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Many biological and man-made systems rely on transport systems for the

distribution of material, for example matter and energy. Material transfer

in these systems is determined by the flow rate and the concentration of

material. While the most concentrated solutions offer the greatest potential

in terms of material transfer, impedance typically increases with concen-

tration, thus making them the most difficult to transport. We develop a

general framework for describing systems for which impedance increases

with concentration, and consider material flow in four different natural sys-

tems: blood flow in vertebrates, sugar transport in vascular plants and two

modes of nectar drinking in birds and insects. The model provides a simple

method for determining the optimum concentration copt in these systems.

The model further suggests that the impedance at the optimum concentration

mopt may be expressed in terms of the impedance of the pure (c ¼ 0) carrier

medium m0 as mopt�2am0, where the power a is prescribed by the specific

flow constraints, for example constant pressure for blood flow (a ¼ 1) or con-

stant work rate for certain nectar-drinking insects (a ¼ 6). Comparing the

model predictions with experimental data from more than 100 animal and

plant species, we find that the simple model rationalizes the observed con-

centrations and impedances. The model provides a universal framework

for studying flows impeded by concentration, and yields insight into

optimization in engineered systems, such as traffic flow.
1. Introduction
Transport systems are ubiquitous in nature and technology. Whether biologi-

cal such as the vascular systems of plants and animals or engineered such as

man-made pipes, roads, electrical grids and the Internet, they serve to move

matter, energy or information from one place to another. Owing to the cost of con-

structing and maintaining redundant channels, it is advantageous for biological

transport systems to distribute matter efficiently [1,2]. Oxygen transport in

vertebrates [3,4], sugar transport in plants [5] and drinking strategies of many

animals [6,7] are known to be optimized for efficient transport of energy and

material. Engineered systems must likewise be cost-effective and able to provide

efficient transport under a variety of conditions; for example, considerable

resources are spent annually to ease traffic congestion.

In our examination of transport systems, we consider material flow in four

different natural systems: blood flow in vertebrates, sugar transport in vascular

plants, and two modes of nectar drinking in birds and insects. A common fea-

ture of these and other transport systems is that the flow impedance depends on

concentration. While the most concentrated solutions offer the greatest potential

in terms of material transfer, the increase of impedance with concentration also

makes them the most difficult to transport. Additionally, most transport sys-

tems are subject to a set of limiting constraints. For example, nectar feeders

are typically constrained by a constant work rate, which in turn is a function

of flow impedance and hence concentration [7–9]. These transport systems
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may thus be characterized in terms of an optimization pro-

blem subject to appropriate constraints. This approach has

been used to rationalize observed concentrations in a wide

range of natural systems [4,8–10]. For example, the observed

volume fraction of erythrocytes (red blood cells), typically

approximately 40–50% in humans, has been shown to maxi-

mize oxygen transport [4,10]. With the widespread use of

bioinspired design in the development of novel engineered

systems, it seems likely that man-made transport systems

such as roads or the electrical grid may benefit from

improved understanding of natural transport systems.

We here develop a general framework for determining the

concentration that maximizes material transfer in transport

systems. By drawing on a number of natural examples—

either new or drawn from the biology literature—we show

how these can be treated within a single framework that pro-

vides new insight into the efficiency of transport systems. We

compare our model predictions with experimental data from

more than 100 animal and plant species collected from the lit-

erature. Finally, we show that similar optimization criteria

may be applied to engineered systems, and consider traffic

flow in the context of our new framework.
2. General formulation
We consider systems in which the material transfer rate

(material flow) J can be expressed as the product of a volu-

metric flow rate (volume flow) Q and a concentration of

material c

J ¼ Qc: ð2:1Þ

We express the volume flow as Q ¼ Xf/m, where X is a con-

stant geometric factor, f quantifies the mechanism driving

the flow and m characterizes the impedance. The material

flow in equation (2.1) can be expressed as

J ¼ X
f ðcÞ
mðcÞ c; ð2:2Þ

where f and m can depend on c. We now seek the optimal

concentration c ¼ copt that maximizes J in equation (2.2) sub-

ject to a set of constraints; constant driving force f ¼ f0 or

constant work rate W � Qf � f2/m. We thus consider

constraints of the form f � mg, where g ¼ 0 corresponds to

constant driving force and g ¼ 1
2 to constant work rate

when f depends on m. Other values of g are possible, if

there is a direct coupling between the driving force and impe-

dance; for example, g ¼ 5
6 for bees that use viscous dipping to

drink nectar (see §3.4).

