
Tumbling Dynamics of Passive Flexible Wings

Daniel Tam* and John W.M. Bush

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Michael Robitaille and Arshad Kudrolli

Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
(Received 15 July 2009; revised manuscript received 6 April 2010; published 6 May 2010)

The influence of flexibility on the flight of autorotating winged seedpods is examined through an

experimental investigation of tumbling rectangular paper strips freely falling in air. Our results suggest the

existence of a critical length above which the wing bends. We develop a theoretical model that

demonstrates that this buckling is prompted by inertial forces associated with the tumbling motion,

and yields a buckling criterion consistent with that observed. We further develop a reduced model for the

flight dynamics of flexible tumbling wings that illustrates the effect of aeroelastic coupling on flight

characteristics and rationalizes experimentally observed variations in the wing’s falling speed and range.
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Seed dispersal is the means by which plants expand and
colonize new areas [1]. To maximize their range, some
plants have developed elaborate gliding, spinning, or tum-
bling winged seedpods, whose aerodynamics enable them
to extend their flight time and range [2]. Such winged
seedpods are often light and thin, which generally de-
creases their surface loading and hence their rate of de-
scent. As a consequence, they can be flexible, as
demonstrated by the gliding seeds of Alsomitra macro-
carpa, that deform substantially during flight. We are
broadly interested in elucidating the role of flexibility in
passive flight. Here, we focus on tumbling wings, such as
the winged seedpods of Ailanthus altissima, and investi-
gate the influence of flexibility on the tumbling dynamics.

Consider a rectangular wing of uniform thickness h,
width w, cross-sectional area A ¼ wh, length L, density
�s, bending stiffness EI, falling through air of density �
under the influence of gravity g. Studies of the dynamics of
freely falling rigid wings have a rich history dating back to
Maxwell [3]. Recent work has mainly focused on the
transition between the fluttering and tumbling modes,
which occurs at a critical value of I0 ¼ �sh=�w [4–6].
For small values of I0, the wing oscillates in a side-to-side
fluttering motion. Above a critical I0, the wing tumbles,
completing full rotations about its long axis, while drifting
along an inclined trajectory [Fig. 1(b)]. The flight proper-
ties of tumbling rigid wings have been characterized ex-
tensively through experiments [7,8].

We investigated the influence of flexibility on passive
tumbling flight experimentally using rectangular paper
strips of varying surface density �sh and stiffness, namely,
light, medium, and stiff paper with �sh ¼ 6:0, 7.5, 14�
10�2 kgm�2 and bending moduli of Eh3=12 ¼ 1:0, 3.6,
29:2� 10�4 kgm2 s�2, respectively. Paper wings of mod-
erate to high aspect ratio, L=w ¼ 3–30, were used by
varying their length and width over the respective ranges
L ¼ 5–28 cm and w ¼ 0:5–5 cm. The wings are released

from an electromagnetic clamp with their leading edge
parallel to the ground. Upon release, the rectangular
wings promptly start tumbling at a high and constant
rotation rate, a regime well beyond the fluttering-tumbling
transition [5,6]. Trajectories are captured by a high-speed
camera filming at 250 fps and recorded from either the
front or side in order to extract the bending deflection
amplitude Z, the rotation rate _�, linear velocity UG, and
the angle of descent � between the velocity vector UG and
the vertical [Fig. 1(a)]. These flight characteristics ranged
from Z� 0–5 cm, _�� 20–150 s�1, UG � 0:7–1:1 m=s,
and �� 50�–30�. Short tumbling wings remain straight
[Fig. 1(b)]; however, sufficiently long wings bend symmet-
rically, sagging about their center line [Fig. 1(c)]. While

FIG. 1. (a) Schematic of the geometry of a falling, tumbling,
bent wing. Superimposed snapshots of a tumbling paper wing:
short wings remain straight (b), while long wings bend (c). For
the sake of clarity, two half cycles are shown in (c) and images
are artificially spaced. (See videos [11].)

