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Crawling beneath the free surface: Water snail locomotion
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Land snails move via adhesive locomotion. Through muscular contraction and expansion of their
foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since
a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion
mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of
the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts,
being generated by the undulation of the snail foot that is separated from the free surface by a thin
layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of
small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling
sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained
and the resulting propulsive force on the snail is calculated. This propulsive force is found to be
nonzero for moderate values of the capillary number but vanishes in the limits of high and low
capillary number. Physically, this force arises because the snail’s foot deforms the free surface,
thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to

the topography of the foot. © 2008 American Institute of Physics. [DOI: 10.1063/1.2960720]

I. INTRODUCTION

Engineers often look to nature’s wide variety of locomo-
tion strategies to inspire new inventions and robotic
devices."™ More generally, scientists across all disciplines
are interested in understanding the physical mechanisms be-
hind different styles of biolocomotion. The mechanism of
terrestrial snail locomotion has been investigated and eluci-
dated over the past couple of decades; conversely, the pro-
pulsion of water snails that crawl beneath a free surface has
yet to be considered. The purpose of this paper is to propose
a propulsive mechanism for water snails.

Gastropod locomotion has been of scientific interest for
more than a century.sf7 Three distinct modes of locomotion
have been examined: ciliary motion, pedal waves, and swim-
ming. Ciliary locomotion, characterized by the beating of
large arrays of cilia on the animal’s foot, is usually distin-
guished from pedal waves by indirect means, such as lack of
visible muscle undulation, uniform adherence of the foot to
the substrate, and uniform gliding of the snail body.8 This
particular type of locomotion is mostly employed by various
marine and freshwater snails.

A significant effort has gone towards understanding
pedal wave locomotion by terrestrial snails. Lissman®'” was
a pioneer in constructing a mechanistic model of the snail
foot undergoing such locomotion. In Ref. 9, he studied three
species of terrestrial snails (Helix, Haliotis, and Pomatias),
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all of which use waves of contraction that propagate in the
direction of their motion (“direct waves”). Waves traveling in
the opposite direction (“retrograde waves”) were examined
by Jones and Trueman.'' A vital insight was later provided
by Denny,12 who turned the focus of study from the snail
foot to the properties of the pedal mucus. Pedal mucus has a
finite yield stress that allows it to act as an adhesive under
small strains and to flow like a viscous liquid beyond its
yield point. Thus, the snail is able to create regions of flow in
the mucus by locally shearing it, while the rest of the mucus
is effectively glued to the solid substrate; these regions (or
shear waves) propagate along the length of the foot, enabling
the snail to move. Denny used the nonlinear nature of the
mucus to rationalize the locomotion of Ariolimax columbi-
anus, a terrestrial slug.13 Recently, it was found that mucus
with shear-thinning properties results in energetically favor-
able locomotion,'* which is well supported by the experi-
mental studies of the mucus properties. A detailed investiga-
tion of the rheology of mucus was conducted by Ewoldt
et al.,”® who also tested different synthetic slimes. The ver-
satility of snail locomotion has also inspired Chan et al* to
build a robotic snail, the first mechanical device to utilize the
nonlinear properties of this synthetic mucus.

Terrestrial snails that employ adhesive locomotion are
only a fraction of the species in the class of gastropods.
Traditionally, gastropods have been divided into four sub-
classes: prosobranchia, opisthobranchia, gymnomorpha, and
pulmonata, the latter of which consists primarily of terrestrial
snails. Many species have not been thoroughly investigated
but exhibit interesting locomotive behavior. For instance,
opisthobranchs, which have reduced or absent shells, swim'¢
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FIG. 1. (Color online) Snail (Sorbeoconcha physidae) crawling smoothly
underneath the water surface while the surface deforms. Note the surface
deflection associated with the undulatory waves propagating from nose to
tail along its foot. Photo courtesy of David Hu and Brian Chan (MIT).

or burrow.'”"® A still more puzzling mode of locomotion is
observed in certain species of water snails.