Although we may have limited knowledge of the exact

functional form of the concentration-dependent material

flow J(c) in equation (2.2), two general statements can be

made. First, we expect J to be proportional to the concen-

tration c at low concentrations and to approach zero with

the concentration, i.e. J(c)/ c, when c� copt. Second, we

are concerned with situations where the system impedance

increases with concentration, and J increases monotonically

up to a maximum value J(copt). To describe the system, we

thus propose the first order governing equation

@J�

@c�
¼ A� Bc�; ð2:3Þ

where J* ¼ J(c)/J(copt) and c* ¼ c/copt is the normalized

material flow and concentration, respectively. A and B are
parameters that are determined by the boundary conditions:

J* (0) ¼ 0, J* (1) ¼ 1 and @J�=@c�jc�¼1 ¼ 0. This leads to

J� ¼ c�ð2� c�Þ: ð2:4Þ

While equation (2.4) does not reveal the absolute value of the

optimum concentration copt, it does contain information con-

cerning the impedance at the optimum concentration m (copt).

By expressing the constraint as f/ mg, we find from

equation (2.2) that the normalized flux J* ¼J(c)/J(copt) can

be written as

J� ¼ mðcÞg

mðcoptÞg
mðcoptÞ
mðcÞ

c
copt
¼ c�

ðm�Þ1�g
: ð2:5Þ

By using equation (2.4), the normalized impedance m* ¼

m(c)/m(copt) may be expressed as

m� ¼ 1

2� c�

� �
:
1=ð1�gÞ

ð2:6Þ

It follows that the impedance at the optimum concentration is

mðcoptÞ ¼ 2amð0Þ; ð2:7Þ

where the power a ¼ 1/(1 2 g) ¼ log2(m(copt)/m(0)) and m (0)

is the impedance at zero concentration.

Equations (2.4), (2.6) and (2.7) provide a general frame-

work for analysing optimization of concentration-impeded

material flow in biological and engineered systems. To test

the quantitative predictions of the theory, we proceed in §3

by considering a series of biological examples where the

flux J can be optimized along the lines outlined above. In

§4, we apply our model to traffic flow. Finally, in §5, we con-

sider universal properties of concentration-impeded material

transport systems.
3. Biological transport systems
3.1. Nectar drinking from a tube
Perhaps the simplest situation in which we may apply

equation (2.2) is drinking from a cylindrical tube. Many

insects and birds such as butterflies and hummingbirds [7]

feed on floral nectar, an aqueous solution of sugars, through

tubes formed from proboscises or tongues. Quick energy

ingestion is advantageous for nectar feeders owing to the

threat of predation. While the sweetest nectar offers the great-

est energetic rewards, the increase of viscosity with sugar

concentration also makes the sweetest nectar the most diffi-

cult to transport [11]. An optimal concentration may thus

be sought for maximizing energy uptake rate.

Two different suction mechanisms are typically used

by nectar feeders: active suction and capillary suction

[7–9,11]. Active suction feeders such as butterflies use muscle

contraction to suck nectar through their roughly cylindrical pro-

boscises. In the limit of low Reynolds number Hagen–

Poiseuille flow, the nectar mass flow rate Js can be expressed as

Js ¼ r�c
pa4

8hð�cÞlDp; ð3:1Þ

where a is the radius and l is the length of the proboscis,�c is the

w/w sugar concentration, h is the viscosity (see appendix A), r

is the density of the nectar solution and Dp is the pressure differ-

ence generated by muscular contraction. The manner in which

biological constraints determined the dependence of the

pressure Dp on nectar viscosity has been treated elsewhere



Ta
bl

e
1.

