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Grabbing water†‡
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We introduce a novel technique for grabbing water with a flexible

solid. This new passive pipetting mechanism was inspired by floating

flowers and relies purely on the coupling of the elasticity of thin

plates and the hydrodynamic forces at the liquid interface. Devel-

oping a theoretical model has enabled us to design petal-shaped

objects with maximum grabbing capacity.
Biomimicry is becoming a central methodology in the engineering

sciences.1,2 Plants alone have inspired man-made designs over a wide

range of scales. The understructure of lily pads provided impetus for

Joseph Paxton’s Crystal Palace,3 and the desert flower Hymenocallis

for the triple-lobed footprint of Dubai’s Burj Khalifa tower. At the

small scale, the structure of burrs inspired velcro,4 while the surface

structure of lotus leaves has provided the principal clues for devel-

oping water-repellent and drag-reducing surfaces.2

We were inspired by Hydrophytics which are plants adapted to life

in shallow aquatic environments that face the challenge of survival at

the air–water interface. Being rooted to the underlying soil with their

leaves and flowers constrained to the water surface, such plants have

developed compliance mechanisms that allow them to protect their

genetic material during times of flooding. Fig. 1a x illustrates a daisy,

Bellis perennis, that has deformed into a cup-like structure in response

to an increased water level. When pulled beneath the surface, some

species, such as Nymphoides (Menyanthaceae) may fully close into

a shell, thereby trapping an air bubble.5 We investigate the conditions

under which such floating flowers deform and seal shut in response to

hydrostatic pressure. Subsequently, we demonstrate that inverting the

problem provides a means of cleanly grabbing water from an air–

water interface with a petal-shaped thin plate. This technique repre-

sents a robust new means of clean and passive pipetting.

We first present a laboratory realization of a submersible flower.

For the sake of simplicity, we consider analogue flowers cut from

a single sheet of a thin polymer, vinylpolysiloxane (VPS). A flower-

shaped sheet is placed on an air–water interface and a vertical

displacement imposed at its center (Fig. 1c1–3 and Supplementary
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Movie 1†). As the synthetic flower is pushed downwards, the

hydrostatic pressure plays a dual role. First, it applies a force per unit

area normal to the petal surface that prompts bending. Second, it

encourages the flooding of water through the inter-petal spacing.

Since VPS is partially wetting (contact angle �85–95�), contact lines

arise and pin at the edges of the petals and flooding is resisted by the

capillary pressure associated with the surface tension s of the

meniscus spanning the petals (Fig. 1b).

For successful closure, a static meniscus must be sustained along

the edges of adjacent petals for all penetration depths, so flooding

avoided. For a gap of typical width l, a meniscus is stable if sa/l $ P,

where P ¼ rg|H � z| is the hydrostatic pressure, r is the density of

water, g is gravitational acceleration, H is the penetration depth

(Fig. 2a) and a/l is the local interfacial curvature. By assuming

a cylindrical meniscus shape (a¼ 2), we establish an upper bound for

the inter-petal gap for closure to occur: l must satisfy the condition

l #
2s

rgjH � zj (1)

for all penetration depths H.
Fig. 1 From sinking flowers to the elastocapillary pipette. a) A partially

submerged daisy, Bellis perennis.x The meniscus prevents flooding and

the internal surface remains dry enough to host an insect. b) Schematic

diagram of the menisci between the deformed petals. s is the arc-length

along the center line of each petal. (c1–3) A polymer sheet may fold like

a flower if submerged, thereby capturing an air bubble (Supplementary

Movie 1†). (N ¼ 6 petals, E ¼ 0.8 MPa, h ¼ 150 mm). (d1–3) Lifting the

flower captures a water droplet. (Supplementary Movie 2†). Blue food

coloring has been added to improve visualization.
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Fig. 2 The elastogravity length, Lc. a) Schematic diagram of the system

geometry. A rectangular plate of length 2L is pushed down to a maximum

depth H beneath the surface. The point of loading is located at (x,z) ¼
(0,0) and the unperturbed air–water interface at z ¼ H. The deflection

angle q is expressed in terms of the arc length s. b) Top view of a rect-

angular (b¼ 6 mm) BOPP (bi-oriented polypropylene) plate driven down

to a depth of H ¼ 2.3 mm. The transparent BOPP strip is in between the

two dashed lines. Optical distortions of the underlying square grid yield

a measure of the horizontal deformation length, D. c) D is proportional to

L c for a variety of plates, details of which are provided in the legend {.

