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We consider the dynamics of a hollow cylindrical shell that is filled with viscous
fluid and another, nested solid cylinder, and allowed to roll down an inclined plane.
A mathematical model is compared to simple experiments. Two types of behaviour
are observed experimentally: on steeper slopes, the device accelerates; on shallower
inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant
on average. The theory also predicts runaway and unsteady rolling motions. For the
rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the
motion of the outer cylinder, and instead falls inexorably toward the outer cylinder.
Whilst ‘contact’ only occurs after an infinite time, the system slows progressively as the
gap between the cylinders narrows, owing to heightened viscous dissipation. Such a
deceleration is not observed in the experiments, suggesting that some mechanism limits
the approach to contact. Coating the surface of the inner cylinder with sandpaper
of different grades changes the rolling speed, consistent with the notion that surface
roughness is responsible for limiting the acceleration.

1. Introduction
The ‘snailball’ is a magic trick wherein an apparently solid metal sphere rolls

surprisingly slowly and erratically down an inclined plane. The explanation is that the
sphere is not actually solid throughout, but a shell containing a second, smaller sphere
and lubricated by a viscous fluid.† The acceleration of the device is arrested by viscous
dissipation as the inner sphere falls through the fluid. The explanation fails to indicate
why the rocking and rolling should be so erratic, and the details remain obscure.

As we demonstrate in this article, the same kind of rocking and rolling dynamics
is observed when an analogous combination of cylinders rolls down an incline.
The cylindrical arrangement factors out one spatial dimension from the dynamics
(although two-dimensional motion is conceivably possible for the snailball, it

† The magic trick is marketed with the explanation: “A small, metallic gold ball just over 2 cm
in diameter . . . this ball does roll, but it does so incredibly slowly. To an audience, it seems baffling
why it should roll down a slope apparently in slow motion. You can pick the ball up, and it seems
heavy, possibly solid. No clues if you shake it. However inside the ball, which is actually hollow,
there is a viscous liquid and a smaller ball which is very heavy. When the Snail Ball rolls slowly
down an incline, it is the smaller, heavier ball inside that determines the pace, and this is slow
because of the viscous liquid.”
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Figure 1. Point B is the centre of the outer cylinder (radius b) and A is the centre of the
inner cylinder (radius a). In the (X,Z)-plane of the figure, clockwise rotations are positive.
The displacement vector from B to A is ε(t). The ‘line of centres’ is BAO.

invariably rocks from side-to-side as it progresses downslope), and is more
straightforward to deal with from the theoretical side. Thus, in this article, we present
a combined theoretical and experimental study of the ‘snail cylinder’. Our purpose is
to demystify the explanation of the dynamics and provide a mechanical foundation.
We encounter some interesting facets to the problem that bear on the more general
problem of the approach of rough solids through a viscous fluid.

The snail cylinder shares much in common with the journal bearing which has
numerous applications in engineering (e.g. Pinkus & Sternlicht 1961). Unlike our
present configuration, the outer shell of the journal bearing is fixed in place and
forced to rotate at a prescribed rate. Moreover, although the axis of the inner cylinder
is free to move, its rotation is also fixed. A configuration midway between the journal
bearing and snail cylinder is an arrangment set up by Seddon & Mullin (2006) and
Vener (2006), which fixes the outer cylinder but allows the inner cylinder to move and
rotate freely.

The dynamics of the journal bearing, and indeed lubrication bearings of all
geometries, is often explored using the Reynolds lubrication theory. We follow
suit here and provide a lubrication theory of the snail cylinder. The lubrication
approximation applies when the fluid inertia plays no role and when the fluid fills a
relatively narrow gap. The generalization to Stokes flow in a snail cylinder without a
thin gap, and more, can be found in Vener (2006).

2. Mathematical model
The geometry of our model is illustrated in figure 1. A hollow cylinder, with centre

B and radius b, contains a smaller solid cylinder, with centre A and radius a; we
use the notation, b = a + δ. The cylinders are not concentric, and their centres are
displaced from one another by a distance ε(t) in a direction that can be specified
by the angle χ(t), shown in figure 1, which lies between the line of centres and
the perpendicular to the inclined plane. The angular speeds of the inner and outer
cylinders are denoted by Ωa(t) and Ωb(t), respectively.
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In the gap between the two cylinders there is a viscous fluid with density ρ

and kinematic viscosity ν. The inner and outer cylinders have masses, ma and mb,
respectively, whereas the fluid has mass mf = π(b2 − a2)Lρ, with L denoting the axial
length of the arrangement. In total, the apparatus has mass M ≡ ma + mb +mf . The
reduced mass of the inner cylinder is m′

a ≡ ma −m′′
a, where m′′

a ≡ πa2Lρ is the displaced
mass of fluid.

The mathematical formulation of the model consists of equations of motion for
the positions and rotations of the cylinders, plus the Navier–Stokes equations for the
fluid; Appendix A summarizes the full formulation of the problem. We do not attack
this complete formulation, but introduce the Stokes approximation to simplify the
fluid part of the dynamics. However, because the arrangement as a whole is in motion
down the incline, some subtlety is required because one can impose the approximation
in different frames of reference (for example, one can use the inertial laboratory frame,
or frames based on the centres of each cylinder). The overall fluid accelerations vary
from frame to frame, and so the accuracy of the Stokes approximation probably
hinges on which frame to select. We opt for the following: by introducing the Stokes
approximation in the frame of reference of the centre of mass of the fluid, the
acceleration of the fluid as a whole is incorporated into the dynamics and the residual
accelerations about this mean may plausibly have their smallest effect. The details
of this choice, and the ramifications for the dynamics are described in Appendix A;
below we summarize the main equations of the motion that result, and then make
the small-gap approximation of lubrication theory to give a compact description of
the fluid forces and torques that enter those equations. This approximation, namely
b − a = δ � a, also allows us to simplify the equations of motion of the cylinders to
arrive at a reduced model that we use to explore the dynamics.

