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2 The aerodynamics of the beautiful game

by J.W.M. Bush
Department of Mathematics, MIT

Abstract

We consider the aerodynamics of football, specifically, the interaction between a
ball in flight and the ambient air. Doing so allows one to account for the characteristic
range and trajectories of balls in flight, as well as their anomalous deflections as may
be induced by striking the ball either with or without spin. The dynamics of viscous
boundary layers is briefly reviewed, its critical importance on the ball trajectories
highlighted. The Magnus effect responsible for the anomalous curvature of spinning
balls is seen to depend critically on the surface roughness of the ball, the sign of the
Magnus force reversing for smooth balls. The origins of the fluttering of balls struck
with nearly no spin is also discussed. Particular attention is given to categorizing and
providing aerodynamic rationale for the various free kick styles.

1 Introduction

Fluid dynamics is the science that allows us to rationalize the flow of fluids, either
liquids or gases, and so understand a vast array of everyday phenomena (Batchelor
1967, Acheson 1990). Aerodynamics is the subset of fluid dynamics dealing with
the flow of air. In addition to informing the design of airplanes and providing the
rationale for the flight of birds and insects, it provides the basis for understanding the
trajectory of sports balls in flight. A comprehensive treatment of this more general
subject, sports ball aerodynamics, can be found in Daish (1972), Mehta (1985, 2009)
and Mehta & Pallis (2001), while the aerodynamics of specific sports, including golf
(Erlichson 1983), cricket (Mehta et al. 1983, Mehta 2005), tennis (Mehta et al. 2008),
baseball (Watts & Sawyer 1975, Frolich 1984, Adair 2002, Nathan 2008) and american
football (Gay 2004) have been treated elsewhere. We here focus specifically on the
dynamics of soccer, or as most of the world knows it, football. The bulk of the research
reported here is not original. While it does draw in part upon recent studies of the
aerodynamics of football (Asai et al. 2007, Hong et al. 2010, Dupeux et al. 2010,
Hong & Asai 2011, Goff 2010, Goff & Carré 2010, 2012), it is more a personal than a
scholarly account, an idiosynchratic pedagogical review of the relevant aerodynamics
integrated with my experience as a soccer player.

Ballistics is the study of objects flying through the air, one that has received
considerable attention owing to its military applications. We begin by considering the
simplest possible theoretical description of a football in flight, that of a sphere of mass
m flying through a vacuum, in which there is no aerodynamic influence on the motion,
a classic high school physics problem. The trajectory of the ball x(t) = (x(t), z(t))
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can be simply expressed through Newton’s first law:

mẍ = −mg , (1)

where g = −gẑ is the acceleration due to gravity. This equation may be solved
subject to the initial conditions (x, y) = (0, 0) and (ẋ, ż) = (U0 cos θ, U0 sin θ), where
θ is the initial take-off angle and U0 the initial speed. Doing so yields the trajectory
(x(t), z(t)) = (U0 cos θt, U0 sin θt − 1

2gt2). As indicated by the uppermost curve in
Figure 1, this trajectory is symmetric, with the second half of its trajectory being
the mirror image of its first. Setting z = 0 indicates that the time of flight is tf =
2U0 sin θ/g. The range of the ball is thus x(tf ) = U2

0 sin 2θ/g, and achieves a maximum
of U2

0 /g with a take-off angle of θ = 45◦.

Figure 1: Computed trajectories of non-spinning balls. a) Trajectories of football-sized balls
launched at an angle of 45◦ and an initial speed of 32 m/s (corresponding to A = U2

0 /(ga) =
910; see Figure 2) with different coefficients of ballistic performance, B = gm/(π a2 ρU2

0 ).
The instantaneous flight speed is prescribed by the color of the curve, and the coordinates
scaled by the ball size a. In the limit of B → ∞, aerodynamic effects are negligible: the
range is a maximum, and the flight path symmetric about its mid point. As B is decreased
progressively, the range is decreased in response to aerodynamic drag, and the symmetry
of the trajectory is broken: the ball falls more slowly and more steeply than it rises. b)
Computed trajectories of footballs in a vacuum (upper curves) and in standard atmospheric
conditions. Balls are launched with initial velocity of 25 m/s (corresponding to A = 550,
B = 0.16) and take-off angle of 45◦. The lower curve indicates the influence of the drag
crisis: at Re = 105, the ball decelerates through the drag crisis, and the drag coefficient CD

increases from 0.1 to 0.4. The resulting increase in drag is reflected in the decreased range
and heightened asymmetry of the trajectory. Image courtesy of Dan Harris.
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The characteristic release speed of a well struck goal kick is approximately 30 m/s.
Kicking a soccer ball at this speed at the optimal angle of 45◦ indicates a maximum
range of 120 m, which is nearly twice that observed. Moreover, casual observation
indicates that the average goal kick violates the symmetry of the predicted trajectory,
with the ball falling more steeply than it climbs. Experienced players know that the
range of a goal kick may be extended by imparting backspin to the ball, and that
45◦ is not necessarily the optimal launch angle. Finally, it is common for long kicks
to stray from a vertical plane. None of these features can be rationalized without
considering the influence of the ambient air on the flight of the ball.