Closed and open symbols correspond to downwards and upwards

movement of the plate, respectively.
In Fig. 1c, flooding is resisted, so the flower closes fully and

captures an air bubble. Noting that the system has up-down

symmetry, we proceed by inverting it. When the flower is pulled

upwards, deformation of the free surface generates hydrostatic

suction that prompts petal bending and flower closure (Fig. 1d1–3

and Supplementary Movie 2†). Flooding of air into the captured

water drop is again resisted by the capillary pressure associated with

the deformed interface. The inversion of the floating flower thus

introduces the possibility of grabbing water with a passive pipetting

mechanism: the elastocapillary pipette.

We begin by considering a simplified quasi-two-dimensional

geometry (Fig. 2a). A vertical displacement H is imposed along the

centerline of a rectangular polymer plate (of thickness h, span b, total

length 2L and Young’s modulus E) lying flat on an air–water inter-

face. The configuration is similar to that considered by Pocivavsek

et al.,6 albeit with different loading conditions. The linear displace-

ment is applied to the initially flat plate by a vertical razor blade (see

Fig. 2a and 2b). As the blade advances downwards, the plate

deformation increases progressively. To estimate the maximum

vertical deflection of the plate, zL, we balance the bending energy of

the strip, EB, and the work done over zL by the hydrostatic loading,

Eg. The contribution due to bending is approximately
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EB � B(zL/L2)2Lb where B ¼ [Eh3]/[12(1 � n2)] and is the bending

modulus of the plate with Poisson’s ratio n. The work of the

hydrostatic loading over the maximum deflection of the plate zL is Eg

� rg(HbL)zL where (HbL) is the volume of the displaced water.

Balancing EB � Eg yields zL/H � (L/Lc)
4, where Lc ¼ [B/(rg)]1/4

denotes the elastogravity length.7 In the above scaling, we have

neglected the influence of surface tension along the length and width

of the plate. For the former, neglecting surface tension requires

rg(HbL)z [ szL, i.e. Hb [ l2
c, where lc is the capillary length.

Likewise, for the meniscus along the width: HL [ l2
c. Here we

assume that, if H is sufficiently large, our sinking plates have both

L > lc and b > lc. We thus focus on the regime where elastic bending

and hydrostatic loading together prescribe the lengthscale of defor-

mation.

The horizontal extent of the plate deformation, henceforth the

deformation length D, for a fixed sinking depth H, was measured

using the optical technique detailed in Fig. 2b. A sinking depth of

H ¼ 2.3 mm is chosen to be close to the capillary length, beyond

which a stable lateral meniscus cannot be maintained and flooding

occurs over the petal’s long edge. As shown in Fig. 2c{, the defor-

mation length clearly increases linearly with the elastogravity length

Lc: D/2 ¼ (2.93 � 0.04)Lc.

We proceed by theoretically describing the bent profile in the above

geometry. Symmetry of the system ensures that we need only consider

half the plate. The arc length, s, along the plate’s centerline varies

from the point of loading to the tip, 0 # s # L. The total energy of the

system can then be written as

E ¼
ðL

0

�
BbðsÞ

2

�
dq

ds

�2

þ rgbðsÞ
2
ðH � yÞ2cosq

�
ds (2)

where q(s) is the local angle between the horizontal and the strip’s

centerline. The first term corresponds to the elastic bending energy

and the second to the gravitational potential energy associated with

the displaced water. To find the equilibrium deformation profiles, we

perform a local minimization of the total energy given in eqn (2),

from which the bent profile q(s) is obtained. For this purpose, the

plate is discretized into n elements, yielding the angles between each of

them, q(sn). The total energy eqn (2), for a given set of input

parameters (L, b, Lc, H), is then minimized with respect to q(sn) using

a Nelder–Mead Simplex method (implemented in MATLAB). We

chose n to be sufficiently large as to have no influence on the results.