PRL 104, 184504 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
7 MAY 2010

0031-9007=10=104(18)=184504(4) 184504-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.184504


previously reported [7,8], this bending remains unex-
plained. We observe the transition between the two re-
gimes to be sharp as L is increased and to depend
strongly on w and h. Throughout the motion, the deflection
amplitude Z and rotation rate _� remain nearly constant.
Specifically, fluctuations of no more than 15% are ob-
served in either Z or _�, with these maxima arising for
the longest (L > 25 cm) and widest (w> 3 cm) wings. We
here demonstrate that the wing buckles under the influence

of inertia at a critical value of the transition parameter � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�sA _�2=EI4
p

L, which prescribes the relative magnitudes of
the destabilizing inertial force and the wing’s elastic re-
sistance to bending. We then elucidate the manner in which
elastic deformation affects the tumbling dynamics.

We proceed by identifying the driving force behind the
bending of a tumbling wing. The wing tumbles about the
horizontal ŷ axis and the trajectories remain in the (x̂, ẑ)
plane. Since the bending moment of inertia is smallest in
the cord direction x̂0, we assume bending to occur solely in
the (ŷ, ẑ0) plane corotating with the wing, in accord with
our observations (Fig. 1). The wing orientation is pre-
scribed by the pitch angle � between the horizontal x̂
and cord direction x̂0. The position along the center line
is given by the arc length s, and �ðsÞ denotes the deflection
at s in the ẑ0 direction and measured from a line of direction
ŷ through the center of gravity G. Hence the local velocity
of the wing at the center line UðsÞ can be written UðsÞ ¼
UG � _��ðsÞx̂0. All equations of motion are expressed in
the corotating reference frame (x̂0, ŷ, ẑ0).

For small deflections, bending deformation of the free
wing is governed by the linear Euler-Bernoulli equations

�ssss � p � ẑ0
EI

¼ 0; (1)

with free end boundary conditions �ss ¼ 0 and �sss ¼ 0 at
s ¼ �L=2. p is the force distribution per unit length along
the wing and has three components: inertial, aerodynamic,
and gravitational forces. It can be written pðsÞ ¼
��sA _UðsÞ þLðsÞ þDðsÞ þ �sAg, with LðsÞ and DðsÞ
the local lift and drag. Newton’s second law for the wing

requires that
RL=2
�L=2 �sA _Uds ¼ RL=2

�L=2ðLþDþ �sAgÞds,
which we simply write as

RL=2
�L=2 pðsÞds ¼ 0. Conse-

quently, a simple expression for the forcing p can be
derived. Consider a wing tumbling in the straight configu-
ration �ðsÞ ¼ 0. In this case,U is constant along the span of
the wing, so inertial forces are independent of s.
Furthermore, for sufficiently long wings, three-
dimensional aerodynamic effects at the wing tips can be
neglected and the flow considered two-dimensional, in
which case L and D are both independent of s. As a con-
sequence, p is independent of s and so must indeed vanish
to satisfy the conservation of linear momentum. Hence, we
can deduce that the straight configuration �ðsÞ ¼ 0 is al-
ways a solution, albeit a potentially unstable one.

Let us now consider a bent wing, whose small deflection
� is constant in time, in accord with experimental obser-

vations. We seek to find the first order correction to p
caused by finite bending � . The local inertial force at s
now has an additional component �sA _�2�ðsÞẑ0.
Furthermore, given that the Reynolds number in our ex-
periments Re ¼ �wUG=� is of order 103–104, the aero-
dynamic pressure scales as �UðsÞ2 and the first order
correction in � to the aerodynamic force now scales as
�w _�UG�ðsÞ. The ratio of this first order correction in
inertial forces to aerodynamic forces is large in our experi-
ments: �sh _�=�UG > 102, which allows us to neglect the
aerodynamic contribution to the correction term and con-
sider only an inertial forcing pðsÞ ¼ �sA _�2�ðsÞẑ0.
The equation governing the bending dynamics (1) to-

gether with the inertial forcing forms an eigenvalue prob-
lem previously investigated in the context of fast spinning
ballistic objects [9] and is similar to that arising in the
Euler buckling of a beam under normal compression [10].
The solution to the ordinary differential equation (ODE)
(1) is a linear combination of trigonometric and hyperbolic

functions. For small values of the transition parameter � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�sA _�2=EI4
p