Quite generally, an object moving at a speed U through a fluid experiences re-
sistance that depends on the fluid properties, specifically its density ρ and dynamic
viscosity µ (or alternatively, the kinematic viscosity, ν = µ/ρ). This resistance in
general has two components, viscous drag and pressure (or ‘form’) drag. Flow of a
fluid past a solid exerts a tangential stress (force per unit area) of µU/a, where U/a
is the local shear on the solid’s boundary. Consequently, we anticipate that the char-
acteristic viscous drag on a sphere of radius a will be obtained by multiplying this
characteristic viscous stress by the surface area of the sphere, 4πa2, thus yielding a
viscous drag proportional to Dv ∼ µUπa. The pressure drag arises from a pressure
difference between the front and back of the ball. The magnitude of this pressure
difference in general depends on the details of the flow, but typically scales as ρU2.
The resulting pressure drag is thus obtained by multiplying this pressure difference
by the exposed area of the sphere, and so is proportional to Dp ∼ ρπa2U2. The
relative magnitudes of these characteristic pressure and viscous drags is given by the
Reynolds number:

Re =
PRESSURE DRAG
VISCOUS DRAG

=
U a

ν
. (2)

The Reynolds number characterizing the flight of a number of sports balls is included
in Figure 2. Note that the Reynolds number is high for all sports balls, and the largest
for footballs owing to the relatively large speed and ball size.

The pressure drag is thus dominant for most sports balls, including footballs,
and a good approximation for the drag is a force opposing motion with magnitude
CDρU2πa2/2, where a is the ball radius, ρ is the air density, and U is the ball speed.
The drag coefficient CD is in general a function of both Re and surface roughness,
but is an order 1 constant at the high Re appropriate for ball sports. The empirical
dependence of CD on Re has been well characterized for a smooth ball, for which
CD ∼ 0.4 for 103 < Re < 2× 105 (Smith et al., 1999). As Re is further increased, CD

decreases dramatically to a value of approximately 0.1 before recovering to a value
of approximately 0.4 for Re > 107. This precipitous drop in CD, termed the drag
crisis, plays a critical role in many ball sports (Mehta 1985, Mehta & Pallis 2001),
including football. The critical Reynolds number Rec at which the drag crisis arises
varies from sport to sport, as it is strongly influenced by the ball’s surface roughness.
For example, the dimples on a golf ball prompts the drag crisis at Rec = 5× 104, the
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paneling on a football at Rec = 105, the corresponding speed being roughly 15 m/s.

Incorporating aerodynamic drag leads to an improved equation for the trajectory
of a ball in flight. Denoting the position of the ball’s center by x and its velocity by
ẋ = U = U ŝ, we augment (1) to deduce:

mẍ = mg − CD
πa2

2
ρ|ẋ|2ŝ , (3)

where we again stress that the drag coefficient CD depends in general on both Re =
Ua/ν and the sphere’s surface roughness. Nondimensionalizing (3) on the basis of the
a lengthscale corresponding to the ball radius a, a velocity scale U0 and a timescale
a/U0 yields a dimensionless trajectory equation for the dimensionless ball position
X = x/a:

A Ẍ = ẑ −
CD

2B
|Ẋ|2ŝ . (4)

Two dimensionless groups appear. We refer to the first, A = U2
0 /(ga), as the range

parameter, which indicates the relative magnitudes of the maximum range of the ball
in vacuo, U2

0 /g, and the ball radius a. We refer to the second as the coefficient of
ballistic performance:

B =
WEIGHT

AIR DRAG
=

mg

πρa2 U2
0

, (5)

which indicates the relative magnitudes of the ball’s weight and the aerodynamic
drag force at launch. The ballistic performance indicates how important aerodynamic
forces are on the trajectory of a ball in flight. B values for a number of common ball
games are listed in Figure 2. Note that aerodynamic forces are most important for
light balls: it is thus that one can throw a golf ball much farther than a ping pong
ball.

Figure 1a indicates the trajectories computed from (4) using the same release
speed (U = 32 m/s, corresponding to A = 910) and launch angle, 45◦, for balls with
different B values. For high B, the trajectory is virtually unaffected by aerodynamic
effects, and so follows a nearly parabolic trajectory. Such is the case for the shot
put. Conversely, for small B values, aerodynamic forces lead to a rapid deceleration
of the ball, and a striking asymmetry in the ascending and descending portions of the
trajectory; specifically, the ball speed decreases rapidly, and falls relatively steeply
from the apex of its trajectory. One can thus rationalize the asymmetric trajectory of
goal kicks in football, which reflects the influence of aerodynamic drag. Incorporating
air drag reduces B from ∞ to 0.1 for the case of a football in flight, and so reduces
the predicted range of goal kicks from 120 m to 60 m, which is more consistent with
observation. Figure 1b indicates the influence of aerodynamic drag on the flight of a
football struck at 25 m/s. Once again, the range is reduced by the incorporation of air
drag. The lower curve indicates the influence of the drag crisis (to be discussed in § 3),
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which further reduces the range, and heightens the asymmetry of the trajectory. As
we shall see, consideration of the influence of air on the football not only allows us to
improve our estimate for the range of a goal kick, but to rationalize the motion of the
ball out of the vertical plane, the anomalous curvature of spinning and non-spinning
balls in flight.