In 1910, Brocher!® remarked on water snails that can
swim inverted beneath the water surface; since then, other
qualitative descriptions have been reported. Milne and
Milne® observed the foot of a pond snail “pulsing with slow
waves of movement from aft to fore along its length,” sug-
gesting that direct waves are employed for propulsion. The
presence of a trail of snail mucus was also reported.
Goldacre?' measured the surface tension of this thin trailing
film to be approximately 10 dyn/cm; he also remarked that
the creature was “grasping the film” as evidenced by the film
being pushed sideways as the snail advanced. Deliagina and
Orlovsky22 made similar observations while studying feeding
patterns of Planorbis corneus. This particular freshwater
snail crawls at about 15 mm/s, a speed comparable to that
on land, while the cilia apparent on the organism’s sole “beat
intensely.” Cilia-aided crawling beneath a free surface was
observed on marine snails as early as 1919. Copeland23 con-
cluded that the locomotion of Alectrion trivittata, which
crawls upside down on the surface, relied solely on the cili-
ary action. He conducted a similar study on Polinices dupli-
cata and Polinices heros, both of which were observed to use
both cilia and muscle contraction for locomotion on hard
surfaces.” Only ciliary motion was employed by the young
Polinices heros when crawling inverted beneath the surface.

It is therefore clear that freshwater and some marine
snails have the striking ability to move beneath a surface that
is unable to sustain shear stresses. In this paper, we attempt a
first quantitative rationalization of these observations. We
use a simplified model based on the lubrication approxima-
tion to show that a free-moving organism located underneath
a free surface can move using traveling-wave-like deforma-
tions of its foot. We first present our observations of the
propulsion of the freshwater snail Sorbeoconcha physidae in
Sec. II. We introduce our model based on the lubrication
approximation in Sec. III and present solutions for small-
amplitude motion of the foot. The physical picture for the
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FIG. 2. A trail of mucus behind the snail crawling upside down beneath the
free surface. Photo courtesy of David Hu and Brian Chan (MIT).

generation of propulsive forces is discussed in Sec. IV, to-
gether with the main conclusions and a summary of the sim-
plifying assumptions used in our analysis.

Il. OBSERVATIONS

Several common freshwater snails, Sorbeoconcha phys-
idae, were collected from Fresh Pond, MA. About 1 cm in
length, this particular snail can crawl beneath the water sur-
face at speeds as high as 0.2 cm/s, comparable to its speed
on solid substrates, and perform a 180° turn in 3 s. It is
rendered neutrally buoyant by trapping air in its shell.

The undulation of the snail foot causes surface deforma-
tions with a characteristic wavelength of 1 mm and ampli-
tude of 0.2—0.3 mm (see Fig. 1). This deformation appears to
travel in the opposite direction of the snail motion, suggest-
ing the generation of retrograde waves, contrary to the ob-
servations of Milne and Milne.”” Another notable feature of
water snail propulsion is the presence of a trail of mucus (see
Fig. 2). For land snails, this mucus layer is typically
10-20 um in thickness;'® as with land snails its rheological
characteristics may also play a significant role in underwater
locomotion. Since these water snails are also able to crawl on
solid substrates, one might venture that their mucus proper-
ties do not differ too greatly from those of land snails.

lll. MODEL
A. Assumptions

The crawling of water snails beneath the free surface has
four distinct physical features: a free surface with finite sur-
face tension o, a layer of (presumably) non-Newtonian mu-
cus, coupled deformations of the foot and the surface, and a
matching of the flow inside the mucus to that around the
snail. To isolate the critical influence of the first feature, we
consider in this paper a simplified model system character-
ized by a Newtonian mucus layer and small deformations of
the foot and the interface, with hopes of providing physical
insight into the propulsion mechanism.
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B. General equations

Choosing a characteristic velocity U~ 1 cm/s, a mucus
thickness H~20 um, and a (post-yield) mucus viscosity
v~ 1072 m?/s (Ref. 15) suggests a Reynolds number of the
flow within the mucus layer to be Re=UH/v~ 107>, Thus,
we neglect inertia and start with incompressible Stokes equa-
tions:

V.v=0, (1a)