2.1. The equations of motion

The configuration of the apparatus is specified by four independent variables, ε(t),
χ(t), Ωa(t) and Ωb(t). The considerations of Appendix A indicate that the position
of the inner cylinder is determined by the equations of motion,(

ma +
m′′

a
2

mf

)
(εχ̈ + 2ε̇χ̇ ) = fχ + m′

ag sin φ − m′
abΩ̇b cosχ, (2.1)

(
ma +

m′′
a
2

mf

)
(ε̈ − εχ̇2) = fε − m′

ag cos φ − m′
abΩ̇b sinχ, (2.2)

where fχ and fε represent the fluid forces in the direction of the line of centres and

perpendicular to that direction, respectively. The combination, ma + m′′
a
2
/mf , is the

effective inertial mass of the inner cylinder. The second terms on the right of (2.1)
and (2.2) denote the Archimedean buoyancy force, and the final terms are d’Alembert
forces arising because the position of the centre of the outer cylinder, to which the
coordinates ε and χ are referred, does not lie in an inertial frame. The rotation of
the inner cylinder follows from

1
2
maa

2Ω̇a = Ta, (2.3)

where Ta is the fluid torque.
Assuming that the outer cylinder rolls without sliding down the inclined plane, the

equation of motion of the outer cylinder can be similarly broken down. Importantly,
those equations contain the forces at the contact point with the plane, which one
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can eliminate from the problem algebraically given that the rotation rate, Ωb, also
dictates the distance rolled. This leaves a single equation for Ωb(t), as described in
Appendix A. Alternatively, an equivalent equation follows from the total angular
momentum balance,

d

dt

[
1
2
maa

2Ωa + (M + mb) b2Ωb +

(
ma +

m′′
a
2

mf

)
ε2χ̇ + m′

ab
d

dt
(ε sinχ)

]

+ m′
abΩ̇bε cosχ ≈ Mgb sinα + m′

agε sinφ, (2.4)

where φ = α +χ . Though (2.1)–(2.3) are exact, (2.4) contains our first approximation
by neglecting the intrinsic angular momentum of the fluid in the frame of its centre
of mass.

As the Stokes approximation describes the flow in the annular gap, the fluid remains
in a state of instantaneous force balance. The forces, fε and fχ , and torque, Ta, can
then be computed as functions of the instantaneous geometrical arrangement (i.e. ε

and χ) and velocities of the cylinder surfaces (given by Ωa, Ωb, ε̇ and χ̇ ). We do this
via lubrication theory, as outlined in Appendix B, because our snail cylinders have
relatively narrow gaps, although more general results exist (Finn & Cox 2001).

2.2. Lubrication approximation and a reduced model

In lubrication approximation, the fluid forces and torques, fχ , fε and Ta, take the
form (see Appendix B)

fε = −12νam′′
a

δ2

κ̇

(1 − κ2)3/2
, (2.5)

fχ =
12νam′′

a

δ2

κ(Ωa + Ωb − 2χ̇ )

(2 + κ2)
√

1 − κ2
, (2.6)

Ta =
12νam′′

a

δ

(1 − κ2)(Ωb − χ̇ ) − (1 + 2κ2)(Ωa − χ̇ )

3(2 + κ2)
√

1 − κ2
, (2.7)

where

κ(t) ≡ ε(t)

δ
. (2.8)

The equations of motion in (2.1), (2.2), (2.3) and (2.4), and the hydrodynamic
quantities defined in (2.5)–(2.7), comprise a sixth-order dynamical system. However,
some further simplifications are afforded by virtue of δ � a. Moreover, unless the
slope is small, the cylinder accelerates downhill. Hence, we focus on the distinguished
limit in which also sinα ∼ δ/a. In this limit, the equations are systematically simplified
by first non-dimensionalizing using the time scale

τ ≡ 12
m′′

aνa

m′
aδ

2g
. (2.9)

We next introduce non-dimensional variables

(Ω̂a, Ω̂b) ≡ τ (Ωa, Ωb), (2.10)

and a non-dimensional time t̂ ≡ t/τ . It is also convenient to work with φ = χ + α.



Rocking and rolling 299

Then, on suppressing the hats and to leading order in δ/a,

κ̇

(1 − κ2)3/2
= −cos φ, (2.11a)

κ(Ωa + Ωb − 2φ̇)

(2 + κ2)(1 − κ2)1/2
= −sin φ, (2.11b)

1
2
Υ Ω̇a =

(1 − κ2)(Ωb − φ̇) − (1 + 2κ2)(Ωa − φ̇)

3(2 + κ2)
√

1 − κ2
, (2.11c)

µΥ Ω̇b + 1
2
Υ Ω̇a = s + κ sin φ. (2.11d)

In (2.11), the dimensionless combinations,

µ ≡ M + mb

ma

, Υ ≡ gδ3

144ν2

mam
′
a

m′′
a
2

, s ≡ a sinα

δ

M

m′
a

, (2.12)

are taken O(1) (according to the values listed in the tables of § 4, Υ lies in the range
10−2 to 5, whereas s ranges from 0.1 to 1).

3. Dynamics without cylinder contact
3.1. A steadily rolling equilibrium

The system (2.11) admits a simple equilibrium solution in which the apparatus rolls
down the inclined plane at constant speed:

0 = (1 − κ2)Ωb − (1 + 2κ2)Ωa,

0 = cosφ,

0 = sinφ +
κ(Ωa + Ωb)

(2 + κ2)(1 − κ2)1/2
,

0 = s + κ sinφ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

Thus,

κ = s, φ = −π

2
, Ωa =

1 − s2

1 + 2s2
Ωb, Ωb = s−1

√
1 − s2(1 + 2s2). (3.2)

The result, φ = −π/2, is a necessary consequence of the fact that when the motion
is steady, the hydrodynamic forces are perpendicular to the line of centres and,
therefore, can only balance gravity when that line is horizontal. More curiously, as
the slope α decreases, so must the separation of the cylinder centres in the solution
(ε = δκ → δ sinα), with the result that the rolling speed increases (Ωb in (3.2) is a
monotonically decreasing function of s). The physical origin of this behaviour is that
as α → 0, κ → 0, and the cylinders become concentric, whereupon viscous dissipation
cannot halt the descent of the device.

The equilibrium in (3.2) is the counterpart of the classical Sommerfeld solution in
the lubrication theory of the journal bearing (Pinkus & Sternlicht 1961). Its curious
properties are not physical because this solution is unrealizable: a linearization of
(2.11) about this fixed point, plus a little algebra and judicious use of the Descartes
rule of signs, establishes that this solution is linearly unstable (see Vener 2006). In
other words, the model has no steady, stable rolling solution.

3.2. Sedimenting and sedimented solutions

Another special solution to the system can be found when s =Ωa(0) = Ωb(0) = 0,
φ(0) = π and κ(0) = κ0, and corresponds to placing the snail cylinder on a horizontal
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plane, and then allowing the inner cylinder to fall vertically from a position directly
underneath the centre of the outer cylinder, without either rotating. The solution has
Ωa(t) = Ωb(t) = 0 and φ(t) = π for all t , and

κ(t) =
t + κ0/

√
1 − κ2

0√
1 +

(
t + κ0/

√
1 − κ2

0

)2
. (3.3)

As t → ∞, we observe that κ → 1. In other words, the inner cylinder ‘sediments’
onto the bottom surface of the outer cylinder, although contact takes an infinite
time to occur. This result is equivalent to some well-known lubrication solutions for
sedimentation (Goldman, Cox & Brenner 1967).