2 The equations of fluid motion

While we have already demonstrated the importance of air drag in rationalizing the
range of a football, it is important to understand its origins if we are to come to
grips with more subtle aerodynamic effects such as the Magnus and reverse Magnus
effects. Just as Newton’s Laws describe the motion of discrete particles, Navier-Stokes
equations describe the motion of an incompressible fluid of constant density ρ and
viscosity µ = ρν in the presence of a gravitational field g. The velocity u and pressure
p fields within a fluid evolve according to

ρ

Å

∂u

∂t
+ u ·∇u

ã

= −∇pd + ρν∇2u , ∇ · u = 0 , (6)

where pd = p − ρgz is the dynamic pressure (Acheson 1990). The fluid momentum
may change as a result of inertial forces, dynamic pressure gradients within the fluid,
and viscous stresses, which act everywhere to suppress velocity gradients and so resist
motion. Equation (6) is a formidable equation that can only be solved exactly for
some very simple flows, the high Re flow around a football not being one of them.
We thus proceed by assessing the relative magnitudes of the terms in (6), with hopes
that some of them will be negligibly small.

Consider a sphere of radius a moving through a fluid at speed U . We define
dimensionless (primed) quantities in terms of dimensional ones:

u′ = u/U , x′ = x/a , t′ = t U/a , p′ = p/(ρU2) . (7)

Rewriting (6) in terms of these dimensionless variables and dropping primes yields

∂u

∂t
+ u ·∇u = −∇pd +

1

Re
∇2u , (8)

where we again see the emergence of the Reynolds number Re = Ua/ν. We have seen
previously that the characteristic Re of a football in flight is in excess of 104, and
so might feel justified in neglecting the final term in (6), that represents the viscous
stresses within the fluid. We would thus obtain the Euler equations that describe the
flow of inviscid fluids:

∂u

∂t
+ u ·∇u = −∇pd , ∇ · u = 0 . (9)



176 Chapter III. Aerodynamics

In the limit of steady flow, as one might expect to arise for a ball flying through the
air at uniform speed, (8) may be expressed as

∇
Å

p +
1

2
ρu2

ã

= 0 : (10)

along a streamline of the flow, p + 1
2ρu

2 = constant, a result known as Bernoulli’s
Theorem. If the flow speed increases along a streamline, the pressure necessarily
decreases, and vice versa.

Sport m (g) a (cm) U0 (m/s) Re A B S

Shot put 7260 6 10 40,000 170 54 0.05

Basketball 630 11.9 15 120,000 190 0.5 0.07

Tennis 58 3.8 70 180,000 12,000 0.22 0.19

Cricket 160 3.6 40 100,000 4,400 0.2 0.18

Baseball 150 3.66 40 100,000 4,200 0.2 0.05

Football 430 11.3 32 240,000 910 0.1 0.21

Golf 45 2.1 80 110,000 30,500 0.05 0.09

Volleyball 270 10.5 30 210,000 860 0.08 0.21

Squash 24 2.0 70 100,000 24,500 0.03 0.1

Ping-pong 2.5 2 45 60,000 10,125 0.008 0.36

Figure 2: The physical parameters of many common ball sports: a and m correspond to the
ball’s radius and mass, respectively, U0 to its peak speed, Ω its spin angular velocity, and
ν = 0.15 cm2/s to the kinematic viscosity of air. The corresponding dimensionless groups:
the Reynolds number, Re = U0a/ν, the range parameter A = U2

0 /(ga), the coefficient of
ballistic performance, B = mg/(πa2ρU2

0 ) and the spin parameter S = Ωa/U0. The range
parameter A indicates the relative magnitudes of the ball’s maximum range in vacuo and
its radius. The lower B, the greater the influence of aerodynamic effects on the flight of the
ball. The small values of B for most ball sports indicate that the aerodynamic drag exerted
at peak speed is typically comparable to or greater than the weight of the ball.

D’Alembert’s Paradox is the inference that the drag on a body moving steadily
through an inviscid fluid must vanish (Batchelor, 1967). This may be seen simply
for the case of a spherical object: since the streamlines computed for inviscid flow
around a sphere are fore-aft symmetric, so too must be the pressure distribution. As
the drag on the sphere in the high Re limit is deduced by integrating the fluid pressure
over the sphere, this calculation indicates zero drag. We have already stated that the
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aerodynamic drag on balls in flight is non-zero, of order πa2ρU2, so what have we
missed?

3 Boundary layers

The complete neglect of viscous effects is an untenable approximation, even in the
limit of exceedingly large Re, as it gives rise to a number of conceptual difficulties,
including D’Alembert’s Paradox. While viscosity is negligible on the scale of the flow
around the ball, it becomes significant in a thin boundary layer of thickness δ adjoining
the ball. Within the boundary layer, viscous forces µ∇2u ∼ µU/δ2 are comparable
to inertial forces u · ∇u ∼ U2/a, the balance of which indicates a boundary layer
thickness δ ∼ a Re−1/2. As evident in Figure 2, Reynolds numbers are high in all ball
sports, so the corresponding boundary layers are thin. In football, for example, the
characteristic boundary layer thickness is δ ∼ 0.1 mm.

How is it that incorporating viscosity can give rise to a drag force of order ρU2πa2

that does not depend explicitly on viscosity? The influence of the viscous boundary
layer is twofold. First, it ensures that there will always be some non-zero drag on an
object through the influence of viscous stress. For high Re flow past an object, the
viscous drag per unit area generated within its boundary layer, or skin friction, scales
as µU/δ. Thus, the characteristic viscous drag acting on a ball in flight will scale
as µUπa2/δ. For the Reynolds numbers appropriate for most sports balls (Figure
2), this viscous contribution to the total drag is negligible. The dominant effect of
the viscous boundary layer is to initiate boundary layer separation, thus breaking the
symmetry of the flow and giving rise to a non-zero pressure drag of order ρU2πa2.

