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FIG. 1. (a) An oil droplet bouncing in place on a vibrating fluid bath. (b) At higher forcing amplitude, the droplet walks across
the surface of the bath, propelled by its pilot-wave field (enhanced online). [URL: http://dx.doi.org/10.1063/1.4820128.1]
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A millimetric droplet can be induced to bounce on the surface of a fluid bath by vibrating the bath
near the droplet’s resonant frequency (Figure 1(a)).1–3 The localized field of Faraday waves excited
by the bouncing droplet can cause it to propel itself laterally across the surface, moving in resonance
with its guiding wave field (Figure 1(b)).4, 5 These walking droplets, or “walkers,” generally move in
a straight line at constant speed; however, they can be diverted through interaction with boundaries
or external forces. This hydrodynamic system represents a macroscopic realization of the pilot-
wave theory of quantum dynamics proposed by Louis de Broglie, according to which microscopic
particles are propelled through a resonant interaction with a wave field generated by the particle’s
internal vibration.6 Coincidentally, it exhibits many behaviors once thought to be exclusive to the
microscopic quantum realm, including single-particle diffraction,7 tunneling,8 quantized orbits,9 and
orbital-level splitting.10

We here investigate the dynamics and statistics of a walker confined to a circular corral. Tracking
the motion of the walker (Figure 2(a)) indicates that its trajectory is irregular and its speed varies
significantly along its path. Nevertheless, for a trajectory of sufficient length, a dependence of the
velocity on position emerges (Figure 2(a), fourth panel). This dependence results in a coherent,
wavelike statistical pattern for the walker’s position (Figure 2(b)), with a wavelength prescribed
by that of the droplet’s guiding wave, the Faraday wavelength. The probability distribution is well
described by the amplitude of the cavity’s most unstable Faraday wave mode at the forcing frequency
(Figure 2(c)). In the quantum corral experiments of Crommie et al.,11 electrons were confined to a
circular corral on the surface of a metal substrate. The electron’s probability distribution function
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FIG. 2. (a) Trajectory of a walker confined to a circular cavity. Trajectories of increasing length are color-coded accord-
ing to the droplet’s local speed (mm/s). The duration of the trajectory presented in the fourth panel is approximately
21 min. (b) Probability distribution of the walker’s position. (c) The Faraday wave mode of the cavity just above the Faraday
threshold. The bright rings correspond to the extrema in the amplitude of the wave field.

took a similar circularly symmetric form, with a wavelength prescribed by the electrons’ de Broglie
wavelength. Whatever the case may be for quantum particles, the statistical description of our system
is incomplete, and underlaid by a chaotic pilot-wave dynamics.

A more detailed account of our study is reported elsewhere.12
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