The ‘sedimented’ solutions, with κ = 1, form another analytically accessible class of
solutions. With contact, we discard the first three relations of (2.11) and adopt

κ = 1, Ωa = Ωb = φ̇. (3.4)

The angular momentum balance (2.11) then reduces to

Υ
(
µ + 1

2

)
φ̈ − sinφ = s, (3.5)

which is equivalent to the equation of motion of a ‘pushed pendulum’. In this solution
the gap is closed and the fluid behaves like a solid, with the apparatus acting as an
eccentrically weighted solid cylinder on an inclined plane. The orbits of the pushed
pendulum can be classified into two types: for s < 1 and low initial speeds, the
pendulum executes periodic oscillations, corresponding to the cylinders rocking back
and forth about the fixed point, φ = − sin−1 s; for s > 1 or sufficiently large initial
speed, on the other hand, the pendulum follows an unbounded winding solution that
corresponds to acceleration downhill. Only the latter solutions give sustained progress
down the inclined plane.

The stability of the rocking pushed pendulum solutions can be explored in system

(2.11). To do this, we set ζ =
√

1 − κ2 � 1. It then follows that

ζ̇ = ζ 2 cos φ + O(ζ 3), (3.6)

and

Υ
(
µ + 1

2

)
φ̈ − s − sinφ = 3Υ 2(µ2 + 1

4
)ζ

d3φ

dt3
+ O(ζ 2), (3.7)

which can be attacked using the method of multiple scales. Of chief interest is the fixed

point, sin φ = −s (cosφ = −
√

1 − s2) and Ωa =Ωb =0, whose stability is determined
by linearizing (3.6) and (3.7):

ζ̇ ≈ −ζ 2
√

1 − s2, Υ
(
µ + 1

2

)d2φ̌

dt2
+

√
1 − s2φ̌ ≈ 3Υ 2

(
µ2 + 1

4

)
ζ

d3φ̌

dt3
, (3.8)

where φ̌ =φ − sin−1 s. The multiple-scale solution is

ζ =
ζ (0)

1 + tζ (0)
√

1 − s2
, φ̌ =

[
1 + tζ (0)

√
1 − s2

]−q

eiωt + c.c., (3.9)

with

ω2 =

√
1 − s2

Υ (µ + 1
2
)
, q =

3(1 + 4µ2)

2(1 + 2µ)2
, (3.10)

indicating that this special point is always stable. In fact, the residual viscous
dissipation present for ζ > 0, which is given by the right-hand side of (3.7), causes the
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Figure 2. Sample rocking solution with Υ = 1, µ= 1 and s = 1/4: (a) the locus of the centre
of the inner cylinder on the polar (κ, φ) plane (with φ = 0 pointing vertically upwards), (b)
κ(t), (c) φ(t), (d) Ωa(t) and Ωb(t) and (e) Xb(t). The initial position of the inner cylinder is
shown, and Ωa(0) =Ωb(0) = 0. The star in (a) marks the limiting sedimentation solution; the
dashed lines show the convergence to that solution expected from the multiple-scale solution
of § 3.2 (with some integration constants suitably chosen).

amplitude of all solutions with |ζ | � 1 to decay secularly towards the fixed point. In
other words, when the cylinders become close, they subsequently approach contact at
φ = −sin−1 s.

Note that the exponent, q , varies from 5/6 up to a maximum of 3/2. Moreover, the
decay to the fixed point, once one filters the fast oscillations of the pushed pendulum
dynamics, is Ωb ∼ t−q , implying that Xb ∼ t1−q . Thus, there is a parameter range in
which, even though the rotation rates are decreasing algebraically in time and the
gap is closing, the device continues to roll down the plane.

3.3. Numerical results

To progress further, we solve the reduced model (2.11) numerically. Two types of
solutions are obtained. First, when s is not too large, the inner cylinder settles
vertically through the fluid; the outer cylinder rocks back and forth, and rolls slowly
downhill; see figure 2. Ultimately the inner cylinder sediments onto the outer one, with
a limiting solution, κ → 1, (Ωa, Ωb) → (0, 0) and sin φ → −s, as t → ∞. The convergence
to that solution follows the predictions of the multiple-scale theory outlined above.
In particular, because µ =1 is chosen in the computation, the position of the device
on the incline, Xb, increases like t1/6.

Second, when s is too large (exceeding a value just below unity, and depending on
initial conditions), the solution locks into a runaway rolling solution as illustrated in
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Figure 3. Sample rolling solution with Υ = µ= 1 and s = 0.9, showing (a) a polar plot of the
inner cylinder position, (b) κ(t), (c) φ(t) and Xb(t), and (d) Ωa(t) and Ωb(t). The dashed lines
show the expected limiting rolling solution (3.11).

figure 3. The runaway solution has the limiting form

Ωa ∼ Ωb ∼ φ̇ ∼ st

(µ + 1
2
)Υ

, (3.11)

and corresponds to the dimensional rolling speed, Mgt sinα/(M + mb + 1
2
ma).

Over a range of s, both rocking and rolling solutions are possible; which state
emerges is selected by the initial condition. The sedimenting, rocking solution
disappears for s � 1, and only rolling solutions are possible beyond that critical
slope. The rolling solution can also persist at relatively small values of s, although
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(a) (b)

Figure 4. Photographs showing various views of the snail cylinder. The views are (a) angled
from the front and (b) edge on. Note that several small bubbles are trapped inside and have
risen to the top of the fluid, and that the inner cylinder lies close to its lowest point.

Density Radius Mass Length

Steel inner cylinder 7.85 g cm−3 0.78 cm 158 g 10.35 cm
Aluminium inner cylinder 2.7 g cm−3 0.78 cm 55 g 10.35 cm
Outer cylinder 1.125 cm 47 g 13.7 cm
Oil 0.92 − 0.96 g cm−3 24 g

Table 1. Physical data. The viscosities of the different grades of silicone oil (Dow Corning
200 fluid) were approximately 5 × 10−5, 2 × 10−4, 3.5 × 10−4 and 5 × 10−4 m2 s−1; that of the
canola oil was about 6 × 10−5 m2 s −1. The Perspex outer cylinder was 1.5 mm thick, and its
inner radius is listed. The runway was inclined by various angles between 1◦ and 5.6◦.

the initial conditions required to reach the runaway state become increasingly
unlikely.

4. Experimental phenomenology
To compare with the theoretical predictions outlined above, we conducted a suite of

experiments with a snail cylinder made of a Perspex tube containing silicone or canola
oil and a steel or aluminium inner cylinder. A photograph of the apparatus is shown
in figure 4. The ends of the tube were stoppered by black rubber corks, which were
inserted as straight as possible. To assist with the filling of the device with oil, metal
nails were inserted through the middle of each cork. During the experiments, the
nails were pushed through to protrude slightly (less than a millimetre) into the fluid,
and prevent the inner cylinder from moving too close to the corks. Whenever that
cylinder became too close to the nails, the experiment was stopped. Each experiment
was started after shaking the device a little so that the inner cylinder did not lie
very close to the outer one. Physical data for the apparatus are given in table 1; this
translates to the parameters listed in table 2.