Flow past a smooth, rigid sphere is a canonical problem that has been studied ex-
haustively both experimentally and theoretically (Shapiro 1961, Smith et al. 1999).
At low Re, the flow is dominated by viscous stresses, and the streamlines are sym-
metric fore and aft of the sphere (Figure 3a). The drag on the sphere, D = 6πµUa,
increases linearly with both the flow speed U and the fluid viscosity. The flow remains
viscously dominated until Re ∼ 1, when inertial drag associated with a fore-to-aft
pressure drop becomes significant. At Re = 10, a laminar ring vortex is established
downstream of the sphere (Figure 3b). For Re > 100, this vortex becomes unsta-
ble, and the resulting time-variation in the downstream pressure field gives rise to
a lateral force on the ball (Figure 3c). In a certain regime, the vortex peals off the
back of the ball like a helix; consequently, the sphere proceeds in a spiraling fashion.
This transition from rectilinear to helical motion may be observed in fireworks, and
also in your local bar. For similar reasons, champagne bubbles rise in straight lines
(Liger-Belair, 2004), while their relatively high-Re counterparts in a beer glass spiral
as they rise.

As Re is further increased, the flow in the wake becomes progressively more com-
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Figure 3: Schematic illustration of the evolution of the flow past a smooth sphere with
increasing Reynolds number, Re = Ua/ν. a) For Re # 1, the streamlines are fore-aft
symmetric and the drag is principally of viscous origins. b) For Re > 10, boundary layer
separation downstream of the sphere induces a vortical wake and a significant pressure drag.
c) For 100 < Re < 1000, the vortical wake becomes unstable, resulting in lateral forces on
the sphere. d) For Re > 1000, the wake becomes turbulent, its extent being maximum for
e) Re ≈ 2 × 105. f) For Re > 2 × 105, the boundary layers become turbulent, delaying the
boundary layer separation and decreasing the extent of the turbulent wake. Owing to the
resulting dramatic reduction in drag on the sphere, the latter transition is called the drag
crisis. Note that the precise Re-values at which flow transitions occurs depends strongly on
the sphere’s surface roughness. Images from Daish (1972).

plex until achieving a turbulent state (Figure 3d). Then, the pressure in the wake is
effectively uniform, and determined by the pressure in the free stream at the point
of separation of the wake. As Re increases, this point of separation generally moves
upstream towards the equator of the sphere. Thus, the pressure in the wake decreases,
while the area of the wake increases, the net effect being a drag that increases mono-
tonically with Re. Finally, when the separation line reaches the equator, the drag on
the sphere achieves its maximum, as the pressure drop fore-and-aft is maximum, as
is the area over which the anomalous pressure low in the wake acts (Figure 3e). In
this configuration, it is simple to make a reasonable estimate for the fore-aft pres-
sure drop, which should correspond to the pressure drop along the streamline passing
from the upstream stagnation point to the equator, ρU2a2/2, according to Bernoulli’s
Theorem. Further increasing Re beyond a critical value of 2 × 105 on a smooth ball
prompts the drag crisis, at which the drag drops drastically, typically by a factor of
3 (Figure 3f). Here, the boundary layer on the leading face of the sphere becomes
turbulent, the effect being to displace the point of boundary layer separation down-
stream, and so reduce the drag. This delay in the boundary layer separation may be
understood as being due to the boundary layer turbulence mixing high-momentum
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fluid down from the laminar external flow (Shapiro 1961).

The sensitivity of the aerodynamic force to the drag crisis plays a critical roll in
a number of ball sports. The progression detailed in Figure 3 is that observed on a
smooth ball; however, the progression is qualitatively similar on rough balls. Most
sports balls have some roughness elements, either fuzz in the case of tennis balls
(Mehta et al. 2008), stitches in the case of cricket (Mehta et al. 1983, Mehta 2005)
and baseballs (Nathan 2008), or dimples in the case of golf balls (Erlichson 1983).
For all such balls, the roughness serves to encourage turbulent rather than laminar
boundary layers, so that the drag crisis is achieved at lower speeds, and the drag
greatly decreased. As previously noted, the drag crisis arises at Re ≈ 2 × 105 on a
smooth ball, Re ∼ 105 for footballs and Re = 3 × 104 for golf balls, whose range is
thus doubled by the presence of the dimples. Controlled orientation of the stitches
on baseball and cricket balls gives rise to anomalous lateral or vertical forces owing
to the asymmetry of the boundary layer separation on the ball’s surface, an effect
exploited by pitchers and bowlers, respectively (Mehta and Pallis 2001).

The stitching of footballs ensures that, at the peak speeds relevant for shooting,
the boundary layer is typically turbulent. However, as the ball decelerates in response
to aerodynamic drag, its Re likewise decreases, ultimately reaching the critical value
of 105 at a speed of U ∼ 15 m/s. It then crosses the drag crisis threshold from
above, at which point its boundary layers transition from turbulent to laminar. Con-
sequently, the drag increases by a factor of approximately 3, and the ball decelerates
dramatically. On a goal kick or a free kick, this drag crisis typically arises during
the descent phase; thus, it will amplify the asymmetry of the trajectories apparent
in Figure 1a. The influence of the drag crisis on a ball struck at U0 = 25 m/s is
illustrated in Figure 1b. As we shall see in § 4, the drag crisis will have an even more
striking effect on spinning balls in flight.