In Fig. 3a, we present a sequence of calculated profiles for

increasing penetration depths of a rectangular plate with constant

width, b. The shapes are reported as a function of the dimensionless

parameter D ¼ (H/Lc)
4. The plates become progressively more dis-

torted with increasing D and at D ¼ 31.2 the ends touch, suggesting

that (for L > 2.72Lc) it is in principle possible to capture an air bubble

inside the elastic strip. In our experiments, this bubble capture was

not observed with rectangular plates due to failure of the lateral

menisci at depths of the order of the capillary length. Predicted and

observed plate shapes agree well (Fig. 3b). We stress that while

surface tension does not play a critical role in the plate shape, it is

critical in preventing flooding.

The 3D flowers presented in Fig. 1c and 1d folded into spheres,

although such need not be the case. We proceed by rationalizing the

surface of revolution that a petal-shaped polymer sheet adopts under

closure by hydrostatic pressure. This shape is chosen such that

adjacent petals come together without compression and that they

close with their tips at the interface. First, we implemented an iterative
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 Experimental and theoretical edge profiles. a) Numerical edge

profiles of a rectangular plate for increasing values of the dimensionless

parameter, D ¼ (H/Lc)
4. Complete plate closure occurs when D ¼ 31.2

and L¼ 2.72Lc. b) Comparison between experiments (points) and theory

(solid lines) of the evolution of the edge profile of a rectangular plate with

increasing H for a VPS plate (E ¼ 0.22 MPa, n � 0.5, L ¼ 18.65 mm,

b ¼ 6.35 mm, and h ¼ 1.20 mm.).

Fig. 4 Petal-shaped profiles for pipetting. a) Computed profiles for

flowers with constant half-length L and increasing inner solid disk values

(h ¼ d/(2L)). Red curve for h ¼ 5%. b) Computed template with N ¼ 8

petals and h ¼ 5%. c) Closed synthetic flower (L ¼ 22.5 � 1.0 mm,

L ¼ 2.72Lc, N ¼ 8, E ¼ 0.8 MPa and h ¼ 0.8 mm) compared with the

computed profile (dashed line). d) Stability phase diagram. Full closure

for flowers are marked with (B) and meniscus failure with (�). The

dashed line is the meniscus stability boundary deduced by assuming

a cylindrical meniscus. Successful closure is predicted to occur for values

of N and L below the line and meniscus failure above it.
minimization procedure for a plate of unit length, constant width and

h, the ratio of rigid disk radius to flower radius (see below), and

calculate the parameters Lc and H that lead to complete closure. The

shape obtained by revolution of the edge’s profile at closure is sliced

in N petals, leading to a varying width b(s). The procedure is then

repeated until b(s) converges. As for rectangular plates, we neglect

capillarity in the calculation of the equilibrium shapes, a valid

assumption provided rg(HbL)H [ slL, i.e. bH2/l [ l2
c. The

flower templates are made by taking the surface of revolution

obtained from energy minimization and slicing it into N petals of

width b(s). Note that b(s) appears both in the bending and the

gravitational potential energies, resulting in N-independent shapes.

To avoid a singularity at the point of loading (b(s ¼ 0) ¼ 0), we

consider shapes with a central disk (diameter d¼ 2hL) from the edge

of which the petals emanate (with q(s ¼ d) ¼ 0), in both our calcula-

tions and subsequent experimental templates. This disk remains rigid

due to the high energetic cost of stretching relative to bending.8

The profiles for central disks of increasing dimensionless

diameters (3% # h # 13%) are presented in Fig. 4a. The template

obtained after taking the shape profile with h¼ 0.05 in Fig. 4a and

slicing into N ¼ 8 petals is presented in Fig. 4b. The comparison

between this shape and that obtained experimentally for a flower

with parameters L¼ 22.5� 1.0 mm, N¼ 8, h¼ 0.8 mm, n� 0.5 and

E ¼ 0.8 MPa is shown in Fig. 4c. There is excellent agreement

between the shapes, and the volume of captured liquid measured in

the experiments (Vexp ¼ 562 � 15 mm3) compares well with that

predicted by our model (Vmodel ¼ 501 mm3).