V.-T=0, (1b)

where v is the velocity field inside the mucus and II is the
stress tensor. Normal and tangential stress boundary condi-
tions at the surface may be expressed as

n-II-n=o«k, (2a)

t-1-n=0, (2b)

where n and t denote, respectively, unit vectors normal
(outward) and tangent to the free surface, and k=-V-n de-
notes the curvature of the free surface. We limit our attention
to the two-dimensional case, for which the interface shape is

given by $=h(£) (see Fig. 3) and x may be expressed as
hge! (1+h2)*2, where the “hat” notation denotes dimensional

variables. The mucus is assumed to be a Newtonian fluid;
thus, the stress tensor is given by

1= pL+2pue, 3)

where e= %{(VV)+(VV)T} is the rate-of-strain tensor.
In the frame moving with the snail, we assume that the
gastropod foot undergoes periodic deformations in the form

of a traveling wave moving at a speed VW. Our approach is as
follows: given the shape of the foot, we solve for the shape
of the liquid-air interface together with the velocity field in
the mucus layer, and then calculate the resulting propulsive
force on the snail.

C. Lubrication analysis

To eliminate temporal variations, we consider the frame
of reference moving at the wave speed \A/w relative to the
snail (Fig. 3). We define \A/w and the (unknown) snail speed
\A/S to be positive when the snail moves in the positive X
direction while the wave travels in the opposite direction.

The thickness of the mucus (tens of microns) is observed
to be small relative to a typical wavelength of foot deforma-
tion (millimeters). Thus, we apply the lubrication ap-
proximationzs_28 and reduce the governing equations based
on H/IN=a< 1, where H is the characteristic thickness of the
mucus film and X is the wavelength divided by 2. More
specifically, terms of order a or higher are discarded in the
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FIG. 3. (Color online) A close-up view of the mucus and the snail foot
undergoing a simple sinusoidal deformation of wavelength 27\. The pre-
scribed shape of the snail foot is denoted as ﬁ]; the resultant shape of the
free surface, I;z, is to be solved for. The known constant speed of the wave,
‘A/w, is set relative to the snail that is translating with an unknown speed, ‘A/X.
In laboratory frame (a), the wave is moving in the negative £ direction with

\A/w—\A/A. while the snail is moving in the positive x direction with \A/s. In the
frame moving with the wave (b), the snail body appears to move in the

positive X direction with \A/W.

equations of motion. The governing equations and boundary
conditions [Egs. (1a), (1b), (2a), (2b), and (3)] are nondimen-
sionalized using the following set of characteristic scales:

A

X=N\x, (4a)
$=Hy, (4b)
(4,0) =V, (u,av), (4c)
V.=V,V,, (4d)
p= “;Vp (4e)

Based on standard lubrication theory, the equations of mo-
tion are reduced to the following:
du v

0=£+5, (5a)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



082106-4 Lee et al.
7 Fu
0=-24+%22, (5b)
dx dy
d
0=2, (5¢)
ay
while the boundary conditions may be expressed as
u=1 aty=h,, (6a)
v=0 aty=h,, (6b)
0=2 aty=h (6¢)
= — a y = 2, C
ay
3
a
_h2 =P aty= hZ’ (6d)
Ca ~

where x and y are the horizontal and vertical coordinates of
the system while z points out of the page, and u and v are the
velocity components in the x and y directions, respectively.
The shape of the snail foot is described by h;(x) while
hy(x) denotes the unknown free surface shape. Note that

Ca= ,UJ\A/W/ o is not a capillary number in the traditional sense

A

since V,, is not necessarily the characteristic speed of the
flow in the lubrication layer. In order to allow surface tension
effects to remain relevant in the current problem, the curva-
ture term in Eq. (6d) is retained despite being multiplied by
a®; this is a standard practice in thin film problems with
surface tension (see, e.g., Ref. 29).

