taken from a single experiment at very high memory, where the wave
field is continuously evolving. In figure 3(a–c), note that the lateral extent of the wave
field increases with memory. We proceed by considering walkers following regular
circular trajectories.

In figure 4 we report the observed dependence of the orbital radii r0 on the
rotation rate Ω at four different values of memory. At low memory, we find that
all orbital radii are accessible, and that the orbital radius r0 decreases continuously and
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FIGURE 4. (Colour online) The observed dependence of the orbital radius r0 on the
rotation rate of the bath Ω: (a) γ /γF = 0.822 ± 0.006 with u0 = 9.0 mm s−1; (b) γ /γF =
0.922 ± 0.004 with u0 = 9.5 mm s−1; (c) γ /γF = 0.954 ± 0.006 with u0 = 12.0 mm s−1;
(d) γ /γF = 0.971 ± 0.004 with u0 = 10.9 mm s−1 (�) and 11.7 mm s−1 (�). The dotted line
in panel (a) represents the standard prediction for inertial orbits, r0 = u0/2Ω , while the solid
line represents the modified relationship, r0 = au0/2Ω , with a best-fitted value a = 1.51. The
solid line is identical in all four panels, and is shown for the sake of comparison with the
low-memory result. The horizontal dashed lines in panels (c) and (d) are the zeros of J0(kFr),
which correspond closely to the radii of the observed quantized orbital levels (Oza et al.
2013a).

monotonically with increasing rotation rate Ω (figure 4a). As was reported by Fort
et al. (2010), there is an offset from the standard prediction for inertial orbits so that

r0 = a
u0

2Ω
. (3.1)

The data in figure 4(a) is best-fitted with an offset value of a= 1.51, shown in the plot
as a solid line, indicating that the orbits are larger than expected. This is consistent
with the results of Fort et al. (2010), who reported 1.26 a6 1.5 for all oil and forcing
frequency combinations considered. This offset results from an outward radial wave
force due to the influence of the waves generated by the most recent impacts. The
dependence of the magnitude of this offset on the system parameters is rationalized
in our theoretical treatment of the problem (Oza et al. 2013a). As the driving is
increased further (figure 4b), a subtle deviation from the low-memory result begins to
emerge at small radius (near r0/λF ≈ 0.6), although the curve remains continuous and
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all radii accessible. More dramatic changes are apparent at the next value of memory
considered (figure 4c), where the curve is no longer continuous, and several bands
of radii become inaccessible. This leads to the emergence of three discrete orbital
levels, n = 0, 1 and 2. Moreover, there is an orbital degeneracy: multiple radii are
possible for a given rotation rate. Increasing the memory further (figure 4d) results
in the emergence of additional quantized levels and heightened orbital degeneracy.
The quantized radii are centred on the zeros of J0(kFr) (represented by the dashed
horizontal lines), which are nearly half multiples of the Faraday wavelength, a result
rationalized in our theoretical treatment of the problem (Oza et al. 2013a).

From the results in figure 4, a clear picture of the origins of orbital quantization has
now emerged. As the memory is increased, the first variance from the low-memory
result arises at the smallest radii, with the deviations propagating progressively
upwards along the curve as the memory is increased. This progression is consistent
with an intuitive understanding of the role of path memory. The smallest orbits have
the smallest orbital period; thus, the walker’s wake will have decayed the least after
a single orbit. Consequently, walkers in the tightest orbits, as arise at higher rotation
rates, will be most strongly affected by their past. The observed quantization is thus
a direct result of memory. It also follows that, for sufficiently large orbits at any
memory, the data should revert to the low-memory curve. This is precisely what is
observed in our experiments; the data fall along the low-memory curve beyond the
highest quantized level observed (figure 4c–d). For large orbits, the orbital period
is much greater than the characteristic decay time of the Faraday waves; thus, the
walker’s prior orbits do not influence its dynamics.