Pa
ra

m
et

er
s

de
sc

rib
in

g
th

e
m

at
er

ial
flo

w
J¼

Qc
¼

Xf
c/m

(se
e

eq
ua

tio
n

(2
.2

))
fo

re
ac

h
of

th
e

sy
ste

m
s

co
ns

id
er

ed
.S

ee
ap

pe
nd

ice
s

A
an

d
B

fo
r

de
ta

ils
on

th
e

vis
co

sit
y
h

of
bl

oo
d,

ne
cta

ra
nd

ph
lo

em
sa

p
(B

HN
,B

an
do

,H
as

eb
e

an
d

Na
ka

ya
m

a)
.

sy
st

em
ge

om
et

ry
,X

dr
iv

in
g

fo
rc

e,
f

co
nc

en
tr

at
io

n,
c

im
pe

da
nc

e,
m

co
ns

tr
ai

nt

ne
cta

rd
rin

kin
g

(a
cti

ve
su

cti
on

)
p

a4 (8
l)

2
1

D
p

r�
c

h
co

ns
ta

nt
w

or
k

rat
e

W
¼

QD
p,

f/
m

1/
2

ne
cta

rd
rin

kin
g

(ca
pi

lla
ry

su
cti

on
)

p
a3

(s
h

T)
1/

2
(T
þ

T 0
)2

1 (2
a)

2
1/

2
r�

c
h

cy
cli

c
su

cti
on

pe
rio

d
T
þ

T 0
,f
/

m
1/

2

bl
oo

d
flo

w
in

ve
rte

br
at

es
p

a4 (8
l)

2
1

D
p

~ c
h

co
ns

ta
nt

pr
es

su
re

f 0
¼

D
p,

f/
m

0

su
ga

rt
ra

ns
po

rt
in

pl
an

ts
p

a4 (8
l)

2
1

D
p

r�
c

h
co

ns
ta

nt
pr

es
su

re
f 0
¼

D
p,

f/
m

0

ne
cta

rd
rin

kin
g

(v
isc

ou
s

di
pp

in
g)

2p
a3

h
ue

a�
2

r�
c

h
co

ns
ta

nt
w

or
k

rat
e

W
¼

h
u2

l,
f/

m
5/

6

tra
ffi

c
flo

w
(G

re
en

be
rg

)
N

C
r

/r
m

ln
ðc 0
=

cÞ�
1

co
ns

ta
nt

op
tim

um
sp

ee
d

f 0
¼

C,
f/

m
0

tra
ffi

c
flo

w
(B

HN
)

N
v m

ax
r

/r
m

ta
nh
ð1
�
r

L=
r

sÞ�
1

co
ns

ta
nt

sp
ee

d
lim

it
f 0
¼

v m
ax

,f
/

m
0 rsif.royalsocietypublishing.org

JR
SocInterface

10:20130138

3
[8,9]. Active suction feeders are typically constrained by con-

stant work rate W ¼QDp¼ pa4/(8hl)Dp2, so the pressure

Dp¼ (8Wl/(pa4))1/2h1/2 depends on viscosity and, hence,

concentration. Comparing the nectar flow rate in equation (3.1)

with the general expression in (2.2), we find that the impedance

corresponds to the viscosity of the sugar solution m ¼ h, the

concentration to c ¼ r�c, the geometric factor to X¼ pa4/(8l ),

and the driving mechanism to the pressure f¼ Dp. We can

thus express the constraint as f¼ (8Wl/(pa4))1/2m1/2 (table 1).

Capillary suction feeders such as hummingbirds use sur-

face tension to draw nectar along their tongue, during

repeated cycles of tongue insertion and retraction [7,9]. If

the duration of a cyclic motion is the sum of the nectar load-

ing time T and unloading time T0, the average nectar mass

flow rate Js can be expressed as Js ¼ r�cpa2 lðTÞ=ðT þ T0Þ;
where pa2l(T ) is the time-dependent nectar volume extracted

during the loading. In the loading phase, the volumetric flow

rate is given by pa2(dl/dt) ¼ pa4Dp/(8hl ), where Dp ¼ 2s/a
is the capillary pressure. The solution with initial condition

l(0) ¼ 0 is given by l(t) ¼ (ast/(2h))1/2, which depends expli-

citly on viscosity and hence concentration. The average nectar

mass flow rate Js can be expressed as

Js ¼ r�c
pa3

hð�cÞ
shð�cÞ

2a
T

ðT þ T0Þ2

 !
:

1=2

ð3:2Þ

By comparing the nectar flow rate in equation (3.1) with

the general expression in equation (2.2), we find that X ¼
pa3, f ¼ (shT/(2a(T þ T0)2))1/2 and m ¼ h. If T/(TþT0)2 is

assumed to be independent of viscosity [12], we find a

relation between driving force and impedance: f/ m1/2

(table 1).