For convenience, we define a modified capillary number,

Ca=puV,/a*c=Ca/a’, so that the normal stress condition
becomes

1
~hy=—p aty=h,. (7)
Ca

Then by integrating Eq. (5b) twice with respect to y and

applying necessary boundary conditions, we obtain an ex-
pression for the velocity field in the mucus layer,

1 1 1
M()C,y) :f:hZ,xxx<h2y - Eyz + Eh% - h2hl> +1. (8)
Ca

The resulting volume flux through the layer,

1 1 (1
Q=hy=hy+ = hy | Z(hy=hy)"| Zhy + 0y
Ca 3 2
1
+hy(hy—hy) Ehl_hZ , )

is constant since the mucus thickness does not vary with time
in this moving reference frame.
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In order to obtain the motion of the snail, it is necessary
to consider the forces acting on the organism. Since its mo-
tion occurs at low Reynolds numbers, the snail is force-free;
hence, the forces from the (internal) mucus flow and those
from the external flow around the body must sum to zero:

Fim+Fext:0' (10)

More specifically, F.,, is equal to -F, drag€y» Where F drag 18 the
magnitude of the drag force from the external flow; F;,, is the
traction caused by the flow in the mucus on the foot of the
snail and can be expressed as the integral of II-n;, where n,
is outward normal to the foot of the snail. In the lubrication
limit, Eq. (10) reduces to

]dx=ﬁdrag, (11)

which is a scalar equation representing force balance in the x
direction. Here n is the number of waves generated by the
foot and w is the width of the foot in the z direction. Physi-
cally, the left-hand side of Eq. (11) is the propulsive force
that arises from the internal flow of the mucus and balances
the drag from the external flow. Note that Egs. (10) and (11)
implicitly neglect the overlap regions between the internal
mucus flow and the external flow around the organism; we
will derive in Sec. III H the asymptotic limit in which this is
a valid assumption.

D. Solution for small-amplitude motion

In order to solve the model problem, we consider the
following limit for foot deformations. If AH denotes the typi-

cal amplitude of the foot deformation, we define e=AH/X\
and assume it to be small. Note that € is a parameter inde-
pendent of the geometrical aspect ratio a, as can be seen by
considering the case where £=0; in this limit, the dimension-
less parameter ¢ is zero when the foot surface is flat, while a
remains finite. We choose the foot shape as

h;=¢esinx, (12)

and solve for the associated layer profile, &,, order by order
as

hy=1+ehl + 2P + O(&?). (13)

The resulting expression for the flux is given by
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0 (sh(zl) +&e2n?)
1+ eV - sin x) + 24 =1 ’
2 2 Ca
(eh(l) +&2h?

Ca

where 0=0+0W+£20@+0(&%). Collecting terms of
the same order, the leading order O(1) simply states that
0©=1, and then at order O(e) we obtain

0 = ) + 2 p()

2 — SINX. (15)
3Ca

This third order linear ordinary differential equation has an
analytic solution given by

X
V=00 +A4, exp(— m)

X \Ex
+ A, exp 213 cos _2C1/3

X . V’gx C cos x+sinx
203 )M 20 ) T e

+A; exp(
(16)

where C=1/3Ca, and A}, A,, and A5 are unknown constants.
For convenience, Q") is set to zero by arbitrarily setting
Q= 1. Note that Q corresponds to the rate of mucus produc-
tion by the snail.

E. Boundary conditions

The real challenge lies in identifying the three indepen-
dent boundary conditions required to solve for A;, A,, and
As. As a logical starting point, we proceed by applying peri-
odic boundary conditions over each wavelength:

hy (27)) = hy (27(j + 1)), (17a)
hZ,xx(ZWj) = h2,xx(277(j + 1)) > (17b)
h2,xxx(277j) = h2,xxx(277(j + 1)) s (170)

where j ranges from O to n—1. In this limit, A;, A,, and A3
vanish, and these boundary conditions yield no motion of the

snail, regardless of the value of Ca. Conducting a force bal-
ance on the mucus layer over one wavelength (as shown in
Fig. 4) offers a simple explanation for this result: the peri-
odic boundary conditions ensure that the pressure forces act-
ing on the side control surfaces of the mucus layer precisely
cancel. Since the top control surface of the mucus is exposed
to ambient air pressure, there can be no net force that acts on
the bottom control surface. Thus, no equal and opposite force
acts on the snail foot ([1] in Fig. 4), suggesting that no net
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1 1
Sl 2”‘“){5[1 +e(hy) —sin x) + szh(zz)]z{l + s(h(zl) D) sin x) + Szh(zz)}}

1
2y 2,00 {s sinx[1 + e(ht) - sinx) + 82h<22>][ 1+ s<h<;> — sin x) + szhg)] }

(14)

propulsive force is generated under strictly periodic bound-
ary conditions.