Finally, we note that the progression detailed in Figure 3 of flow past a sphere
is qualitatively different for streamlined bodies. If a body is shaped like a modern
airfoil or, for that matter, like a trout, one can avoid boundary layer separation
entirely. In this case, the drag is prescribed entirely by the applied viscous stress or
skin friction. As the Reynolds number increases, the boundary layer thickness scales
like δ ∼ a Re−1/2, and the skin friction like τs ∼ µU/δ. The ratio of the skin friction
drag τa2 to the form drag associated with the fore-aft pressure drop across a bluff
body, ρU2a2, is thus given by Re−1/2. At the high Re appropriate for many modern
sports, including ski racing and cycling, one can thus readily see the tremendous
advantage of streamlining, now the basis for an enormous sports industry.
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4 The effect of spin

4.1 The Magnus effect

The Magnus Effect is the tendency of a spinning, translating ball to be deflected
laterally, that is, in a direction perpendicular to both its spin axis and its direction
of motion. For example, if spin is imparted such that the angular velocity vector has
a vertical component, the ball will be deflected out of the vertical plane depicted in
Figure 1 by the Magnus force. The role of the Magnus effect on the flight of tennis
balls was noted by Newton (1672), then again by Lord Rayleigh (1877), who remarked
“...a rapidly rotating ball moving through the air will often deviate considerably from
the vertical plane.” The influence of spin on the flight of cannon balls was examined
in 1742 by the British artillery officer Robins (1805). The effect takes its name from
Professor Heinrich Gustav Magnus (1853), a physicist and chemist at the University
of Berlin, who measured the lateral force on cylinders rotating in an air current. The
first theoretical description of the effect was presented by Lord Rayleigh, whose theory
predicted that the lift is proportional to the product of the speeds of rotation and
translation. However, it was not until the theory of boundary layers, developed by
Ludwig Prandtl (1904; see also Schlichting 1955, Anderson 2005), that the subtlety
of the effect could be fully appreciated.

Figure 4: Two applications of the Magnus effect. a) The sail boat Barbara, conceived and
built by Flettner in the 1920s, has sails with the form of spinning cylinders (Gilmore 1984).
b) The rotorplane 921-V, whose wings take the form of spinning cylinders, was developed
shortly thereafter (Anon. 1930). Magnus boats were more successful than their airborne
counterparts; the former having circumnavigated the globe, the latter having only flown
once before crash landing.

The Magnus effect has received considerable attention owing to its importance in
ballistics. When cylindrical shells are fired from guns or cannons, they are often spin
stabilized: rotational angular momentum imparted by fluting of the rifle shaft keeps
the shells from tumbling in flight, thus maximizing their speed and range. When
fired into a cross wind, or fired from a moving ship or plane, this spin interacts with
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the translation of the shell to generate an anomalous lift force, that may cause the
shell to miss its target. Ballistics experts and snipers are thus well aware of the
Magnus effect and how to correct for it. The Magnus effect has inspired a number
of inventions, some of them unlikely. The Flettner rotor is a sailboat whose sail is
replaced by a rotating cylinder (Figure 4a). The motion of the cylinder is driven by a
generator, and interacts with the wind to drive the boat forward via Magnus forces.
The Flettner rotor boat has successfully circumnavigated the globe, and new styles of
Magnus sailboats are currently being explored owing to their energy efficiency. More
surprising still is the Magnus airplane, for which lift is generated by flow over wings
comprised of rotating cylinders (Figure 4b). While the lift forces so generated may
be higher than those generated by conventional airfoil wings, the relatively large drag
induced by their cylindrical form makes this design impractical.

The Magnus effect is also exploited in a number of Nature’s designs. Many seed
pods, including maple keys, are shaped such that they tumble as they fall (Figure
5a; Vogel 2003). The coupling of the resulting rotational and translational motions
can give rise to a Magnus lift force that considerably extends the range of these seed
pods, thus giving them an evolutionary advantage. It has also been claimed that the
range of the box mite, that rotates when it leaps, is increased by the Magnus effect
(Figure 5b; Wauthy et al. 1998).

Figure 5: Two examples of the Magnus effect in the natural world. a) Many seed pods are
shaped so as to tumble with backspin as they fall, thus extending their range via Magnus
lift (Image from Vogel 2003). b) The box mite leaps with backspin, thus extending its range
(Image from Wauthy et al. 1998).

For a ball in flight with velocity ẋ = U = U ŝ that is also spinning with angular
velocity Ω, in addition to drag, there is thus a lift force in a direction perpendicular
to both Ω and U. This so-called Magnus force takes the form FM = CLπρa3 Ω ∧U.
We can thus augment (3) to deduce the trajectory equation for a translating, spinning
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ball:

mẍ = mg − CD
πa2

2
ρU2 ŝ + CLπa

3 ρΩ ∧ U . (11)

The lift coefficient CL, like the drag coefficient CD, is an order one constant that
depends on both the Re and the sphere’s surface roughness; furthermore, CL depends
on the spin parameter S = Ωa/U , that prescribes the relative magnitudes of the ball’s
rotational and translational speeds. We note that in all sports, one may safely assume
that 0 < S < 1, as is evident in the estimates presented in Figure 2. As we shall see
in what follows, the dependence of CL on Re, S and the surface roughness is quite
dramatic; for example, altering a ball’s surface roughness can change the sign of CL.