As predicted by theory, depending on the inclination of the runway, two types
of characteristic motion are observed: when the slope is relatively shallow, a slow,
rocking and rolling motion ensues; on high slopes, the cylinder accelerates under
gravity. The two characteristic motions are illustrated in figures 5 and 6, respectively,
which show the distance travelled along the runway, X, as a function of time, t . In the
second case, the runaway acceleration is largely independent of the viscosity of the
fluid and closely follows the law X = 1

3
gt2 sinα, which matches the theoretical model

above since 2(M +mb + 1
2
ma)/M ≈ 3 for the aluminium cylinder.
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a δ L mb M ma m′
a m′′

a µ q

0.8 cm 0.325 cm 10.35 cm 47 g Steel 229 g 158 g 134 g 21 g 1.75 0.98
Alum. 127 g 55 g 34 g 21 g 3.11 1.14

Table 2. Physical parameters for the model. The fluid mainly fills the gap between the two
curved surfaces of the cylinders (about 4 g of the total 24 g resides at the ends). Also listed
are the parameters µ and q defined in (2.12) and (3.10).
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Figure 5. Distance travelled along the runway for a steel inner cylinder with various slopes.
(a) A long run at 2.4◦; the inset shows a magnification of the path. (b) Four different slopes,
as marked. The dotted lines show the best linear fits calculated for all the experiments.
ν = 2 × 10−4.
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Figure 6. Distance travelled along the runway for an aluminium inner cylinder with a slope
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solid lines), and a second pair with ν = 3.5 × 10−4 (circles and dashed lines). Also shown is the
function (gt2 sin α)/3 (dotted lines).
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In contrast, the details of the low-slope rocking behaviour disagree with the theory:
first, cylinders on shallow slopes roll erratically down the ramp, rocking back and
forth as they progress. Second, the speed is roughly steady and described well by a
linear fit over long times, as shown by the time series in figure 5. The inset in panel
(a) shows a detailed short path, and displays the unsteady, rocking progression of
the outer cylinder. Instead, theory predicts that the cylinders rock regularly whilst
progressively decelerating, with the aluminium arrangement stopping after a finite
distance (q ≈ 1.14 > 1) and the steel one continuing to make (increasingly slow)
progress (q ≈ 0.98 < 1).

Observations through the Perspex wall of the outer cylinder show that the rocking
corresponds to irregular, differential motion of the two cylinders. In particular,
throughout the evolution the inner cylinder lies close to its lowest possible point, but
is dragged slightly up the rear side of the outer cylinder. The rocking corresponds to
irregular sliding and rolling of the inner cylinder over the lower surface of the outer
one. Again, no such motion is predicted theoretically.

The key problem is that the model predicts that a slow rolling of the snail cylinder
cannot suspend the inner cylinder inside the fluid; the gap must continually thin,
leading to the deceleration of the device. In reality, the cylinders continue to make
roughly steady progress, suggesting that the gap never closes. One possible explanation
is offered by the roughness of the cylinder surfaces: asperities could, in principle,
prevent full contact of the cylinders and maintain a minimum gap through which
fluid continues to flow. The cylinders then become free to roll steadily at a rate given
by the roughness of the surfaces. A similar argument was put forward by Smart,
Beimfohr & Leighton (1993) for the motion of a sphere down an inclined plane.

5. Dynamics with a rough contact
When asperities on the surfaces of the two cylinders touch, a contact force must be

included in the equations of motion. This contact force contains a normal reaction,
Cε (directed along the line of centres), that holds the cylinders apart, and a tangential
frictional component, Cχ , that acts to equalize the two rotation speeds. The cylinders
are thereby prevented from moving closer than a certain critical distance, κ � κ∗ < 1,
allowing fluid flow through the gap to generate finite viscous forces and torques; κ∗,
parameterizes the roughness scale.

As described more fully in Appendix C, the reduced model can be modified to
include the leading-order effects of the contact forces. The main casualties are the
radial equation of motion (2.11a) and the torque balance (2.11c), which become

− cos φ =

{
(1 − κ2)−3/2κ̇ if κ < κ∗
Cε if κ = κ∗,

(5.1)

and

(1 − κ2)(Ωb − φ̇) − (1 + 2κ2)(Ωa − φ̇)

3(2 + κ2)
√

1 − κ2
=

{
1
2
Υ Ω̇a if κ < κ∗

1
2
Υ Ω̇a + Cχ if κ = κ∗,

(5.2)

respectively, where (Cε, Cχ ) denotes the (suitably non-dimensionalized) contact force.
The angular equation of motion (2.11b) remains unchanged because the frictional
contact force first enters when it becomes comparable to the viscous torque, which
is order δ/a smaller than the lubrication pressure force, fχ . Moreover, total angular
momentum balance (2.11d) is not affected by either of the contact forces.
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Assuming the standard model of friction, the two components of the contact force
are related by

|Cχ | � |Cε | tanψ, (5.3)

where ψ is a friction angle. There are two options contained in (5.3): either the normal
force is sufficiently strong to lock the cylinder surfaces together, or the surfaces are
held together more weakly and slide over one another with |Cχ | = |Cε | tanψ . Given
that Ωa = Ωb when the cylinders are locked together (for a narrow gap with a ≈ b),
we find from (2.11b) and (5.2) that

Cχ = −2s + (1 − 2µ)κ∗ sin φ

2(1 + 2µ)
. (5.4)

Thus, locking results when

∣∣∣∣2s + (1 − 2µ)κ∗ sinφ

2(1 + 2µ)

∣∣∣∣ < | cos φ| tan ψ. (5.5)

To solve the modified system as an initial-value problem, we evolve the system
from a state in which the inner cylinder is suspended in the fluid (κ(0) < κ∗) up to a
‘collision time’, t = t∗, at which the surfaces touch and κ(t∗) = κ∗. Beyond that instant,
we set Cε = − cos φ to continue the solution, monitoring whether or not the traction
between the cylinders is sufficient to overcome friction and force the surfaces to
slide over one another. Should (5.5) be satisfied, we set Ωa = Ωb and solve (2.11b, d)
with (5.2) relegated to a diagnostic equation for Cχ (the system then reduces to
the equation for a dissipative, pushed pendulum). If (5.5) is violated, on the other
hand, the cylinders maintain a sliding contact; we solve (2.11b, d) and (5.2), with
Cχ = cos φ tan ψ sgn(Ωb − Ωa) (the choice of sign ensures that the friction drags the
rotation rates together).