Another quantity readily measured is the walker’s orbital frequency ω = u/r0. For
standard inertial orbits, we recall ω = −2Ω . Assuming that the walker maintains a
speed close to its free speed (u≈ u0), we can rearrange the low-memory result (3.1) to
find

ω =−2Ω
a
. (3.2)

We note that the walking speed in orbit u differs slightly from its free speed u0 by
no more than 6 % at the lowest memory considered (γ /γF = 0.822) and by no more
than 12 % at the highest memory considered here (γ /γF = 0.971). Consequently, (3.2)
should still provide a reasonable description of the orbital frequencies at low memory.
In our experiments, we measure the speed and orbital radius, from which we calculate
the orbital frequency ω = u/r0. The dependence of the orbital frequency on rotation
rate is presented in figure 5, each panel of which corresponds to its counterpart in
figure 4. At low memory (figure 5a), the data follow a line well described by (3.2)
using a = 1.51 as determined previously. The orbital frequencies are thus less than
those expected for standard inertial orbits. At higher memory (figure 5b), the deviation
from the low-memory result becomes apparent at high rotation rates (i.e. for small
radii). A significant difference is apparent in figures 5(c) and 5(d), where the curves
are no longer continuous, but discrete bands of possible orbital frequencies emerge.
The quantization in orbital frequency is a consequence of that in orbital radius. We
note that, in all cases, for sufficiently low frequencies (large orbital radii), the data
closely follow the linear relationship expected at low memory.

From what we have seen thus far, one might anticipate the emergence of further
quantized levels at higher memory. We shall proceed by demonstrating that, conversely,
the circular orbits become unstable at high memory. The increased size of the error
bars at levels n = 1, 2 and 3 in figure 4(d) does not reflect an increased experimental
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FIGURE 5. (Colour online) The observed dependence of the orbital frequency ω on the
rotation rate of the bath Ω: (a) γ /γF = 0.822 ± 0.006 with u0 = 9.0 mm s−1; (b) γ /γF =
0.922 ± 0.004 with u0 = 9.5 mm s−1; (c) γ /γF = 0.954 ± 0.006 with u0 = 12.0 mm s−1;
(d) γ /γF = 0.971 ± 0.004 with u0 = 10.9 mm s−1 (�) and 11.7 mm s−1 (�). The dotted
line in panel (a) represents the standard prediction for inertial orbits, ω = −2Ω , while the
solid line (plotted in each panel) represents the modified relationship suggested by (3.2),
ω =−2Ω/a, with a= 1.51.

error, but rather oscillations in the orbital radius, as arise for ‘wobbling’ orbits. This
effect was not reported by Fort et al. (2010), presumably due to the lower forcing
amplitudes considered in their study.

4. Wobbling orbits
We now turn our attention to wobbling orbits, as are characterized by an oscillation

in both the radius and the radius of curvature R along the trajectory. We note that the
possibility of wobbling orbits was originally suggested by the linear stability analysis
in our theoretical treatment of the problem (Oza et al. 2013a). We will focus on
wobbling orbits at the n = 1 orbital level, as a preliminary exploration suggested
that they occur over the largest range of control parameters. We adopt the following
procedure. At a fixed forcing amplitude (γ /γF > 0.96) we first increase the rotation
rate gradually from zero until the walker enters the n= 1 orbital level, whose radius is
near the second zero of J0(kFr). The transition is marked by a sharp inward jump from
the n = 2 orbital. We then increase the rotation rate in a stepwise manner, recording a
150 s trajectory at each rotation rate after waiting at least four minutes following each
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FIGURE 6. (Colour online) (a) Evolution of the observed mean radius of curvature r0 of
the n = 1 orbital as a function of rotation rate (γ /γF = 0.961 ± 0.002, u0 = 12.0 mm s−1).
The error bars extending from each point represent the average deviation from the mean
observed radius over the course of a 150 s experiment at fixed Ω . The horizontal dashed
lines represent the first two zeros of J0(kFr) corresponding to the innermost orbital levels
(n = 0, 1). The empty marker (©) denotes the location of the largest observed fluctuations in
the radius of curvature. (b) A 5 s sample of the trajectory (solid curve) at the point of largest
amplitude fluctuations, shown with a circle of equivalent mean radius (dashed). (c) Time trace
of the instantaneous radius of curvature as it oscillates about a mean radius R/λF = 0.86.
(d) Amplitude of wobbling motion (A/λF) as a function of the rotation rate (Ω) for the
wobbling states apparent in panel (a).

change. This process is repeated until the walker exits the n = 1 orbital by dropping
down to the innermost n= 0 orbital.