For both active and capillary suction, we find that f/ m1/2

(i.e. g ¼ 1
2) and the optimal concentration �copt can thus be

found by maximizing c/m1/2. For nectar sugar solutions,

we thus predict that �copt ¼ 35 % w/w and mð�coptÞ ¼ 4m0 (i.e.

a ¼ 2 in (2.7)). This is in good agreement with experimental

data on 16 butterfly and hummingbird species (figure 1a
and table 2), where optimal concentrations in the range

30–45% are reported.

3.2. Blood flow in vertebrates
Another biological flow problem that can be analysed within

our framework is oxygen and nutrient transport within the car-

diovascular system of vertebrate animals. Here, red blood cells

transport oxygen between the lungs and distal parts of the

organism. The cells are suspended in blood plasma, which pri-

marily consists of water [16]. Red blood cells typically measure

10 mm in diameter [17], and the blood’s bulk viscosity increases

with the haematocrit ~c, the volume concentration of red blood

cells (see appendix B). While blood with the highest haemato-

crit is the most oxygen rich, the increase of viscosity with the

haematocrit also makes such blood the most difficult to trans-

port. Accordingly, an optimal haematocrit may be sought for

maximizing oxygen transport.

In the limit of low Reynolds number Hagen–Poiseuille

flow, the red blood cell volume flow rate Jr in vessels larger

than 1 mm can be expressed as

Jr ¼~c
pa4

8hð~cÞlDp; ð3:3Þ

where a and l are the radius and length of the blood vessel, h

is the blood viscosity (see appendix B) and Dp is the pressure
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Figure 1. Optimal concentrations in biological transport systems. (a) Drinking from a tube. Histogram showing the distribution of observed sugar concentrations that
maximize nectar uptake for 16 bird and insect species that use muscular contractions or surface tension to feed through cylindrical tubes [9,13]. Normalized sugar
mass flow Js/Js,max (solid line, equations (3.1) and (3.2)) and nectar viscosity m/m0 (dashed line, data from [14]) are plotted as a function of nectar sugar con-
centration�c. Mass flow is predicted to be maximum when c̄opt ¼ 35%, in good agreement with the observed average nectar concentration (37%). (b) Blood flow.
Histogram showing the distribution of observed red blood cell concentrations (haematocrit) from 57 vertebrate species [4]. Normalized oxygen flow Jr/Jr,max (solid
line, equation (3.3)) and blood viscosity m/m0 (dashed line, see appendix B) are plotted as a function of haematocrit ~c. Flow is predicted to be maximum when
c̃ opt ¼ 39%, in good agreement with the observed average haematocrit (40%). (c) Sugar transport in plants. Histogram showing the distribution of observed sugar
concentrations from 28 plant species that use active sugar loading [15]. Normalized sugar flow Jp/Jp,max (solid line, equation (3.4)) and sap viscosity m/m0

(dashed line, data from [14]) are plotted as a function of phloem sugar concentration �c. Mass flow is predicted to be at a maximum when
c̄opt ¼ 24%, in good agreement with the observed average sugar concentration (22%). (d ) Nectar drinking by viscous dipping. Histogram showing the distribution
of observed sugar concentrations that maximize nectar uptake for six insect species that use viscous dipping [9,13]. Normalized sugar mass flow Jv/Jv,max (solid line)
and nectar viscosity m/m0 (dashed line, data from [14]) are plotted as a function of nectar sugar concentration�c. Mass flow is predicted to be at a maximum when
c̄opt ¼ 57%, in good agreement with the observed average nectar concentration (55%). In (a) – (d ), the numbers given above the bins (coloured bars) indicate the
percentage of species in the bin. The experimental data are available in the electronic supplementary material.
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difference generated by the heart. The diastolic pressure is of

the order of 10 kPa for most animals [18], but the pressure

difference associated with flow in large vessels is small;

most of the pressure drop in blood flow occurs in vessels

with size comparable to red blood cells. The dependence of

blood pressure on the haematocrit is, however, negligible

[4], i.e. Dp does not depend on ~c. Although blood viscosity

h generally depends on the shear rate, this dependence is

weak for typical blood conditions, specifically in vessels

with diameters larger than 1 mm and shear rates greater

than 50 s21 [16]. Comparing the blood flow rate in

equation (3.3) with the general expression in equation (2.2),

we find that c ¼~c, m ¼ h, X ¼ pa4/(8l ) and f ¼ Dp. We

express the constraint as that of constant pressure f ¼ f0 ¼
Dp (table 1).
For blood flow, we thus find that Xf/ m0 (i.e. g¼ 0) and the

optimum concentration ~copt can be found by maximizing c/m.