Bernoulli’s Theorem provides a simple but ultimately unsatisfactory rationale for
the anomalous trajectories of spinning balls in flight. Imagine a ball flying through the
air with pure backspin or ‘slice’, so that its rotation vector Ω is horizontal. Assuming
that the spinning ball contributes a net circulation to the ambient flow, one expects the
air speed to be larger on the upper, retreating surface than on the lower, advancing
surface. Bernoulli’s Theorem would thus indicate a vertical pressure gradient that
will drive the ball upwards, consistent with one’s intuition. This physical picture was
developed formally by Lord Rayleigh (1877), who solved for inviscid flow around a two-
dimensional translating spinning cylinder, the effect of the spin being incorporated
by imposing a circulation Γ = Ωa2. His solution indicated that the effect of the
circulation was to shift the stagnation points (and associated Bernoulli high pressure
points) downwards from the leading and trailing edges of the circle, giving rise to
an upward lift force per unit length of ρUΩa2 (Figure 6b). In what follows, we
shall expose the shortcomings of this inviscid physical picture, demonstrating that
the anomalous force may differ from that predicted by Lord Rayleigh not only in
magnitude, but direction. In particular, the lift coefficient CL depends not only on
Re and S, but is likewise sensitive to the surface roughness in the parameter regime
relevant to sports balls in flight.

4.2 The reverse Magnus effect

Having come to grips with the Magnus effect, and the traditional explanation thereof,
one can only be puzzled to note that striking a smooth beach ball or an old, worn
volleyball with spin has just the opposite effect: the ball bends in the opposite sense
relative to a normal football, that is, CL < 0. As we shall see, this arises due to the
so-called reverse Magnus effect, a satisfactory explanation of which cannot be given
in terms of Bernoulli arguments.

Figure 6a presents data collected from wind tunnel studies indicating the depen-
dence of the Magnus force on both the translational and rotational speeds of a smooth
cylinder, specifically, the dependence of the lift coefficent, CL = FM/(ρa2UΩ), on the
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Figure 6: a) The dependence of the Magnus lift coefficient, CL, on the translational and
rotational speeds of a smooth cylinder. The Magnus force per unit length, FM = CLρa

2UΩ,
where a is the cylinder radius, U its translational speed and Ω its rotational speed. At
sufficiently high Re = Ua/ν, we see that CL < 0, indicating a reversal in the sign of the
Magnus force. Image from Brown (1971), reprinted from Lugt (1995). b) The idealized
picture of inviscid flow past a spinning cylinder, in which a circulation Ωa2 is imposed on the
streaming flow past the body. On the basis of this physical picture, Lord Rayleigh predicted
CL = 1. In reality, we see in a) a strong dependence of CL on both Re and S = Ωa/U , as
is the case for spheres. c) For flow past a real football, backspin serves to deflect the flow
in the wake downwards, giving rise to a net lift force on the ball. d) The reverse Magnus
effect. On a smooth ball, the Magnus force may reverse sign, causing the ball to bend the
wrong way. This results from the difference in the boundary layers on the advancing and
retreating sides, the former being turbulent, the latter laminar.

Reynolds number, Re = Ua/ν, and the spin parameter, S = Ωa/U (Brown 1971). For
Re < 100000, the Magnus force is always positive (CL > 0); however, for Re > 128000,
the sign of the Magnus force reverses (CL < 0) over a finite range of rotation rates.
This reversal of the direction of the rotation-induced force on a translating sphere is
known as the reverse Magnus effect, and is most likely to arise at very large Re. While
such a comprehensive data set has not been produced for spheres, the reversal of the
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sign of CL at high Re has also been reported (Maccoll 1928, Davies 1949, Barkla
et al. 1971). The resulting reverse Magnus effect may be rationalized through our
discussion in § 3 of boundary layers.

Owing to the different local speed difference between the ambient air and points
on the surface of a translating, rotating sphere, the effective Reynolds numbers are
different on the advancing and retreating sides of a spinning ball, which may result
in two effects. When the boundary layers on both sides are either subcritical or
supercritical, reference to Figure 3 indicates that the flow on the advancing side will
separate sooner (nearer to the equator) than on the retreating side. The net effect
will thus be a deflection of the wake towards the advancing side. For example, for a
ball struck with pure backspin, this differential boundary layer separation will result
in the wake being deflected downwards, the resulting force on the ball being upwards,
as follows from the conservation of momentum (Figure 6c). The resulting force on
the spinning ball is thus consistent with that predicted by the inviscid description of
the Magnus effect (Figure 6b), but in reality relies critically on a difference in the
geometry of boundary layer separation on the advancing and retreating sides of the
ball.

We have seen that during the course of a typical shot, the ball decelerates through
the drag crisis, its boundary layers transitioning from turbulent to laminar. When the
ball is spinning, one expects the drag crisis to be crossed first on the retreating side,
where the velocity difference between ball and free stream is minimum. There would
thus arise a situation in which the boundary layer is turbulent on the advancing side,
and laminar on the retreating side. The resulting delay of boundary layer separation
on the advancing side would lead to an asymmetric wake, with air in the wake being
deflected in the direction of the retreating side, giving rise to the reverse Magnus effect,
and a lift force opposite that expected (CL < 0; Figure 6d). As the ball decelerates
further, both boundary layers will transition to laminar, and the lift anticipated on
the basis of the traditional Magnus effect (CL > 0) will be restored. To summarize,
as a typical shot decelerates through the drag crisis, its Magnus force will change
sign twice, as the retreating and advancing boundary layers transition in turn from
turbulent to laminar.