4.1. Simple wobbling orbits
In figure 6, we characterize the n = 1 orbital level at a forcing amplitude γ /γF =
0.961. In figure 6(a), the dependence of the mean radius of curvature on the rotation
rate is shown, with error bars reflecting the observed variation. For 2ΩλF/u0 < 1.7,
we observe stable circular orbits. However, as the rotation rate is increased through
the range 1.7 < 2ΩλF/u0 < 2.2, considerable growth and then decay in the variation
of the radius of curvature is apparent. As evidenced by the trajectory in figure 6(b),
this region of heightened variation is marked by nearly elliptical orbits. Plotting a
sample time trace of the radius of curvature in figure 6(c) indicates a distinctive
periodic oscillation. Note that this oscillation has approximately twice the frequency
of the orbit (ω̃ ≈ 2ω), as is consistent with the nearly elliptical form of the trajectory.
We will refer to these periodic orbits that wobble about a stationary orbital centre
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FIGURE 7. The dependence of (a) the wobbling amplitude A and (b) the wobbling frequency
ω̃ on the rotation rate of the bath Ω , for four different values of memory: γ /γF =
0.978 ± 0.003 with u0 = 12.4 mm s−1 (�); γ /γF = 0.974 ± 0.002 with u0 = 12.3 mm s−1

(�); γ /γF = 0.969 ± 0.005 with u0 = 12.3 mm s−1 (©); and γ /γF = 0.961 ± 0.002 with
u0 = 12.0 mm s−1 (•, same as figure 6). Each point corresponds to a single 150 s experiment
(3000 position measurements) with fixed parameters. The trajectories at the points labelled A
and B in panel (a) are considered in figures 8 and 9, respectively.

as ‘simple’ wobbling orbits. For the time trace of each wobbling orbit identified in
figure 6(a), we report the amplitude of the wobbling in figure 6(d), where error bars
indicate the minimal variation in this wobbling amplitude at fixed Ω . At this forcing
amplitude, a finite window of simple wobbling orbits exists at the n = 1 level, each
with frequency of approximately 2ω.

What happens at even higher forcing amplitude? The dependence of wobbling
amplitude on rotation rate at four different forcing amplitudes γ /γF is presented in
figure 7(a). First we note that the onset of wobbling shifts to lower rotation rates as
the forcing amplitude is increased. Second, at higher memory, the trajectories do not
return to circular orbits before jumping down to the innermost n = 0 mode as Ω is
increased. Third, the error bars on the wobbling amplitudes generally increase with
memory, reflecting larger fluctuations in the wobbling amplitude. These variations are
typically associated with a drifting of the orbital centre, as will be discussed further in
§§ 4.2 and 4.3.

We proceed by examining the wobbling frequency ω̃ more closely. While the
wobbling arose near a frequency of 2ω in all cases, there is a weak dependence



456 D. M. Harris and J. W. M. Bush

on Ω . In figure 7(b), we plot the wobbling frequency as a function of the rotation
rate Ω . Here we find a rather surprising result. The data nearly follow a single
curve, independent of memory, with the relative wobbling frequency ω̃/ω decreasing
monotonically with Ω , a result to be rationalized by Oza et al. (2013c). While a trend
within a single data set might be expected, the overall collapse to a single curve is
striking, indicating that the wobbling frequency is prescribed by the rotation rate of
the bath and relatively insensitive to the forcing amplitude. We note that wobbling
orbits, each with wobbling frequency ω̃ ≈ 2ω, were also observed in the n= 2, 3 and 4
orbitals.

4.2. Drifting wobbling orbits
In figure 7(a), significant variation in the wobbling amplitude is evident for certain
fixed experimental parameters, particularly at high memory and high Ω . We now
consider orbits with large wobbling amplitude corresponding to points A and B
in figure 7(a). To better characterize the walker’s motion, we track not only the
trajectory’s local radius of curvature, but the location of the orbital centre as well. The
orbital centre at any point is computed by fitting a circle to a length of trajectory
corresponding to one orbital period (t = 2π/ω) using a least-squares method. The
centre of the fitted circle is defined as the orbital centre for that portion of the
trajectory. For example, using this method for a simple wobbling orbit such as that in
figure 6(b) indicates negligible drift (<0.1λF) of the orbital centre.