We thus predict that ~copt ¼ 39% v/v and mð~coptÞ ¼ 2m0 (i.e.

a¼ 1, in (2.7)), in good agreement with experimental data

from 57 species observed throughout the animal kingdom

(figure 1b and table 2). We attribute the significant variation in

the observed concentrations in part to the complex interactions

between red blood cells and flow in smaller vessels, which we

do not consider in our model. An important feature of the red

blood cell volume flow rate Jr is also that it varies by less than

20 per cent over the range of concentrations from c¼ 20–60%,

suggesting that concentrations in this interval are acceptable

given additional biological constraints. For example, we note

that, for some diving mammals (e.g. Weddell seals and

whales), oxygen storage in the blood may also be an important



Table 2. Comparison between theoretical predictions (T) and experimental observations (E) of the optimum concentration copt, the optimum viscosity mopt and
the exponent a. Concentration units are % w/w for nectar drinking and sugar transport in plants, % v/v for blood flow and % vehicle density/max. vehicle
density for traffic flow. The experimental data are available in the electronic supplementary material.

copt mopt/m0 a

system T E T E T E

nectar drinking (suction) 35 36.9+ 5.3 4 3.5 – 7.4 2 1.8 – 2.9

blood flow in vertebrates 39 40.2+ 8.6 2 2.2 – 3.4 1 1.1 – 1.8

sugar transport in plants 24 21.8+ 10.3 2 1.4 – 3.6 1 0.5 – 1.8

nectar drinking (viscous dipping) 57 55.0+ 4.1 64 17.5 – 49.4 6 4.1 – 5.6

traffic flow (Greenberg) 37 18 — — — —

traffic flow (BHN) 21 18 2 1.9 1 0.9
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factor, resulting in a higher haematocrit (up to 63%; [4]). It is also

likely that lack of thermoregulation may explain why

poikilothermic animals (e.g. the rainbow trout) have a lower hae-

matocrit value (23%) than the average, probably as a result of

thermally induced variations in blood viscosity [19].
3.3. Sugar transport in plants
Plants, like animals, rely on vascular systems for distribution

of energy and nutrients. Energy distribution in plants takes

place in the phloem vascular system. Here, an aqueous solution

of sugars, amino acids, proteins, ions and signalling molecules

flows through a series of narrow elongated cylindrical cells,

known as sieve tube elements, that lie end-to-end, forming a

microfluidic distribution system spanning the entire length of

the plant. The flow is driven by differences in chemical potential

between distal parts of the plant [20]. While phloem sap with

high sugar concentration has the greatest potential for energy

transfer, the increase of viscosity with sugar concentration

makes it the most difficult to transport. Accordingly, an optimal

concentration may again be sought for maximizing energy flow.

Assuming low Reynolds number Hagen–Poiseuille flow,

the phloem sugar mass flow rate Jp can be expressed as

Jp ¼ r�c
pa4

8hð�cÞlDp; ð3:4Þ

where a is the radius of the phloem sieve tube (a ≃ 10 mm), l
is the length of the plant, �c is the sugar concentration, h is the

phloem sap viscosity and Dp is the pressure difference driv-

ing the flow. By comparing the sugar flow rate (3.4) with

the general expression in (2.2), we find that m ¼ h, c ¼�cr,

X ¼ pa4=ð8lÞ and f ¼ Dp. We express the constraint as that

of constant pressure f ¼ f0 ¼ D p (table 1).

For sugar transport in plants, we thus find that Xf/ m0 (i.e.

g ¼ 0), and the optimum concentration �copt can thus be found

by maximizing c/m. We find that �copt ¼ 24 % w/w and

mð�coptÞ ¼ 2m0 (i.e. a ¼ 1, in (2.7)), in good agreement with

experimental data (figure 1c and table 2). While sugar concen-

trations observed in plants generally span a wide range, this

analysis provides a rationale for the observation that plants

that use active sugar loading (data shown in figure 1c) typically

have a higher sugar concentration than plants that use passive

loading [15]. Active loaders expend metabolic energy to

increase the sugar concentration in the phloem [21]. The pro-

cess is driven by membrane transporters and sugar

polymerization and occurs against a sugar concentration
gradient. However, in passive loading species, sugars move

into the phloem without the use of metabolic energy by travel-

ling down a concentration gradient from sites of carbohydrate

synthesis and/or storage to the phloem [15]. We also note that

plants with the highest sugar concentrations are crop plants,

for example potato (50%) and maize (40%), suggesting that

selection for high crop yield tends to lead to increased sugar

concentration in the phloem sap [15].