We illustrate the behaviour in figure 7. For the example shown, the ultimate state
of the system is a steadily rolling solution in which the cylinders are in sliding
contact. A case in which the final rolling solution has the cylinders locked together
by friction is shown in figure 8. Note that the computation switches abruptly between
the different versions of the model equations. In particular, when the cylinders first
come into contact, if friction is sufficient to lock the cylinders together, then Ωa must
jump discontinuously at the moment of contact. This can be rationalized physically
in terms of an instantaneous impulse that affects the inner cylinder. In principle, at
collision, there should also be an equal and opposite impulse acting on the outer
cylinder. However, that cylinder is also resting on its contact point with the inclined
plane, and the model effectively assumes that any impulse from the collision of the
two cylinders is taken up by the other contact.

The addition of a rough contact therefore allows the cylinder arrangement to
approach a steady rolling solution. In reality, the minimum gap size, κ∗, is unlikely
to be uniform over the surfaces of the cylinders, and more probably would be a
complicated function of the orientations of both. A simple way to extend the model
to incorporate such an effect is to add slight stochastic variations in κ∗. Solutions
would then converge to irregularly rolling states in which the system is randomly
kicked from equilibrium and then rocks slowly back, with obvious similarities to the
observations. In principle, the unsteadiness offers insight into the variations of κ∗.
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Figure 7. Sample rocking solution for Υ = µ= 1 and s =1/4, with κ limited to the range
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The fixed point to which the solution converges is given by

κ∗ sinφ = −s, (5.6)

sinφ = − κ∗(Ωa + Ωb)

(2 + κ2
∗ )(1 − κ2

∗ )1/2
, (5.7)

cos φ = −Cε, (5.8)
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(1 − κ2
∗ )Ωb − (1 + 2κ2

∗ )Ωa

3(2 + κ2
∗ )

√
1 − κ2

∗
= Cχ . (5.9)

The condition (5.5) for locking now reduces to s < 2
√

1 − s2/κ2
∗ tan φ, implying

Ωa = Ωb =
1

2κ2
∗
s(2 + κ2

∗ )
√

1 − κ2
∗ . (5.10)

Otherwise,

Ωa =
s(1 − κ2

∗ )3/2

2κ2
∗

−3
√

1 − κ2
∗ cosφ tan ψ, Ωb =

s(2 + κ2
∗ )

2κ2
∗

√
1 − κ2

∗ −Ωa. (5.11)

When the minimum gap is relatively narrow, and ζ∗ ≡
√

1 − κ2
∗ � 1, we may write

both solutions in the compact form,

Ωa = 3ζ∗s Min

(
1
2
,

√
1 − s2

s
tan ψ

)
, Ωb = 3ζ∗s Max

(
1
2
, 1 −

√
1 − s2

s
tan ψ

)
.

(5.12)

The steady rolling speeds predicted by these formulae are illustrated in figure 9.

6. Comparison of theory and experiment
6.1. Outer cylinder speeds

In dimensional terms, the limiting cylinder speed with rough contact is expected to
be

V = V∗ × sinα × ζ∗ Max

(
1
2
, 1 −

√
1 − s2

s
tan ψ

)
. (6.1)

Equation (6.1) divides the speed into three factors: a velocity scale,

V∗ =
bMδg

4νm′′
a

, (6.2)

the main dependence on slope, sin α, and a final factor dependent on the surface
properties. On the smaller slopes, (6.1) reduces to V =(V∗ζ∗/2) sin α.
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Figure 10. The average speeds fitted to the experiments. (a) The raw data, plotted against
slope, with the different symbols corresponding to different viscosities, and inner cylinders.
In (b) we scale the speeds by the factor V∗ in (6.2), and add errorbars based on the
variations between several experiments. The two lines show theoretical predictions assuming
V/V∗ = (ζ∗/2) sin α with ζ∗ =0.1 and 0.2. The data shown by circles indicate measurements
taken for 500 cs oil in which a large number of small bubbles are entrained in the fluid and
migrate into the narrowest part of the gap between the cylinders.

Average speeds of the outer cylinder in the experiments are shown in figure 10.
These averages are obtained either by linear fits to the recorded position, or by taking
the mean of the time required to roll 25 cm during several different experiments. As
illustrated in figure 10(b), a scaling of the speeds by the velocity scale, V∗, compresses
the data close to a single curve that depends slightly on the inner cylinder material.

Also drawn in figure 10 are the lines V/V∗ =(ζ∗/2) sin α, with ζ∗ =0.2 and 0.4. The
comparison with the experimental data suggests that ζ∗ ∼ 0.2. In turn, because

ζ∗ ≡
√

1 − κ2
∗ =

√
1 −

(
1 − σ

b − a

)2

, (6.3)

where σ is the minimum gap width, this implies a maximum roughness scale of σ ∼ 50
microns. This estimate is consistent with images taken of the surface of the cylinders
with a microscope which revealed roughness of that order.

To explore further the dependence of cylinder speed on surface roughness, we
conducted more experiments in which the steel cylinder was first covered with differing
grades of sandpaper (more specifically, we used 50, 80 120, 150 and 220 ‘grit’, American
CAMI standard). The roughened cylinder speeds are compared to those of the original,
smooth cylinder in figure 11, and are faster by an amount depending on the grade
of sandpaper, confirming the dependence on the scale of roughness. As shown in
figure 11(b), the data can be collapsed further when we scale by a roughness factor,
ζ∗, given by the values for σ listed in table 3 (speed data for the smooth cylinder
also collapse onto that of the roughened cylinders if we adopt a roughness scale of
50 microns). In the inset of the picture, the estimated roughness scale, σ , is plotted
against the mean particle size of the sandpaper, as given by the the American CAMI
standard. The roughness scale is about four times the mean particle size in each of the
five cases used. We conclude that rough contact provides a plausible rationalization of



310 N. J. Balmforth, J. W. M. Bush, D. Vener and W. R. Young

0 1 2 3 4 5

0.5

0.10

0.15

2V
b 

/ζ
* V

* 

← sin α

0 1 2 3 4 5

0.02

0.04

0.06

0.08

Slope (deg.) Slope (deg.)

(a)

(b)

50 grit
80 grit
120 grit
150 grit
220 grit
Smooth

0 0.2

1.0

1.5

0.5

S
ca

le
d 

sp
ee

d 
V

b/
V

*

σ (mm)

Figure 11. Cylinder speeds with sandpaper-coated inner cylinders. (a) Average speeds of the
outer cylinder scaled by V∗ against slope for the steel inner cylinder and 500 cS silicone oil.
The stars indicate the speeds with the usual, smooth cylinder. In (b), a further scaling of ζ∗/2
is used to collapse the data. The values of ζ∗ are calculated using the roughness scales, σ , listed
in table 3. The inset plots the inferred σ -values against the mean particle size of the sandpaper
(according to the American CAMI standard).