In figure 8(a), we present a sample time trace of the local radius of curvature of
the drifting wobbling orbit observed at 2ΩλF/u0 = 1.32 and γ /γF = 0.978. In contrast
to the stable wobbling observed at lower memory (figure 6c), clear fluctuations in the
amplitude arise. A pronounced wobbling is apparent in the trajectory of the walker
(figure 8b): the trajectory strongly deviates from a circle. Moreover, the orbit is no
longer wobbling about a fixed point: the orbital centre moves in a nearly circular
orbit with radius approximately 0.2λF. An extended trajectory of the orbital centre
(figure 8c) shows that it continues to move along a nearly circular trajectory, albeit
with a slight linear drift. In figure 8(d), the coordinates of the orbital centre are plotted
with respect to time, indicating that the motion is nearly periodic with a frequency an
order of magnitude less than that of the walker’s n= 1 orbital frequency.

4.3. Wobble-and-leap dynamics
We now consider the effects of increasing the rotation rate to 2ΩλF/u0 = 1.35 while
keeping the forcing amplitude fixed, thus probing deeper into the region of unstable
circular orbits. In figure 9(a), a sample time trace of the radius of curvature is
presented. We now see alternating periods of increasing and decreasing wobbling
amplitude. While this process is not precisely periodic, the distinct pattern of growth
and collapse is persistent. The walker’s trajectory (figure 9b) suggests that there is
also a net motion of the orbital centre, which follows a peculiar pattern. In particular,
periods of negligible motion of the orbital centre are punctuated by relatively rapid
leaps to a new location. Comparing figures 9(c) and 9(a) indicates that the bursts of
relatively rapid motion of the orbital centre coincide with the periods of rapid decay in
wobbling amplitude. We thus arrive at the following physical picture of ‘wobble-and-
leap’ dynamics. A walker executes a nearly stationary orbit with a wobbling amplitude
that grows progressively until it reaches a critical wobbling amplitude, approximately
A/λF = 0.35. This wobbling of increasing amplitude is then interrupted by a relatively
rapid leap phase, in which the wobbling amplitude is greatly reduced, and the orbital
centre shifts. The process then repeats itself.
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FIGURE 8. (Colour online) Drifting wobbling orbits observed for γ /γF = 0.978 ± 0.003
and 2ΩλF/u0 = 1.32 with u0 = 12.4 mm s−1 (point A in figure 7a). (a) Time trace of
the instantaneous radius of curvature that oscillates about a mean radius R/λF = 0.92.
(b) Sample droplet trajectory (dashed curve) of 30 s duration, shown with the trajectory of
the orbital centre (solid curve). (c) Extended trajectory of the orbital centre: a trace of 180 s
is shown. (d) Time evolution of the (x, y) position of the orbital centre, corresponding to the
trajectory in panel (c). Data in panels (a–d) are from the same experiment.

An extended trajectory of the orbital centre is presented in figure 9(d), which
demonstrates that this wobble-and-leap process is robust and repeated continuously.
The approximate locations of the transiently stable orbital centres are highlighted.
Figure 9(e) indicates the time evolution of the orbital centre. The plateau regions
indicate that the orbital centre is relatively stationary, corresponding to the wobbling
phase; thereafter, brief periods of relatively large slope arise corresponding to the
‘leaps’. While the time of a single wobble-and-leap cycle varies, the distance between
successive centres is nearly constant. For this experiment, the average leap distance
was (0.36 ± 0.05)λF, very close to the first zero of J0(kFr), at 0.383λF, which
corresponds to the radius of the n = 0 orbit. No preferred leaping direction was
apparent.

The trajectories corresponding to the data sets in figure 7(a) at the highest forcing
amplitudes (γ /γF = 0.978 and 0.974) have a similar evolution as the rotation rate is
increased beyond the onset of wobbling. Near the onset, the wobbling is of relatively
small and constant amplitude, and the orbital centre is effectively stationary for the
duration of the experiment; here, we have simple wobbling orbits. As the rotation rate
is increased further, the wobbling amplitude begins to fluctuate and the orbital centre
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FIGURE 9. (Colour online) Wobble-and-leap dynamics. Results for γ /γF = 0.978 ± 0.003
and 2ΩλF/u0 = 1.35 with u0 = 12.4 mm s−1 (point B in figure 7a). (a) Time trace of the
instantaneous radius of curvature that oscillates about a mean radius R/λF = 0.92. (b) Sample
droplet trajectory (dashed curve) of 37.5 s duration, shown with the trajectory of the orbital
centre (solid curve). (c) Drift speed of the orbital centre (uc) corresponding to the data in
panel (a). (d) Extended trajectory of orbital centre: a trace of 85 s is shown. Transiently stable
orbital centres are highlighted via shading. (e) Time evolution of the (x, y) position of the
orbital centre, corresponding to the trajectory in panel (d). Data in panels (a–e) are from the
same experiment.