L, the straight configuration, �ðsÞ ¼ 0, is the
only solution. However, when � reaches a critical value
corresponding to the eigenvalue condition

tan
�

2
¼ � tanh

�

2
(2)

obtained from the boundary conditions, the existence of a
nontrivial solution implies that the straight configuration
becomes unstable to a bent configuration through an iner-
tial buckling transition (see detailed derivation in [11]).
The onset of instability corresponds to the smallest �

satisfying Eq. (2), specifically �? � 4:73. �? characterizes
either a critical buckling length for a given rotation rate, or
alternatively a critical buckling rotation rate for a given
length. Note that the critical rotation rate corresponds
precisely to the lowest natural frequency oscillation of a
free beam. The nontrivial solution to Eq. (1) at the tran-
sition is symmetrical and can be written

�ðsÞ ¼ Z
cosð�?

2 Þ coshð�?

L sÞ þ coshð�?

2 Þ cosð�?

L sÞ
cosð�?

2 Þ þ coshð�?

2 Þ � 2 cosð�?

2 Þ coshð�?

2 Þ
: (3)

Z ¼ �ð0Þ � �ðL=2Þ is the deflection amplitude and re-
mains undetermined from the linearized equation (1). As
for Euler buckling, Eq. (1) precisely predicts the transition,
but leaves undetermined the details of the deflection after
the transition. Nevertheless, exact shapes can be computed
by solving numerically the nonlinear bending equations
using the MATLAB BVP4C routine (see detail in [11]). Nu-
merically computed shapes are reproduced in Fig. 2(a).
Note that higher order instabilities can theoretically arise
for larger values of �; however, such high values were not
achieved experimentally. For each wing, both the normal-
ized deflection Z=L and transition parameter � can be
estimated from recordings of free falling wings. The ex-
perimental data are reported in Fig. 2(c). The deflec-
tion Z is zero for small � but increases sharply close to
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�? � 4:73, in close agreement with our numerical results.
It bears emphasis that this agreement is not due to fitting, as
there are no free parameters: each parameter is obtained
from direct experimental measurement. Moreover, wing
shapes observed experimentally are compared with those
computed numerically [11], and found to be in good agree-
ment [Fig. 2(b)].

We now focus on flight properties of tumbling flexible
wings, specifically the effect of elastic bending on flight
range and descent rate. A reduced model for the flight
dynamics of flexible tumbling wings is developed, which
consists of coupled aeroelastic equations of motion derived
in nondimensional form using the characteristic quantities

Lref ¼ w, mref ¼ �sAL, Uref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�shg=�
p

, and tref ¼
Lref=Uref , where Uref is a characteristic settling speed
found by balancing gravity and aerodynamic forces. In
the following, all equations are written in nondimensional
form, and � ¼ L=Lref is the nondimensional wing length.

We first derive a reduced equation for the bending dy-
namics of the wing. In nondimensional form, Eq. (1) be-

comes €�þ�2�ssss� _�2�¼0, where �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=�sA
p

tref=
L2
ref represents a nondimensional frequency of oscillation.

Substituting the solution to the linearized equations (3) for
� yields an equation in Z only

€Zþ ½!ð�Þ2 � _�2�Z ¼ 0: (4)

This reduced equation (4) describes the dynamics of a
harmonic oscillator of natural frequency !ð�Þ ¼
��2