The critical role of surface roughness on the Magnus effect is illustrated in Figure 7.
A smooth plastic ball (similar to a beach ball) is struck with the instep in such a way
as to impart typical spin (with the angular velocity vector Ω vertical). Its trajectory
is marked with blue circles. If it were a regular football, the ball would curve towards
the shooter’s left in response to the Magnus force; however, because it is smooth, the
reverse Magnus effect applies, and the ball curves towards the shooter’s right. The
red trajectory indicates the trajectory of the same ball struck in precisely the same
way; however, this time a single elastic band is wrapped around the ball’s diameter.
This rubber band is sufficient to ensure turbulent boundary layer separation on both
sides of the spinning ball, so that the regular Magnus effect arises. The ball with the
rubber band thus responds to rotation as does a regular football, and swerves to the
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shooter’s left.

We thus see the critical role of surface roughening on the flight of the football. It is
noteworthy that, since the inception of the sport, footballs have always had significant
roughness, first in the form of stitched seams between panels. Moreover, the shape
of these panels has changed dramatically (Figure 8). The aerodynamic performance
of a number of recent panel patterns has been investigated by Alam et al. (2011),
who demonstrate that, while the ball’s aerodynamic performance is sensitive to the
presence of panels, it is not greatly altered by their particular form. In modern times,
when it is entirely possible to produce a perfectly smooth ball, manufacturers choose
not to do so for an obvious reason: the ball would, over a greater range of parameters,
bend the wrong way.

5 Brazilian Free Kicks

Just as the Canadian Inuit are alleged to have hundreds of words for snow and ice, the
Brazilians have an entire lexicon devoted to different styles of free kicks. We proceed
by rationalizing the anomalous motion of each of the different styles in terms of the
aerodynamics of balls in flight. The Chute de Curva describes classic bending of the
ball, the simplest in terms of execution. For a right footer, one strikes the ball with
the instep, sweeping the foot past as one does so, thus imparting a counterclockwise
spin as viewed from above, a vertical Ω. In response, the ball ‘bends’ to its left as it
flies through the air (Figure 6). The change in trajectory can be significant, with the
ball moving laterally several meters during flight.

The Trivela (or ‘Tres Dedos’) is instead struck with the outside of the foot, with
one’s three outer toes as suggested by its name. This imparts the opposite spin
to the ball, which thus (for a right footer) curves in the opposite direction, to the
shooter’s right. Owing to the decreased contact area during the foot strike, the
trivela is generally more difficult to control than the Chute de Curva. The most
celebrated trivela is undoubtedly that of Roberto Carlos in 1997 in the Tournoi de
France, struck in a friendly against France from a distance of 37 meters (Dupeux et
al. 2010). Careful viewing indicates that, had the ball followed its initial trajectory,
it would have crossed the goal line roughly on the edge of the 18 meter box. However,
owing to the spin-induced curvature of its flight, it nipped just inside the post, past
an astonished french keeper.

The Folha Seca is struck with nearly pure topspin by brushing over the ball during
the strike. As its name suggests, the ball then dips dramatically, falling like a dead
leaf. While volleying a ball with topspin is relatively straightforward, imparting pure
topspin is extremely difficult to do from a dead ball, and only a few players have truely
mastered it. The Brazilian old-timers speak of Didi as its inventor, while Juninho
Pernambucano and Cristiano Ronaldo are perhaps its best modern practitioners. The
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Figure 7: The trajectories of two nearly identically struck balls, one smooth, the other
rough, the former responding to the reverse Magnus effect, the latter, the Magnus effect.
The ball consists of a smooth beach ball. When struck with the right instep so as to impart
rotation in the usual sense, it bends anomalously, from the shooter’s left to right. Adding an
elastic band around its equator is sufficient to render the boundary layer turbulent, therefore
restoring the expected curvature, from the shooter’s right to left. Thanks to Karl Suabedissen
for his sniper-like precision, and Lisa Burton for her skillful ball tracking.

most visually striking shot in football deserves its colorful brazilian name, the Pombo
Sem Asa. Struck hard and clean with no spin imparted at impact, the ball rockets
through the air, moving erratically up and down, from side to side, like a Dove
Without Wings. Its unpredictability renders it fearsome for goalkeepers, who find it
extremely difficult to judge. Many free-kick specialists believe that both the Folha
Seca and the Pombo Sem Asa are best induced by striking the ball’s valve.

While four free kick styles are enumerated above, there are only two physical
effects that need to be understood to rationalize them. The Magnus effect allows one
to rationalize the lateral curvature of both the Chute de Curva and the Trivela, as well
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Figure 8: The evolution of the football. While the form of the ball’s paneling has changed
significantly, surface texture remains a part of the modern ball. While modern fabrication
techniques could create a smooth ball, the surface roughness is necessary to ensure that the
ball maintains its aerodynamic properties, including its response to induced spin. Images
compiled from various on-line sources.