Grade 220 150 120 80 50 Smooth

Inferred (mm) 0.3 0.4 0.5 1 1.6 0.05
Expected (mm) 0.07 0.09 0.12 0.2 0.36

Table 3. Roughness scales for the various grades of sandpaper (as given by the ‘grit’ value
listed). The ‘inferred’ value indicates the number used to collapse the data in figure 11; the
‘expected’ value is the number quoted by the American CAMI standard and refers to average
particle size.

the experimental results, although the comparison cannot be used to test the theory
without knowing further details of the sandpaper particle distribution.

Note that the data begin at increasingly large inclination angles as the roughness
of the sandpaper increases. This is because the object could come to a halt on the
runway if the slope was too small, which is consistent with the notion that when
contact occurs between the cylinders, any roughness in the surfaces can allow inclined
points of equilibrium.

It was also very difficult to avoid entraining small air bubbles into the silicone
oil when filling the apparatus. In the lower viscosity fluids, the bubbles appeared to
collect and merge into one or two bigger bubbles that rose to the top of the fluid and
stayed there whilst the cylinders rolled down the runway (as is visible in figure 4).
In these cases, we did not observe any smaller bubbles collecting in the low-pressure
regions occurring near the line of closest approach of the cylinders. However, with
the higher viscosity (500 cS) oil, the action of filling and even rapid rolling appeared
to create many small bubbles that took several hours to coalesce. When the cylinders
were rolled down the runway with such ‘bubbly’ oil, we noted a systematic increase
of speed of up to 20 %, especially for higher slopes (see figure 10). In these cases, the
small bubbles were clearly migrating into the narrowest part of the fluid-filled gap.
Thus, the presence of bubbles can affect the rolling speed just as cavitation affects the
dynamics of the journal bearing (see Pinkus & Sternlicht 1961) and spheres rotating
adjacent to walls (see Prokunin 2004, Seddon & Mullin 2006 and Yang et al. 2006).
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6.2. Inner cylinder speeds

The observed rolling speeds in figures 10 and 11 noticeably steepen with increasing
slope. The theoretical rationalization of this behaviour is that the cylinders are locked
into the same rotation rate on shallow slopes due to the friction of contact. As the
slope is increased, however, the cylinders begin sliding over one another, and the outer
cylinder then rolls faster down the incline, whilst the inner one rotates less quickly.

To look for an analogous behaviour in the experiments, we measured the rotation
of the inner cylinder by tracking surface markers. Figure 12 shows the results, plotting
the average speeds, 〈Vb〉 = b〈Ωb〉 and 〈Va〉 = a〈Ωa〉, against the runway slope (where
the angular brackets signify averages over 1 m). As predicted, the cylinder speeds are
closely matched on shallow slopes, and the two cylinders roll over one another like
the cogs of a gear; on steeper slopes, the rotation speeds diverge from one another,
with the inner cylinder rotating less rapidly.

Although the measurements in figure 12 agree qualitatively with theory, there are
some differences in the details. Theory, for example, predicts that the cylinders should
be perfectly locked for low slope, and that sliding should set in suddenly at a critical
inclination given by

tan ψ =
s

2
√

1 − s2
. (6.4)

In contrast, the experimental data show no such abrupt change in behaviour, and the
low-slope rotation speeds do not match perfectly. However, given that the minimum
gap is not likely to be the same all the way around the cylinder surfaces, it is unlikely
that the cylinders could ever become perfectly locked, and a more gradual transition
would then result. The data suggest a transition on slopes of about 3◦, which offers
an estimate of the friction angle for the sliding of the cylindrical surfaces over one
another in oil. One other notable point of disagreement is that, in the theory, the
rotation rate of the inner cylinder decreases once sliding sets in; the observations
show no such tendency.

7. Discussion
Our goal in this work has been to develop a theoretical model of the snail cylinder

and compare it with experiments. Provided the model includes a mechanism that
limits the closing of the gap between the two cylinders, it is possible to rationalize the
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observed phenomenology of the device and quantitatively reproduce the dependence
of the rolling speed and style on the various physical parameters. Here, we have
focused on a rough contact between the cylinders as the required mechanism. However,
inertia and cavitation provide two other possibilities.

Inertia breaks the symmetry of the Stokes pressure distribution and can levitate
suspended objects. For the problem at hand, inertial lift is surely negligible for the
slowest, most viscous configurations in which the inner cylinder sits almost at its
lowest point and the gap is at its thinnest (the Reynolds number for flow of 500 cS oil
through a gap of order tens of microns at speeds of mm s−1 is 10−4 or less). Even for
the least viscous, fastest configurations, the Reynolds number barely surpasses unity
when the gap is at its widest. Overall, the Stokes approximation appears to offer a
reliable simplification of the dynamics.

Cavitation is conventionally thought to be important in the journal bearing
(Pinkus & Sternlicht 1961), and has been demonstrated to be crucial in the dynamics
of spheres rolling adjacent to walls (Prokunin 2004; Ashmore, del Pino & Mullin
2005; Yang et al. 2006). Indeed, our experiments indicate that the presence of bubbles
does influence the rolling speed: in several runs with the more viscous oils, small
bubbles accumulated near the narrowest part of the fluid gap. The rolling speed was
then noticeably faster than in cases for which no such line of bubbles was discernible
in the gap. However, the change in rolling speed was not extreme (amounting to
less than about 20 %), and bubbles did not migrate into the gap in the less viscous
cases. Furthermore, simple modifications of the model that accounted for bubbles
or cavitation by truncating the pressure distribution when it approached too low a
value (a trick used for the journal bearing; see also Ashmore et al. 2005) were unable
to provide sufficient lift to counter gravity (Vener 2006) and allow steady rolling.
Although neither argument is conclusive, we feel that the most plausible explanation
of constant speed rolling is rough contact.

Finally, we comment on the relevance of our results to the snailball magic trick.
Although the phenomenology of the rolling dynamics of the two configurations is
observed to be similar, sedimenting cylinders and spheres show important differences
as contact is approached (Goldman et al. 1967; Jeffrey & Onishi 1981). It is
conceivable that this may have ramifications for the rolling dynamics of the two
configurations. We leave this issue open for future work.

This work was supported by the National Science Foundation under the
Collaborations in Mathematical Geosciences initiative (grant numbers ATM0222109
and ATM0222104). J.B. gratefully acknowledges the support of a National Science
Foundation Career Grant (CTS-0130465). We thank Keith Bradley of the Coastal
Research Laboratory, Woods Hole Oceanographic Institution, for assistance in
building the snail cylinder.