begins to drift slowly, often in small circular motions. Beyond this point, we observe
the wobble-and-leap dynamics, characterized by periods of wobbling of increasing
amplitude with a transiently stable orbital centre, punctuated by a rapid shift to a
new location where the growth of the wobbling is reinitiated. Increasing the forcing
amplitude even further leads to ever more complex trajectories.

5. Complex trajectories and multimodal statistics
Figure 10(a,b) show two sample trajectories obtained with identical experimental

parameters, except for the forcing amplitude γ /γF. We see that the stable circular
orbit (figure 10a) destabilizes into a complex trajectory (figure 10b) in response to the
increased memory. In figure 10(c), we show a sample time trace of the local radius
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FIGURE 10. (Colour online) (a) Observed circular trajectory with γ /γF = 0.922 ± 0.004,
u0 = 9.5 mm s−1 and Ω = 0.98 rad s−1, in the rotating frame. (b) Complex observed
trajectory at the same rotation rate Ω but increased forcing, γ /γF = 0.988 ± 0.002,
u0 = 11.3 mm s−1, in the rotating frame. (c) Sample time trace of the local radius of curvature.
(d) Histogram of the local radius of curvature; 9130 measurements were taken over ≈8 min.
Dashed vertical lines represent the zeros of the Bessel function J0(kFr) corresponding to the
radii of the unstable circular orbits. The bin size in panel (d) is 0.025λF. Data presented in
panels (b–d) are from the same experiment.

of curvature R of the trajectory presented in figure 10(b), which indicates that there
are specific preferred radii of curvature. The histogram of R (figure 10d) indicates
that, even when its trajectory is complex and unpredictable, the walker still responds
to the quantizing wave force imposed by its pilot-wave field. Specifically, the peaks of
the histogram correspond closely to the zeros of the Bessel function J0(kFr), indicated
by vertical dashed lines corresponding to the quantized orbital radii in the system
(figure 4). Thus, while at any given moment it is practically impossible to predict the
walker’s trajectory, a coherent statistical pattern emerges: the droplet tends to move
along curves with radius of curvature R corresponding to the unstable circular orbits,
which occur roughly at integer multiples of λF/2. Despite the orbital solutions being
unstable, they leave their mark on the walker’s statistics.

In this high-memory limit, the walker is freed from its stable orbits to switch
erratically between several orbital levels. But how does this transition come about
and what determines which states are accessible? In figure 11(a–c) we present
three different probability distributions for identical system parameters but increasing
memory. In figure 11(a), the single peak reflects the quantized circular orbit at
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FIGURE 11. (Colour online) The dependence of the orbital statistics on the path memory.
(a–c) Three sample probability distributions at the same rotation rate (Ω = 0.79 rad s−1) for
increasing forcing amplitudes: (a) γ /γF = 0.975 ± 0.002, (b) γ /γF = 0.985 ± 0.002 and
(c) γ /γF = 0.990 ± 0.002. (d) Probability distribution of the radius of curvature R as a
function of the forcing amplitude γ /γF at a fixed rotation rate (Ω = 0.79 rad s−1). The
brightest segment in each vertical column corresponds to the radius with the highest
probability at that memory. The vertical dashed lines correspond to the three probability
distributions shown in panels (a–c). The free walking speed is u0 = 11.8 mm s−1 at
γ /γF = 0.968 ± 0.002. Each column represents 1900 measurements of the local radius of
curvature taken over an experiment lasting 100 s. The bin size is fixed at 0.04λF.

the n = 4 level arising at γ /γF = 0.975. As the memory is increased to γ /γF = 0.985
(figure 11b), the walker can access two orbital levels, namely n = 3 and n = 4. When
the memory is increased to γ /γF = 0.990 (figure 11c), even more states become
accessible, with each peak in the probability distribution corresponding to an unstable
quantized orbit.