3.4. Drinking by viscous dipping
So far, we have limited our attention to transport in closed

channels. However, it is straightforward to extend the pro-

blem to situations where free surfaces are involved. Most

bees whose tongues are solid rather than hollow use a drink-

ing style termed ‘viscous dipping’ in which the fluid is entrained

by the tongue surface. The average nectar volume entrained can

be expressed by Q � 2paeu, where a is the tongue radius, e is the

thickness of the nectar layer on the tongue and u is the tongue

extraction speed. Based on Landau–Levich–Derjaguin theory

when the Reynolds number Re� 1 and Bond number Bo� 1,

the nectar film thickness is given by e � aCa2/3, where Ca ¼
hu/s� 1 is the ratio of viscous to capillary forces [22]. Because

the fluid is entrained on the tongue by viscous forces, we define

the driving force and geometric factor as f ¼ hue/a2 and X¼
2pa3. The movement of the tongue in the fluid requires power

W � hu2l to overcome the viscous drag, where l is the immersed

tongue length. Assuming a constant work rate W for a given

creature leads to the constraint on velocity u � (W/(hl ))1/2,

which in turn leads to f/ m 5/6 ([9]; table 1).

For viscous dipping, we find that f/ m 5/6 (i.e. g ¼ 5
6) and the

optimum concentration�copt can thus be found by maximizing c/

m1/6. We find that copt¼ 57% w/w and m (copt) ¼ 64 m0 (i.e. a ¼

6, cf. equation (2.7)). This is in reasonable agreement with exper-

imental data on six bees species (figure 1d and table 2), where

optimal concentrations in the range 50–60 % are found. This

may explain why the nectar concentration of flowers pollinated

by bees is generally higher than that of those pollinated by tube-

feeding butterflies and hummingbirds [9].
4. Applications to engineered transport systems:
traffic flow

We have thus far seen many qualitative similarities between

different biological flows. Although the detailed
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physiological and physical mechanisms are different, pro-

vided increased concentration leads to greater impedance,

we can rationalize the optimal concentrations. An interesting

question naturally arises. In which engineered systems might

one expect to observe similar phenomena? It appears likely

that most efficient communication and transport systems

will exhibit similar features. Nevertheless, we limit our

discussion to traffic congestion on highways.

A measure of the efficiency of a given section of road is

the vehicle flow Jv, the number of vehicles passing a given

point per unit time [23–26]. Designers of road networks

strive to maximize the vehicle flow that can be expressed as

Jv ¼ rv, where v is the speed of the individual vehicle and r

is the number of vehicles per unit length of roadway. Gener-

ally, car speed v ¼ v(r) is a decreasing function of density r.

At very low densities, where inter-vehicle interaction is neg-

ligible, however, the speed approaches the speed limit vmax

and the vehicle flux is proportional to density Jv ≃ rvmax.

At higher vehicle densities, interaction between adjacent

cars leads to flow impedance and a significant reduction in

the speed of individual vehicles, causing congestion and a

net decrease in the flux Jv. The vehicle interactions initially

take the form of synchronized flow, a form of congested traf-

fic in which each driver attempts to maintain a safe distance

from the neighbouring cars. As the density increases, wide

moving jams form, that is, stop-and-go traffic in which

the vehicle flux approaches zero [23]. From these consider-

ations, one anticipates an optimal vehicle density ropt that

maximizes the vehicle flux.