Instead, the three boundary conditions should be selected
by the physical constraints on snail locomotion. Since the
moving gastropod is force- and torque-free, the first two con-
ditions should naturally be

2 F,=0,
> =0,

where F refers to forces in the y direction while 7is a torque
in the z direction. In all generality, the sum of all forces and
torques acting on the snail must vanish at low Reynolds
numbers; the forces and torques from the thin film of mucus
must therefore balance the forces and torques generated by
the external flow around the body and those arising from
gravity. For this analysis, we assume the snail does not ro-
tate, and that its shape is sufficiently symmetric that the ex-
ternal viscous torques and y force vanish. We also assume
the organism to be neutrally buoyant and homogeneous, so
the forces and torques due to gravity are zero. As a result,
Egs. (18a) and (18b) only require the y force and z torque
arising from the thin film to vanish.

The final boundary condition arises from consideration
of the matching between the internal and the external flow
around the organism. By symmetry, we expect the swimming
speed of the snail to be of order V,~ . Since we are in the
Stokes regime, pressure differences across the moving gas-
tropod should scale linearly with the free stream velocity and

(18a)

(18b)

.z S
.z SN
7 AN
v, \\\
7 N
—_—> N 7

~ 1 N 7 .
plrf) M N e+ D)

FIG. 4. (Color online) Free body diagram of a perfectly periodic mucus
layer over one wavelength between nodes j and j+1. Pressures at these
nodes, p(2mj) and p(2m(j+1)), as well as the heights, h,(27j) and
hy(2m(j+1)), are equal by the periodic boundary conditions. Above the
mucus layer is open to atmosphere with p,, set to zero.
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FIG. 5. (Color online) (a) Dimensionless propulsive force Fyp,

Ca /.LV“/ a’o, where the values of n range from 5 to 30 in mcrements of 5. In (b) and (c), the absolute value of the dlmemlonless force F,
a logarithmic scale to show the power- law decay in the limits of Ca—>0 and Ca—>0C respectively. The propulsive force exhibits a Ca

while it decays as Ca3 for small Ca.

occur at order &% as well. Thus, the pressure difference be-
tween the front and back of the snail is zero at O(e), the
order of our formulation, and the third boundary condition
becomes

p(0)=p(2nm).

These three boundary conditions allow one to obtain a
complete expression for h;l) and subsequently solve for the
dimensionless propulsive force Fy, at O(g?):

(19)

- fz”” dh, du p
rop = P x
prop 0 dx y=h,
2nm
= SCJ [- h2 1. COS X+ hél))m(h(zl) — sin x)
0

n2

2 XXX

Jdx. (20)

Note that the integral of h2 . Vanishes by the matching pres-
sure boundary condition, which is equivalent to £, ,,(0)
=h; (2n1r). Referring back to the constants in Eq. (16), A,

__10° 10" 102
Ca
(a)
?,
s,
by,
%,
~ s,
1075 | L
s,
— s,
g %o
EQ 0 n=5 -1 u
* n=10 "
107101 o p=15 'v,
+ n=20 ‘w,
¢ n=25 % o
v n=30 ) ‘ Vg
10° 10
Ca

©

normalized by the number of wavelengths, n, as a function of the modified capillary number,

prop 18 plotted on

decay for large Ca

~

in particular, is a nontrivial function of Ca. Hence, unlike the
strictly periodic boundary condition case, the expression for
h(zl) now contains a nonperiodic function that gives rise to a
nonzero propulsive force.