as the anomalous dip of the Folha Seca. The aerodynamic origins of the unpredictable
trajectory of the Pombo Sem Asa are more subtle. We have seen that as a ball
passes through the drag crisis, the sign of the lift force is expected to change twice
as the retreating and advancing sides of the ball transition in turn from turbulent to
laminar. If the shot changes direction more than twice, then an alternate mechanism
must be sought. One with the most likely candidate is the knuckling effect prevalent
when baseballs are thrown with very little spin (Mehta and Pallis, 2001). Here,
the orientation of the flow in the turbulent wake changes slowly in response to the
slowly changing orientation of the seams. As each vortex shed in the wake of the ball
represents a pressure anomaly, the changes in the vortex distribution are reflected in a
time-varying aerodynamic force on the ball and an unpredictable trajectory. Despite
the absence of pronounced seams on a volleyball, a similar knuckling effect arises when
the ball is struck with very little spin (Mehta & Pallis, 2001).
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6 Discussion

We have presented a rather idiosynchratic review of the dynamics of footballs in flight,
highlighting the dominant influence of aerodynamics on their trajectories. We have
seen that the interaction of surface roughness and boundary layer flows is critical in
many aspects of football dynamics. Specifically, it prescribes both the aerodynamic
drag on the ball, and so the range of goal kicks, as well as the anomalous lateral forces
acting on rotating or non-rotating balls in flight. The Magnus effect allows one to
rationalize the anomalous curvature of spinning balls, including the extended range
of goal kicks struck with backspin, and the bending of free kicks around or over a wall
of defenders with the Chute de Cura or Folha Seca, respectively.

We have elucidated the relatively complex physics behind the fact that the aero-
dynamic drag acting on a football in flight is proportional to ρU2πa2, and may be
understood as being due to a pressure difference of order ρU2 between the leading
and trailing sides of the ball induced by boundary layer separation. The fact that
this drag depends on the air density ρ suggests a dependence of the ballistic perfor-
mance on the atmospheric conditions. For example, at Mexico City, at an altitude of
2.2 km, the air density is roughly 80% that at sea level. Thus, a 25 m shot will arrive
approximately 0.02 seconds sooner, during which time a goalie lunging at 10 m/s will
cover a distance of 20 cm. One thus sees that playing at altitude gives an advantage
to the shooter, and tends to favor high-scoring matches. Of course, this aerodynamic
advantage may be more than offset by the cardiovascular penalties associated with
playing at altitude.

We have reviewed the standard inviscid treatment of flow past a spinning cylinder,
typically the rationale provided for the Magnus effect, and found it wanting. While
it predicts the correct direction for the Magnus force (based on the intuition of the
soccer or tennis player), we have seen that this result is purely fortuitous. Specifically,
we have seen that the Magnus force on a smooth, light sphere may act in a direction
opposite to that on a football, as may be readily observed by kicking a beach ball.
The fact that the sign of the Magnus force can reverse on nearly identical spinning
balls (Figure 7) highlights the critical role of surface roughness and boundary layers in
the Magnus effect. We feel confident in predicting that, however much manufacturing
techniques evolve, there will always be roughness elements on the football; otherwise,
players will have to adjust to the reverse Magnus effect.

We have reviewed the brazilian lexicon of free kicks, and provided rationale for the
behaviour of each. The bulk can be understood simply in terms of the Magnus effect,
the exception being the Pombo Sem Asa, which is struck without spin. Two possible
rationale for the resulting irregular trajectory have been proposed. The first would
indicate that the Pombo Sem Asa is the footballing equivalent of the knuckleball, its
unpredictable trajectory due to the random shedding of vortices in its wake. Hong et
al. (2010) performed windtunnel studies, in which the wake of the ball was visualized
by dust placed on its surface. They note that the vortex shedding arises at a much
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higher frequency than the directional changes of the ball, presumably owing to the
significant influence of the ball’s inertia. The second possibility is the double reversal
of the sign of the lift force as a slowly spinning ball decelerates through the drag crisis.
The relative importance of these two effects in the erratic flight of the Dove Without
Wings will in general depend on the ball’s spin rate, but remains an open question.

Another important aspect of the dynamics of football that I have not touched upon
is the striking of the ball. The contact time between foot and ball was measured by
Nunome et al. (2012), and found to be approximately 10 ms; however, this value will
in general depend on both the geometry of the foot strike, and the overpressure of
the ball. FIFA stipulates that internal overpressures lie in the rather sizable range of
0.6 to 1.1 atm. Within this range, contact times vary by approximately 20%, being
larger for the softer balls. The contact time will in general determine the ability of
the shooter to control the ball. In particular, the longer the contact time, the more
readily the shooter can impart spin to the ball when trying to bend it. Conversely, if
the shooter wants to strike the ball without spin, and so produce a Pombo Sem Asa,
it is advantageous to minimize the contact time. The latter is consistent with the
fact that in attempting to generate such a knuckling effect, many free-kick specialists
strike the valve side of the ball, where the ball is relatively stiff and uncompliant, so
as to minimize contact time.

We can now apply what we have learned to the puzzling question that faced me as
a player when, having grown accustomed to playing in Boston’s hot, dry summers, I
had to adjust to the wet, wintry pitches of England. It became immediately apparent
that bending the ball in a controlled fashion was significantly more difficult in the
English winter, at times virtually impossible. We can see now why such would be the
case. The balls in England were often water-logged, thus heavier and more slippery,
as well as overpumped. As a result, imparting controlled spin was more difficult.
Moreover, the additional weight of the wet ball insured that its effective coefficient
of ballistic performance was higher, so it would respond less to the Magnus force.
I can thus rationalize why my first attempts to bend the ball at the Fitzwilliam
College grounds flew scud-like, well wide of both the wall and the net, and why I was
subsequently relegated to the role of fair-weather free-kick specialist.
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