Appendix A. Derivation of the equations of motion
A.1. Geometry

The geometry is shown in figure 1. We use a Cartesian coordinate system attached
to a plane which is inclined at an angle α to the horizontal; the unit vector ι̂ points
down the slope and the unit normal k̂ is perpendicular to the plane. The unit vector
ĵ is into the page in figure 1, and clockwise rotations are positive. The position vector
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is X = Xι̂ +Z k̂ and the gravitational acceleration is −g, where

g = −g(sin α ι̂ − cos α k̂). (A 1)

In this (X, Z)-coordinate system, the two cylinders have centres at the positions
Xa = Xaι̂ + Za k̂ and Xb = Xbι̂ + Zb k̂, respectively. The requirement that the outer
cylinder rolls without slipping down the plane dictates that

Ẋb = bΩb, Zb = b. (A 2)

Geometry implies that the centre of the inner cylinder is given by

Xa = Xb + ε, ε ≡ ε(sinχ ι̂ + cos χ k̂). (A 3)

Thus the distance between the centres A and B is denoted by ε(t), and χ(t) is the
angle between the line of centres and the Z-axis. We denote the angle between the
line of centres and the direction of gravity by φ(t) ≡ α + χ(t).

The centre of mass of the fluid is

X f ≡ mf
−1

∫
ρX dAf , (A 4)

where the integral is over Af(t), the moving domain of the fluid. Geometric
considerations show that

mf X f = mf Xb − m′′
aε. (A 5)

With the relations above, one finds that the centre of mass of the whole apparatus,
M Xc = ma Xa +mb Xb + mf X f , is at

M Xc = M Xb + m′
aε. (A 6)

The relations above express Xa, X f and Xc in terms of our main independent variables
Xb and ε.

A.2. Motion of the cylinders

In our inertial, (X, Z)-frame, the equations of motion of the two cylinders are

ma Ẍa = Fa − ma g, (A 7)

mb Ẍb = Fb − mb g + E. (A 8)

Fa and Fb denote the forces that the fluid exerts on the two cylinders; E is the exter-
nal force exerted on cylinder B at the point of contact (C in figure 1) with the plane.
E consists of the friction force EX , acting along the plane, that prevents the outer
cylinder from freely sliding downhill, and the normal reaction, EZ , required to hold
the cylinder on the plane: E = EX ι̂ + EZ k̂.

The rotations of the two cylinders satisfy the angular equations of motion,

1
2
maa

2Ω̇a = Ta, (A 9)

mbb
2Ω̇b = Tb − bEX. (A 10)

Here Ta and Tb denote the clockwise torques about the cylinder centres, A and B ,
exerted by the fluid. The term −bEX on the right of (A 10) is the torque about the
centre B exerted by the force E. Above we have assumed that the inner cylinder is
a uniform solid so that the moment of inertia is maa

2/2, and that B is a cylindrical
shell with moment of inertia mbb

2.
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A.3. Motion of the fluid

The fluid has velocity, U(X, Z, t), and pressure, P (X, Z, t). The Navier–Stokes
equations are

ρ(U t + U ·∇U) = −∇P + ρν∇2U − ρg, ∇ · U = 0, (A 11)

with ∇ ≡ (∂X, ∂Z).
The force per unit area exerted on the fluid at a boundary with outward normal n̂

is F, where

Fi ≡ −Pni + ρν(Ui,j + Uj,i)nj . (A 12)

Integration of (A 11) over the domain Af(t) occupied by the fluid provides a differential
equation for the centre of mass of the fluid:

mf Ẍ f = −Fa − Fb − mf g. (A 13)

In (A 7), (A 8) and (A 13) we calculate the forces as

Fa ≡ −L

∮
F d�a, (A 14)

where d�a is the line element at the surface of cylinder A, with a similar expression
for Fb.

To obtain the angular momentum balance for the fluid, we take the cross-product
of (A 11) with X and integrate:

ρL
d

dt

∫
X × U dAf = −(Ta + Tb)ĵ − Xa × Fa − Xb × Fb − mf X f × g, (A 15)

where the torques

Taĵ = −L

∮
(X − Xa) × F d�a and Tbĵ = −L

∮
(X − Xb) × F d�b, (A 16)

are defined about the cylinder centres A and B , just as in (A 9) and (A 10).
Summing (A 7), (A 8) and (A 13) we obtain the total momentum equation of the

apparatus,

M Ẍc = E − M g. (A 17)

The total angular momentum equation, obtained by combining (A 7), (A 8), (A 9),
(A 10) and (A 15), is

d

dt

(
ma Xa× Ẋa + mb Xb× Ẋb + 1

2
maa

2Ωaĵ + mbb
2Ωbĵ + ρL

∫
X ×U dAf

)
= −M Xc × g − XbEZ ĵ . (A 18)

The right-hand side consists of the total gravitational torque, and the moment of the
external force, E, about the origin of the (X, Z)-coordinate system.

A.4. The frame of reference of the fluid

To complete the equations formulated above, we must calculate the fluid forces, Fa

and Fb, and torques, Ta and Tb. To this end, we implement the Stokes approximation
in the frame of reference in which the centre of mass of the fluid remains at rest. We
move to that fluid frame with the transformation

x ≡ X − X f(t), u(x, t) ≡ U(X, t) − Ẋ f(t). (A 19)
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Introducing

p ≡ P + ρ(g + Ẍ f) · x, (A 20)

we recast the Navier–Stokes equations as

ρ(ut + u · ∇u) = −∇p + ρν∇2u, (A 21)

where above ∇ ≡ (∂x, ∂z). By analogy with (A 12) we introduce

fi ≡ −pni + ρν(ui,j + uj,i)nj , (A 22)

so that F= f + [ρ(g + Ẍ f)·x] n̂.
In terms of p and u the total hydrodynamic forces in (A 14) are

Fa = f + m′′
a(g + Ẍ f) and Fb = − f − (mf + m′′

a)(g + Ẍ f), (A 23)

where

f ≡ −L

∮
f d�a. (A 24)

A key intermediate identity used to obtain (A 23) and (A 24) from the expression for
Fa in (A 14) is ∮

xinj d� =

∫
dAδij . (A 25)

In (A 24) we have defined f by integrating round the surface of cylinder A. Evaluating
the integral at the surface of cylinder B gives − f , which is a consequence of working
in the frame defined by X f , so that

∫
u dAf =0 at all times.

The torque, Ta, defined in (A 16), can be written in terms of p and u as

Taĵ = −L

∮
(x − xa) × f d�a, (A 26)

where xa = (1+ma
′′/mf)ε is the position of the centre of cylinder A in the fluid frame.

The torque, Tb, is provided by a → b in (A 26). An intermediate identity used to obtain
(A 26) from the expression for Ta in (A 16) is

εijk

∮
xjnkxm d� = εijm

∫
xj dA. (A 27)

A.5. Motion of the inner centre relative to the outer centre: the ε equation

We rewrite the equation of motion of the inner cylinder, (A 7), in terms of ε, f and
Ωb, and use (A 23) to replace Fa by f . With (A 3) and (A 5) we then arrive at(

ma +
m′′

a
2

mf

)
ε̈ = f − m′

a g − m′
abΩ̇b ı̂. (A 28)

It is convenient to represent the hydrodynamic force as

f = fε ε̂ + fχ χ̂ . (A 29)

fε and fχ denote the components of the hydrodynamic force on the inner cylinder. The
unit vector ε̂ = ε/|ε| is directed from B to A (increasing ε); χ̂ = ĵ × ε̂ is perpendicular
to ε̂ and orientated in the direction of increasing χ . If we now resolve the equation
of motion of the inner cylinder (A 28) in terms of these polar variables centred on B ,
we obtain the two equations of motion (2.1)–(2.2) quoted in § 2.