F. Crawling speed

To balance the thin-film propulsive force, it is necessary
to evaluate the external drag F drag Caused by the motion of
the snail. For simplicity, the snail is modeled as approxi-
mately spherical, with radius R. Although approximate,
this model yields an order of magnitude estimate for the
speed of our model snail. By nondimensionalizing F drag DY
wV, W, the right-hand side of Eq. (11) becomes F, drag
~6mfV,/ u*, where V is the snail speed scaled by \A/w and
M=/ hyaters the viscosity ratio of mucus to water. A cor-
rection factor f accounts for the aspherical shape of the snail
as well as the influence of the free surface on the drag coef-
ficient; for the present analysis, f will be treated as known
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FIG. 6. Absolute magnitudes of components of dimensionless propulsive
force due to pressure (solid line) and due to shear (dashed line) as a function

of Ca for n=10 (note that the shear force is negative). Hence, the total
propulsive force which is the sum of these two forces is nonzero only when
there is a difference between the two.

for a given crawler. By combining this scaling with the O(&?)
term in the force on the foot generated by the mucus layer,
the following expression for V is obtained:

2, %
&u ~
V, = Fprop(Ca,n), (21)
af
where F,, the total propulsive force function, is plotted in

Fig. 5(a) for different values of n. The exact formula for F,,
is not reproduced in this paper because it is long and not
informative for the purpose of this analysis but is straightfor-
ward to calculate with symbolic packages. Note that the

width of the snail foot, w, is taken to be on the same order as
R; thus, they drop out of Eq. (21).

G. Results

Figure 5 shows that the propulsive force vanishes in the
limits of both large and small surface tension. In the limit of

infinitely large surface tensions (Ca—0), the interface be-
tween the air and mucus is undeformable and so is analogous
to a flat surface that cannot sustain shear stress. A snail
would simply slip on such a surface. The detailed behavior

for small values of Ca is shown in Fig. 5(b). The dimension-

~Ca?® for de-

less force follows the power-law decay Fpp

creasing Ca for all values of n.

With zero surface tension (Ca— ), a pressure differ-
ence across the interface cannot be sustained and so cannot
drive the flow within the mucus; hence no propulsive force
can be generated in this limit either. In this case, the force

follows for all n the power-law decay |F’ pr0p| ~Ca™! as shown
in Fig. 5(c).

Note that the propulsive forci:\goes from positive to
negative at a moderate value of Ca that, in the case of
n=10, is around 0.3. Physically, this implies that the snail
swirtglles from retrograde waves to direct waves at this criti-
cal Ca. In addition, Fig. 5(a) shows that the propulsive force
exhibits two ,(Egtinct maxima for retrograde and direct waves,
at values of Ca corresponding to 0.15 and 0.8, respectively.
Since the maximum propulsive force for the direct waves is
higher than that for the retrograde, the direct waves may be a
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FIG. 7. (Color online) Dimensionless pressure (a, dashed line) and shear
stress (b, dashed line) within the mucus over two wavelengths for n=10.
The single dotted line in both (a) and (b) is the shape of the foot, &, while
E solid lines describe the shape of the interface, /,, fir/ different values of

Ca. Black arrows indicate the direction of increasing Ca.

faster mode of locomotion for water snails. This points to a
possible biological advantage of direct over retrograde
waves.

Figure 6 quantifies the components of propulsive force
due to pressure and shear. It is important to note that the

~

force due to shear (dashed line) is negative. In the low Ca
limit, these two_components precisely cancel, leading to no
motion. th\e/n Ca is high, they both vanish. For intermediate
values of Ca, a difference in the magnitudes of these forces
results in anet propulsive force. Note the existence of a finite
value of Ca for which the propulsive force reaches zero,
which is a surprising result of our model.

Going back to the dynamic boundary condition Eq. (7),
one can calculate the pressure and shear stress distribution to
O(¢) inside the mucus layer. These are plotted in Fig. 7 for
n= 10 along with the shape of the interface, h(zl). In the large
Ca limit, the interface shggei exactly conforms to the shape of
the foot &;; in thfe\slmall Ca limit, the interface becomes flat.
At intermediate Ca, there exists an asymmetry in the inter-
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FIG. 8. (Color online) Dimensionless pressure (dashed line) and the inter-
face shape (solid line) in the front (a) and end (b) of the snail for n=10. The
dotted line is the shape of the foot, and black arrows are in the direction of
decreasing surface tension.