To estimate ropt, we require v(r), which can be either

found empirically or deduced from vehicle interaction

models. One of the simplest models that leads to a reasonable

expression for v(r) was proposed by Greenberg [27], who

treated traffic flow as a one-dimensional flow of an ideal

compressible gas. He assumed (i) that the local speed is a

function of density only v ¼ v(r(x,t)), (ii) that vehicles are

conserved @r=@tþ @Jv=@x ¼ 0, (iii) that vehicle flow satisfies

the Euler equation Dv=Dt ¼ �ð1=rÞ@p=@x; and (iv) that traffic

‘pressure’ is proportional to density p ¼ C2r. This leads to the

relation v(r) ¼ C ln(rmax/r), where rmax is the density at

which traffic stops owing to congestion. The vehicle flow

rate Jv ¼ Cr ln(rmax/r) is at a maximum when r ¼ ropt ¼

rmax/e, and the constant C ¼ v(ropt) is the vehicle speed at

the optimal concentration. Because vehicles typically

occupy 7.5 m in a totally congested flow [23], we estimate

that rmax ≃ 133 vehicles per kilometre. Greenberg’s model

overestimates the optimal density, predicting ropt ¼ rmax/

e � 50 vehicles per kilometre, whereas the true value is

known to be � 20 vehicles per kilometre. Nevertheless, the

vehicle flow rate Jv is qualitatively consistent with empirical

traffic data (figure 2). The data are plotted as a function of

vehicle concentration c ¼ r/rmax in figure 2 along with

Greenberg’s flow rate Jv, deduced using rmax ¼ 133 vehicles

per kilometre.

A shortcoming of Greenberg’s theoretical model is that

the vehicle speed v diverges when the car density is very

low. To ensure that v(r/rmax! 0) ¼ vmax and to account for

other aspects of traffic flows, numerous other models have

been proposed [23–26,28]. For example, Bando, Hasebe and

Nakayama (BHN) [28] suggested a traffic model in which

the vehicle speed depends on the distance from the car in

front, Dx. This leads to v ¼ vmaxtanh(Dx/s), where s is a

fixed length scale determined by the road conditions. With
a minimum vehicle distance L ¼ 7.5 m, we can express the

density in terms of Dx as r ¼ 1/(LþDx). This leads to

v(r) ¼ vmaxtanh[(1/r 2 L)/s], in which case the flow rate

Jv ¼ vr is optimized when r ¼ 0.21 and rmax ¼ 28 vehicles

per kilometre. With vmax ¼ 120 km h21 and s ¼ 60 m, the

BHN model provides a better quantitative fit to the empirical

data than does Greenberg’s model (figure 2).

Comparing the Greenberg and BHN models of traffic

flow with the formulation introduced in equation (2.2), we

see that traffic flow can be treated in the same general frame-

work where

X ¼ N; f ¼ C ¼ vðroptÞ and m ¼ ln rmax

r

� ��1

ð4:1Þ

for Greenberg’s model, and

X ¼ N; f ¼ vmax and m ¼ tanh
1� rL
rs

� ��1

ð4:2Þ

for the BHN model. In both cases, N is the number of lanes.

Comparing traffic flow with the biological transport pro-

blems considered above, we find that the normalized flux

and impedance curves follow the same pattern (figure 2).

While traffic flow can be treated in the same framework as bio-

logical flows, it is important to note that the congested

highway (figure 2, data recorded from 16.00 to 18.00) is very

far from being optimized. This is presumably the result of

two main effects. First, the individual vehicle operator

attempts to minimize his or her own travel time, which does

not necessarily optimize the overall vehicle flow Jv. Second,
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traffic flows are intrinsically time dependent, which leads to

the formation of travelling density waves and shocks [23–26].
5. Universal properties of transport systems
To compare characteristics of the particular biological and man-

made transport systems considered in §3 and §4 with the gen-

eral formulation in equations (2.4) and (2.6), normalized

material flow and impedance curves are plotted in figure 3.

Despite the complex dependence of impedance on concen-

tration (see appendices A and B), both the material flow J*
and impedance m* are adequately approximated by the

simple forms given in equations (2.4) and (2.6). From (2.6), it

follows that the impedance at the optimum concentration is

mopt ¼ 2am0, where m0 is the impedance of the pure carrier

medium (with c¼ 0) and the power a is determined by the

flow constraints. In the cases of vascular transport in plants

and animals, the power a ¼ 1, because there is no coupling

between the constant driving pressure ( f ) or the vascular geo-

metry (X ) and the impedance (m). This suggests that the

optimum in material flow should occur when the blood or

phloem sap is twice as viscous as water, i.e. hopt¼ 2h0, in

good agreement with observed values (table 2).

In transport systems that are constrained, for example by

constant work rate, a will generally be greater than unity,

because of the coupling between flow and impedance. The

impedance at the optimum concentration mopt ¼ 2am0 can

thus be significantly greater than that of the carrier

medium. This is most clearly seen in the case of viscous dip-

ping (§3.4), where the observed nectar viscosity is up to 50

times greater than that of water, roughly consistent with

the value (26 ¼ 64) predicted by our simple model (table 2).