This progression is characterized comprehensively in figure 11(d), which includes
the three probability distributions presented in figure 11(a–c) at the positions denoted
by the dashed vertical lines. Each vertical column represents a probability distribution
for the radius of curvature of a single experiment at fixed parameters. Up to
approximately γ /γF = 0.975, a stable circular orbit persists in the n = 4 orbital.
Beyond this point, the single peak at n = 4 begins to spread, reflecting the onset
of wobbling of increasing amplitude. At a critical point, when the wobbling amplitude
becomes sufficiently large (γ /γF = 0.985), the walker escapes its confinement to the
n = 4 orbital and drifts between multiple unstable orbital levels, as is permissible by
virtue of the orbital degeneracy. As the memory is further increased, an increasing
number of orbital states are accessible, each leaving their signature on the probability
distribution in the form of a distinct peak. While the trajectory is disordered and
complex, in each case the statistical behaviour of the walker can be described in terms
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FIGURE 12. (Colour online) The dependence of the orbital statistics on the rotation rate
Ω . (a–c) Three sample probability distributions at the same forcing amplitude (γ /γF =
0.988 ± 0.003) for increasing rotation rate: (a) Ω = 0.47 rad s−1, (b) Ω = 0.79 rad s−1 and
(c) Ω = 1.57 rad s−1. (d) Probability distribution of the radius of curvature R as a function of
the rotation rate Ω at fixed forcing amplitude (γ /γF = 0.988± 0.003) and free walking speed
(u0 = 12.4 ± 0.2 mm s−1). The brightest segment in each vertical column corresponds to the
radius with the highest probability at that rotation rate. The vertical dashed lines correspond
to the three probability distributions shown in panels (a–c). Each column represents a
minimum of 4900 measurements of the local radius of curvature taken over an experiment
lasting at least 250 s. The bin size is fixed at 0.02λF.

of a multimodal probability distribution with each peak centred at the radius of an
unstable orbital level.

The influence of the rotation rate Ω on the form of the probability distribution for
the radius of curvature R at fixed memory (γ /γF = 0.988) is illustrated in figure 12.
Three sample probability distributions are provided in figure 12(a–c) for three different
rotation rates. In each case, the walker accesses several orbital levels, with the mean
R decreasing as the rotation rate is increased. Figure 12(d) provides a complete
characterization of the dependence of the probability distribution on rotation rate Ω .
As in figure 11(a), each vertical column corresponds to a probability distribution
obtained for fixed experimental parameters. In general we see a shift from larger to
smaller orbits as the rotation rate is increased, consistent with the trend evident in
figure 4. Here, however, the walker may in general switch between several accessible
orbitals during a single experiment. At the highest rotation rate considered, we see that
the innermost circular orbit, n= 0, becomes stable.

The results presented in figures 11 and 12 indicate the manner in which the form
of the probability distribution depends on the two control parameters, γ /γF and Ω . In
general, γ /γF controls the number of accessible states, while Ω determines their mean
radius. The distribution takes a multimodal form owing to the underlying pilot-wave
dynamics, specifically to the dynamic imprint of the unstable orbits.
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We note that, for the very high memories considered here, the wave field is seen
to extend to the edges of the fluid tray (figure 3c,d), which suggests the possible
significance of boundary effects. Moreover, Harris et al. (2013) have demonstrated
that spatial confinement of a walker to a circular corral can also result in complex
trajectories at high memory. However, in the current study, despite the similar forcing
amplitudes considered, the region of confinement is significantly larger. In the absence
of rotation, walkers in the current study follow simple periodic circular trajectories,
moving along the boundary at a constant speed. In order for irregular trajectories to
arise at high memory, the bulk system rotation must be applied. Finally, we note
that, at high memory, irregular trajectories with multimodal statistics are also observed
in our numerical simulations of this rotating system, wherein boundaries are entirely
absent (Oza et al. 2013c). Direct comparison with these numerical results suggests that
boundary effects are not significant in our experiments.