face shape, associated with the exponential term in Eq. (16),
that gives rise to the nonzero propulsive force. The interface
shape, pressure, and shear stresses are plotted for the first
wavelength and the last (corresponding to the front and end
of the snail) for n=10 in Fig. 8. As shown in this figure, the
mucus thickness at the ends deviate substantially from ex-
trapolated periodic values, creating an asymmetry between
the head and the tail. Thus, although the pressures at the ends
of the crawler are equal at O(g), there exists a net O(g?)
pressure force acting on the side control surfaces, owing to
the an O(e) difference in thickness of the mucus layer (see
Fig. 9). To balance this net force, there has to be a force
acting on the bottom surface of the mucus layer; thus, there
exists an equal and opposite force acting on the foot of the
snail, corresponding to the propulsive force.

As suggested by Fig. 5, surface tension is the essential
ingredient in this mode of locomotion, and the propulsive
rfowrce vanishes in botll\liJmits of asymptotically small (large
Ca) and large (small Ca) surface tension. The snail would
therefore have to tune the way it deforms its foot to exploit
the property of the fluid-air interface. As the foot is de-
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FIG. 9. (Color online) Free body diagram of an asymmetric mucus layer
across the foot of the snail. (For simplicity, n=1 in this diagram.) Pressures
at the ends, p(0) and p(2nr), are equal by the boundary condition; however,
they act over two different mucus thicknesses, resulting in a net pressure
force.

formed, it forces a lubrication flow in the mucus layer above
and leads to the deformation of the free surface. The result-
ing topography of the free surface, constrained by surface
tension, is then exploited by the organism to generate a pro-
pulsive force.

H. Matching internal and external flows

In our analysis, we have neglected the fluid forces on the
organism, F, ., arising from the intermediate matching re-
gion between the internal (mucus) and the external flows.
Since the propulsive force of the snail mostly arises from the
asymmetric shape of the free surface at the head and tail of
the foot, this requires further comment.

Physically, since we are calculating the internal and ex-
ternal flows separately, both need to be considered. In order
to first estimate the magnitude of F, ., due to the external
flow, we refer to the work by Berdan and Leal®® who studied
the motion of a sphere near a deformable fluid-fluid inter-
face. As an extension of previous work in which the interface
is assumed to be ﬂat,31’32 the work in Ref. 30 considers the
limit of small interfacial deformation and its effects on the
translating body. Unlike our current analysis, the velocity of
the sphere is not governed by the shape of the free surface
but is fixed as U. The small parameter in this paper, €, re-
duces to a capillary number, é=,uf]/ o, when gravitational
effects are not included. Berdan and Leal showed that in the
case of a sphere moving parallel to the free surface, the de-
formation of the interface only has a vertical force contribu-
tion at O(€). In the current analysis, F;,, and F,, the forces
considered in Eq. (10), are of O(g?). Therefore, in order to
neglect F ..., consistently, the following condition has to be
satisfied:

&< 82, (22)

which requires one to consider how € and & are defined.

Since U is \A/s in our problem, we have &~ M‘A/s/ o. Recalling
from Sec. III C, the capillary number Ca is defined in terms

of the wave velocity VW. Because it has been shown that
V,=V,/V, scales as €%, € can be expressed as
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ne ~ g2 MV,
g g

é = ¢’Ca. (23)
When one replaces Ca with a*Ca and rearranges the terms,
the criterion to neglect F ., in Eq. (22) reduces to

2aCat < 1. (24)

Since a and & are both small parameters asymptotically
approaching zero in the lubrication analysis in the limit of
small deformation amplitude, £2a®< 1, Eq. (24) represents a
weak constraint on the validity of neglecting forces from the
intermediate region.

The second matching force to consider is that induced by
the internal flow. Since there is, in general, a height differ-
ence between the mucus at the front and the back of the
snail, the fluid surface will be distorted at either end to match
with the flat surface far away. Our work will therefore be
valid in the limit where the capillary forces resulting from
these distortions can be neglected, corresponding to an
asymptotic limit which we now characterize.