These observations suggest that this general framework

may also provide the rationale for the viscosities found in

other biological transport systems where efficient transport is

favoured. Examples of systems with constant forcing include

mammals that drink whole milk (observed viscosity: h � 2h0;

[30]), and the macro-alga Chara where streaming distributes

the content of the cell cytosol (observed viscosity: �3h0 [31]).

Although detailed studies of these systems are left for future

consideration, we note that both are roughly consistent with

the predictions of our general theory with a ¼ 1.
Comparing traffic flow with the biological transport pro-

blems considered, we find that the normalized flux and

impedance curves follow the same pattern (figure 3 and

table 2). Since the speed limit vmax, which is fixed on a

given road section, corresponds to the flow-driving mechan-

ism in the BHN model, traffic flow is analogous to vascular

transport in animals and plants that operate at constant

pressure. Our model thus indicates that the flow constraint

does not couple to impedance, Xf/ m0 (g ¼ 0, a ¼ 1), and

hence that the optimal impedance is mopt ¼ 2 m0. This is in

rough accord with the BHN model that yields mopt ¼ 1.9 m0.
6. Discussion and conclusion
We have seen many qualitative and quantitative similarities

between different natural and engineered transport systems.

Although the detailed transport mechanisms are different,

key common features have allowed us to develop a general fra-

mework. Provided impedance increases with concentration,

our model provides a means of rationalizing the optimal con-

centrations. Collecting data from more than 100 plant and

animal species, we have observed that optimization of

material flow appears to be a universal feature of biological

transport systems. This deduction provides a rationale

for the observation that the simple model introduced in §2

collapses flow and impedance curves for all the systems

considered (figure 3), suggesting a universal component to

all natural transport systems.

Finally, we have shown that an interesting analogy can be

made between biological systems and self-driven systems

such as traffic flows. Here, we find that the impedance ana-

logy is still valid, but that the system is far from optimized

owing to conflicting interests between individuals and the

collective. The consideration of other man-made transport

systems, such as the electrical grid or the Internet, is left for

future consideration.

The authors wish thank Maciej Zwieniecki, Ruben Rosales, Jessica
Savage, Nick Carroll, Kenneth Ho and David Weitz. This work was
supported by the NSF (grant nos 1021779 and DMS-0907955) and the
Materials Research Science and Engineering Center (MRSEC; grant
no. DMR-0820484) at Harvard University.
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Appendix A. Viscosity and density of nectar and
phloem sap
Phloem sap and flower nectar consist of an aqueous solution of

sugars, amino acids, proteins and other nutrients. Sugars, of

which sucrose, fructose and glucose are the most abundant

types, constitute about 90 per cent of the total solute mass

[32]. To approximate the viscosity h and density r of phloem

sap and nectar, we thus used data from sucrose solutions of

concentration �c obtained from Hainsworth [12]. Least squares

fits to sucrose data yield the approximate expressions for

viscosity h ¼ h0 gnð�cÞ ¼ h0 exp½0:032�c� ð0:012�cÞ2 þ ð0:023�cÞ3�
and h ¼ h0 gnð�cÞ ¼ h0 exp½0:032�c� ð0:012�cÞ2 þ ð0:023�cÞ3� and

density r ¼ r0ð1þ 0:0038�cþ ð0:0037�cÞ2 þ ð0:0033�cÞ3Þ. We

note that viscosity and density data from other sugar types

(glucose and fructose) are well approximated by the fit,
suggesting that the major determinant of viscosity is the

mass fraction �c, and not the type of sugar.
Appendix B. Viscosity of blood
Vertebrate blood is composed of blood cells suspended in

blood plasma, a liquid that consists mostly of water.

The viscosity of blood h depends primarily on the volume

concentration ~c (haematocrit) of red blood cells, and on

temperature [4,19]. As demonstrated by Saitô [33] and Stark &

Schuster [4], blood viscosity is well described by the function

h=h0 ¼ 1þ 2:5~c=ð1�~cÞ, which for blood vessels with diam-

eters larger than 1 mm is consistent with empirical data

with less than 5 per cent error for 0 ,~c , 70% ([34,35];

electronic supplementary material, table S6).
 :20130138
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