6. Conclusions
We have characterized the influence of path memory on the dynamics of droplets

walking in a rotating frame. At short path memory, the droplet executes a stable
circular orbit whose radius decreases continuously and monotonically with increasing
rotation rate. As the memory is increased, the orbiting droplet interacts with its own
wake, resulting in the quantization of both radius and frequency (Fort et al. 2010). We
have demonstrated that the orbital quantization does not represent the high-memory
limiting behaviour of the system, but arises only within a finite range of memory.
Moreover, the quantized orbits do not all appear at a single value of memory; rather,
the number of quantized states increases with increasing memory, with each level
being stable only within a finite range of memory. The smallest orbits have the
shortest orbital period, and so are the first to be quantized by the wave field.

As the memory is increased progressively, the stable quantized circular orbits are
superseded in turn by wobbling orbits with stationary, drifting, then leaping orbital
centres, and ultimately by irregular trajectories. We have detailed this progression
for the n = 1 orbital level. As the memory is increased, the circular orbit gives
way to a simple wobbling state, characterized by a periodic fluctuation in the local
radius of curvature and a stationary orbital centre. Thereafter, a smooth drift of the
orbital centre arises, accompanied by a fluctuating wobbling amplitude. Subsequently,
wobble-and-leap dynamics arise in which orbital motion with a fixed orbital centre and
a growing wobbling amplitude is punctuated by brief periods of rapid motion of the
orbital centre. Finally, the wobbling is of sufficient amplitude to free the walker from
its orbital confinement. An increasing number of orbital levels thus become accessible,
and irregular trajectories emerge. In the high-memory limit, the radius of curvature
at any instant is difficult to predict, as the walker switches erratically between arcs
with curvatures corresponding to the unstable quantized levels. This particular feature
of pilot-wave hydrodynamics leaves a distinct signature on the probability distribution
of the radius of curvature; specifically, it is multimodal with peaks at the radii of the
underlying unstable orbital states. The statistical pattern is thus a direct consequence
of the underlying pilot-wave dynamics and the persistent influence of the unstable
orbital states on the trajectory. The entire progression reported here will be rationalized
through accompanying theoretical developments (Oza et al. 2013a,c).

It is interesting to consider our results in light of recent investigation of
droplets walking in a central force field (Perrard et al. 2013). By encapsulating a
ferrofluidic droplet in silicone oil and applying a non-uniform external magnetic field,
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Perrard et al. were able to characterize the motion of a walker in a harmonic
potential. At high memory, they observe circular orbits as well as more complex
periodic trajectories (e.g. lemniscates) whose form is consistent with quantization in
both energy (as prescribed by the orbital radius) and angular momentum. As in our
study, switching between periodic states is prevalent at high memory. In their system,
there is a fixed orbital centre corresponding to the centre of force. The absence of
this constraint in our system allows for the observed drifting and leaping of the orbital
centre. While it is more difficult to define the energy of the orbital states in the
rotating system, one can interpret the observed quantization in radius of curvature R as
reflecting a quantization in angular momentum, mu0R, about the orbital centre.

Finally, it is important to note that the entire progression from stable quantized
orbits to wobbling orbits then irregular trajectories occurs within a few per cent of the
Faraday threshold, indicating that uniform, well-controlled vibration is essential for a
reliable characterization of the statistical behaviour of the walking droplets.
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Appendix. Calculation of radius of curvature
We seek to compute the local radius of curvature of the trajectory in the rotating

frame. We use an adaptive osculating circle technique. We denote the ith point along
the trajectory as pi. At each point pi, we first connect that point with a straight line
to its nearest neighbours pi−1 and pi+1. We then compute the interior angle between
segments, 6 pi−1pipi+1 = θi,1. Note that, in the continuous limit, each of the segments
approaches the local tangent line, so that θi,1 approaches π. Next, we proceed to
calculate the interior angle between segments pi−2pi and pipi+2, which we define as θi,2.
We repeat this procedure by incrementally increasing the value of the second index
until we find a k = kc such that π − θi,k > α, where α is some critical angle that we
specify. We then fit a circle to the points

{
pi−kc, pi, pi+kc

}
, and define the radius of

this circle, ri,k, to be an approximation of the local radius of curvature at point pi.
Additionally, we set a minimum value kc > 2, which provides good resistance to noise
for our data.

In some sense this method is ‘adaptive’ in that, in general, kc will be larger for
regions of small curvature and smaller for regions of high curvature. We find that this
adaptive osculating circle method provides a reasonable noise-resistant algorithm for
calculating the radii of curvature in our experiments.
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