The two relevant length scales to consider for matching
the distorted fluid interface to th/e\ﬂat free surface in the
far field are the capillary length, €.~ Vo pg (p is the fluid
density), and the width of the snail, w. The ﬂu@\ interface
will be distorted over a length ¢ where ¢ ~min(¢,,1%). The
typical curvature pressure arising from surface distortion will
be on the order of ~adh/ 2, acting on typical height differ-
ence Sh between the free surface near the snail and the far-
field height of the free surface, and therefore contributes to a
force on the snail (per unit width) on the order of
~a(8h)2/€2. Since dh~ eH ~ eak, the capillary force is on
the order of ~oe’a®\?/€% This force has to
be cgglpared with that arising from the e>§e\mal flow, given

by pe R (again, per unit width) where p., is the typical
magnitude of the pressure outside the organism as it is crawl-

ing. Since poy~uV,/R we have p, R~ uV,~e*uVv,.
The matching condition becomes, therefore, oea®\%/€>

<&uV,, which is equivalent to
R%/€* < aCan?, (25)

where we have used the estimate R~ nX. The second match-
ing condition, Eq. (25), requires that the number of wave-
lengths along the snail’s foot, n, be sufficiently large.

IV. DISCUSSION

In this paper, we have presented a simplified model of
water snail locomotion. The physical picture that emerges is
the following: the undulation of the snail foot causes normal
stresses that deform the interface and drive a lubrication
flow. The resulting stress distribution couples to the topogra-
phy of the snail foot, leadfiﬂag to a propulsive force. This force

vanishes in the limit of Ca— 0, where the interface is flat,

and of Ca— o0, where the topographies of the interface and
the snail foot precisely match. A finite propulsive force is

obtained for intermediate values of Ca. This interplay be-
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tween the free surface and the snail foot distinguishes water
snail locomotion from that of their terrestrial counterparts.
For the latter, the solid substrate on which the snail crawls is
fixed; hence, the shape of the snail foot alone determines the
pressure and shear stresses generated within the mucus layer.
For water snails, however, the interface is deformed due to
the flow created in the mucus by the foot undulation; the
interface, in turn, affects the dynamics within the mucus
layer, creating pressure and shear stresses that act on the
foot. This nonlinear coupling between the foot geometry, sur-
face tension, and dynamics within the mucus layer makes the
water snail locomotion a less straightforward mode of loco-
motion.

A direct analogy exists between the thin film comprising
the mucus layer of water snails and those arising in coating
flows; for example, those used in photolithographic pro-
cesses to fabricate various electronic components. This class
of fluid problem has been well studied both
experimentally33_35 and theoretically,3 33436240 o example of
which includes spin coating. Kalliadasis et al.*' used lubri-
cation theory to show that in the limit of small Ca, the inter-
facial features become less steep, an effect also captured by
our model. Mazouchi and Homsy42 demonstrated that in the
case of large capillary numbers, the shape of the free surface
nearly follows the topography. In the context of water snail
locomotion, we saw in Sec. III D that the free surface con-
forms to the shape of the foot in the same limit.

Our study is only the first step towards a quantitative
understanding of gastropod crawling beneath free surfaces. It
is significant in that we have demonstrated the plausibility of
locomotion with the minimal ingredients: Newtonian fluids
and small-amplitude deformations. Nevertheless, outstanding
issues remain. In the case of adhesive snail locomotion on
land, the non-Newtonian properties of snail mucus, such as a
finite yield stress and finite elasticity, play an essential role."
Non-Newtonian mucus is likewise expected to have a sig-
nificant effect for water snails. Furthermore, more systematic
observational studies are needed to identify which water
snail species exhibit which modes of “inverted crawling.” As
reported by CopelamdB’24 and Deliagina and Orlovsky,22
some species of water snails rely entirely on cilia for propul-
sion beneath the free surface. If such ciliary motion results in
no free surface deformation, the physical mechanism exam-
ined in this paper is of little relevance, and a closer look at
the cilia-induced flow is suggested. Alternatively, the non-
Newtonian properties of the mucus may prove to be signifi-
cant in this case. Categorizing different species according to
their propulsion mechanism of crawling (i.e., cilia versus
muscle contraction) and the constitutive properties of their
mucus would provide a more complete physical picture of
this intriguing form of locomotion.
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