To ensure that static menisci be sustained between adjacent petals,

and so flooding avoided, the inequality in eqn (1) must be satisfied
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everywhere. The criterion of stable menisci for the closing shapes is as

follows. For each flower with petal length L, the material properties

(set through Lc) are chosen in order to obtain complete closure at the

surface of the liquid. The number of petals N is then decreased until

the condition in eqn (1) is violated. Pairs of critical values (L*, N*)

establish a phase boundary between viable (closing) and failing

flowers. The resulting stability phase diagram is presented in Fig. 4d.

Flowers are expected to close without flooding in the region below the

dashed lines, deduced by assuming a cylindrical meniscus. Experi-

mentally, a flower with L¼ 22.5� 1.0 mm, E¼ 0.8 MPa and h¼ 0.8

mm is found to close for N $ 8. Note that by assuming a cylindrical

meniscus we deduce a conservative estimate for the stability criterion.

Using synthetic flowers with our calculated shapes, the size limitation

for successful closure rests on the precision of cutting: a larger clos-

able flower requires a larger number of petals.

Py et al.9 recently demonstrated that interfacial forces may fold

flexible solids, and so presented the first examples of capillary

origami. In their experiments, drops were placed on flexible sheets

which folded into 3D shapes in response to interfacial forces,

provided the sheet’s size, L, exceeded the elastocapillary length

Lec ¼
ffiffiffiffiffiffiffiffiffi
B=s

p
. Their designs were constrained to scales less than the

capillary length, below which capillary forces dominate gravity.

Conversely, in our system, hydrostatic pressure is causing rather than

resisting the folding; thus fluid capture is in principle possible

provided the petal size is of the order of the elastogravity length

Lc ¼ [B/(rg)]1/4, which can be considerable. In practice, surface

tension is important to prevent flooding by maintaining the integrity
Soft Matter, 2010, 6, 5705–5708 | 5707



of the menisci. The largest of our successful pipettes has a tip-to-tip

diameter of 2L ¼ 45 � 2 mm. Our study thus makes clear that

interfacial folding of elastic solids can occur on a scale well beyond

the capillary length, and opens the way to a new class of inexpensive,

passive, suction-free pipettes that may find use in the laboratory

setting. While we have focused here on grabbing water, our robust

design functions on a wide range of fluids. Failure can arise if the

solid’s wetting properties preclude the menisci pinning at the petals’

edges, or when viscous stresses become dynamically important.

Applications to two fluid systems and grabbing oil floating on water

are currently being explored.

Notes and references

x Licensed under the Creative Commons Attribution ShareAlike 3.0 License:
http://en.wikipedia.org/wiki/File:Dscn3156-daisy-water_1200�900.jpg

{ Data used in Fig. 2c: VPS1 up (127) mm, VPS1 down (127,229) mm,
VPS2 up (1194, 762, 635, 508, 381, 330) mm, VPS2 down (1194, 762, 635,
508, 381, 381, 330) mm, VPS3 up (1194, 762, 635, 508) mm, VPS3 down
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(1194, 762, 635, 508, 279) mm, VPS4 up (381) mm, VPS4 down (381) mm,
BOPP up (90, 50, 30, 15) mm. BOPP (bi-oriented polypropylene, Innovia)
has E ¼ 2.7 GPa. The VPS polymer plates (Zhermack) VPS1, VPS2,
VPS3 and VPS4 have E1¼ 0.24 MPa, E2¼ 0.54 MPa, E3¼ 0.65 MPa and
E4 ¼ 0.96 MPa, respectively.
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