With (A 9), (2.1) and (2.2) we have three equations involving [χ, ε, Ωa, Ωb]. To
obtain a fourth equation relating these variables we turn to the total angular
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momentum equation (A 18). We make our first approximation by neglecting the
intrinsic angular momentum of the fluid,

∫
U × X dAf , and we evaluate all the

remaining angular momenta and torques in terms of [χ, ε, Ωa, Ωb]. This gives equation
(2.4) of § 2.

Appendix B. Lubrication analysis
For lubrication theory, it is convenient to move into a coordinate system in which

the centres of the cylinders are not moving, and position a polar coordinate system,
(r, θ), at the inner cylinder (i.e. on point A in figure 1). The angle θ is measured
positive in the clockwise direction with θ =0 running along the line of centres, BAO,
and passing through the narrowest point of the gap. Then the gap width h(θ) is
approximately

h(θ) = δ − ε cos θ, (B 1)

where δ ≡ b −a � a. We then use a ‘gap coordinate’, 0 � z � h(θ), defined by r ≡ a + z

so that (z, θ) = (0, 0) is the point O in figure 1.
To leading order in δ/a, the lubrication equations take the form

ρνuzz = a−1pθ, pz = 0,
1

a
uθ + wz = 0. (B 2)

These must be solved subject to the velocity boundary conditions on the cylinders.
In our new frame of reference, the fluid flow is dictated by the motions of the two

cylinders. Those motions can be divided into a rotational part generated by the two
rotations, Ωa −φ̇ and Ωb −φ̇, and a ‘squeeze flow’ in which the cylinders move towards
each other with a speed ε̇, squeezing out the fluid from the narrowest part of the
gap. To ease the construction of the fluid forces and torques, we split the lubrication
problem into these two parts and construct the full solution via linear superposition.

B.1. The rotational flow, uR(z, θ)

To leading order, the boundary conditions are

uR(0, θ) = a(Ωa − φ̇), wR(0, θ) = 0, (B 3)

uR(h, θ) = a(Ωb − φ̇), wR(h, θ) = 0. (B 4)

The solution is

uR(z, θ) =
(
1 − z

h

)
a(Ωa − φ̇) +

z

h
a(Ωb − φ̇) − pR

θ

2aρν
z(h − z). (B 5)

An integral of the continuity equation in z then provides the condition

q =

∫ h

0

uR(z, θ) dz =
ah

2
(Ωb + Ωa − 2φ̇) − h3pR

θ

12aρν
. (B 6)

Moreover, since
∮

pR
θ dθ =0,

q = aδ(Ωb + Ωa − 2φ̇)
1 − κ2

2 + κ2
, (B 7)

with κ ≡ ε/δ. The result (B 7) is obtained using the integrals∮
dθ

1 − κ cos θ
=

2π√
1 − κ2

,

∮
dθ

(1 − κ cos θ)2
=

2π

(1 − κ2)3/2
(B 8)
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dθ

(1 − κ cos θ)3
=

π(2 + κ2)

(1 − κ2)5/2
. (B 9)

Returning to (B 6), and eliminating q with (B 7), we obtain

pR
θ (θ) =

12a2ρν

h3
(Ωa + Ωb − 2φ̇)

[
h

2
−

(
1 − κ2

2 + κ2

)
δ

]
. (B 10)

B.2. The squeeze flow, uS(z, θ)

The boundary condition are

uS(0, θ) = wS(0, θ) = 0, and uS(h, θ) = ε̇ sin θ, wS(h, θ) = −ε̇ cos θ,

(B 11)
from which it follows that

uS(z, θ) =
z

h
ε̇ sin θ − pS

θ

2aρν
z(h − z) and pS(θ) =

6a2ρνε̇

εh2
. (B 12)

B.3. Forces and torques

Because the hydrodynamic force is dominated by the lubrication pressure,

Fa = −aL

∮
p(θ)(ε̂ cos θ + χ̂ sin θ) dθ ≡ fε ε̂ + fχ χ̂ . (B 13)

Owing to the specific symmetries of the induced pressures, we observe that

fε = −aL

∮
pS(θ) cos θ dθ, fχ = −aL

∮
pR(θ) sin θ dθ, (B 14)

which can be evaluated to give the formulae (2.5)–(2.6). Symmetry also demands that
the torque on the inner cylinder is provided solely by the rotational fluid motion. In
particular,

Ta ≡ a2ρLν

∮
uR

z (0, θ) dθ, (B 15)

which again leads to the formula (2.7).

Appendix C. Adding a rough contact
Frictional contact between the two cylinders demands the inclusion of a contact

force, C , acting on cylinder A, and −C on cylinder B . The equations of motion
become

ma Ẍa = Fa − ma g + C, mb Ẍb = Fb − mb g + E − C,
1
2
maa

2Ω̇a = Ta + aCχ, mbb
2Ω̇b = Tb + bEX − bCχ,

}
(C 1)

where C= Cε ε̂ + Cχ .
Depending on the normal reaction, Cε , the cylinder surfaces become either locked

together by the force of friction, Cχ , or slide over one another when that force
is less than the imposed traction. Let ψ̂ denote the effective angle of friction that
characterizes the contact between the two cylinders when they are immersed in oil.
Then, the surfaces do not slide over one another when

|Cχ | < |Cε | tan ψ̂, implying bΩb = aΩa.

On the other hand, frictional sliding results when we violate this constraint, and then

Cχ = |Cε | tan ψ̂ sgn(bΩb − aΩa)

(assuming that the coefficents of sliding and static friction are equal).
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As before, we make the thin-gap approximation, δ � a, in conjunction with
lubrication theory for the fluid. A key detail of the latter is that the fluid forces,
fε and fχ , are order a/δ larger than the torques, Ta and Tb (normal stresses dominate
shear stresses in lubrication theory). Consequently, it is evident from (C 1) that the
friction force, Cχ , has its main effect in the equation for Ωa. On the other hand,
the normal reaction, Cε , is crucial in balancing the force that pushes the cylinders
together. This guides us to take tan ψ̂ ∼ δ/a (implying further that Cχ ∼ (δ/a)Cε) to
supplement the scalings in the reduction scheme of § 4.1. Thus, we arrive at the system
quoted in § 5, where

Cε = − Cε

am′
ag

, Cχ =
δCχ

m′
ag

, tan ψ =
a

δ
tan ψ̂. (C 2)
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