?=�
2 under inertial forcing _�2Z. As expected, ! also

corresponds to the lowest natural frequency for bending
oscillations of a free wing. Equation (4) captures the
essential physics of the inertial buckling transition. The
straight wing Z ¼ 0 is always a solution, but is only stable

for short wings or low rotation rates for which !ð�Þ> _�.
The transition occurs for !ð�Þ ¼ _�, which corresponds
precisely to Eq. (2). In this case, Z need not be zero and
solutions with finite bending are possible.
We proceed by deriving the conservation equations gov-

erning the falling motion of the wing. Similar equations
have been derived for rigid wings [4–6], but these studies
were aimed at characterizing the fluttering-tumbling tran-
sition, while we here only consider tumbling far from the
transition and investigate the first order effect of bending.
The local liftL is proportional to the circulation around the
wing �, as predicted by quasisteady potential flow theory,
and � is assumed to depend only on the rotation rate � ¼
CR _�, with CR a nondimensional parameter. The local drag
D is taken to be quadratic in the local velocity UðsÞ with
constant drag coefficient CD. Both local lift and drag
depend on the local velocity and thus on the deflection � .
Linear momentum conservation for the entire wing is ex-
pressed in the (x̂0, ẑ0) frame by integrating the local lift,
drag, and gravitational forces along the wing:

I0ð _u� _�vÞ ¼ �CR _�v� CDUGu� sin�; (5)

I0ð _vþ _�uÞ ¼ þCR _�u� CDUGv� cos�: (6)

u and v are the components of UG in the (x̂0, ẑ0) frame of
reference and I0 ¼ �sh=�w. It bears emphasis that Eqs. (5)
and (6) are independent of the deflection � to first order.
This is because � is taken from the center of gravity G and

by definition we have
R�=2
��=2 �ðsÞds ¼ 0; hence any first

order correction of the local forces in � integrates to zero.
Angular momentum conservation is expressed with re-

spect to G. The only torque acting on the wing is the
aerodynamic torque, which we decompose as the sum of
an entrainment torque that causes the wing to rotate and a
dissipative torque that opposes its rotation. For a straight
wing, the entrainment torque is taken to be proportional to
the lift, as is the case in potential flow theory, and the
dissipative torque to be quadratic in _�. For a bent wing, we
must include the contribution from the moments of the

aerodynamic forces about G,
R�=2
��=2½� ẑ0 � ðLþDÞ�ds.

Here, first order corrections in � to L and D make nonzero
contributions, which correspond to an additional term in

the dissipative torque proportional to
R�=2
��=2 �ðsÞ2ds.

Substituting Eq. (3) for � yields a quadratic term in the
total deflection Z. Hence

d

dt
ðJ _�Þ ¼ � _�UG ��1 _�2 ��2Z

2 _�UG; (7)

where J is the nondimensional moment of inertia at G
about the axis ŷ, and �, �1, �2 are nondimensional aero-
dynamic parameters.
It is remarkable that the system of coupled nonlinear

ODEs (4)–(7) has a particular solution for which the de-
flection Z and rotation rate _� remain constant throughout
the motion, in agreement with our experimental observa-

FIG. 2 (color online). (a) Computed wing shapes for � ¼
4:7–6:7. (b) Front view of a tumbling, bent wing superimposed
with the shape computed numerically (white line). (c) Maximum
wing deflection as a function of the dimensionless parameter

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�sA _�2=EI4
p

L, experiments, and theory (solid curve).
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tions. For this solution, the ODEs (4)–(7) reduce to alge-
braic equations for Z, _�, and UG, which may be solved
analytically. Note that we are mostly interested inUG since
its magnitude UG and direction from the vertical � fully
characterize the descent rate and range of the wing. The
analytic solution can be found in [11], and depends only on
the nondimensional length �, and four constant aerody-
namic parameters CD, CR, �=�1, �2=�1. Figure 3 shows
the collapse of our nondimensional experimental data for
Z, _�, UG, � as functions of �, and the agreement with our
analytical solution. The aerodynamic parameters are
chosen to best match the experimental data and all take
reasonable values [11] in agreement with previous studies
[6]. For example, the inferred value forCD is 0.78, lying, as
expected, between the values CD � 0 and 2 appropriate for
a wing falling, respectively, parallel and perpendicular to
its cord direction.

For a short wing, before the transition, no bending
occurs; hence Z ¼ 0 [Fig. 3(a)]. In this regime, the ana-
lytical solutions for _�, UG, and � are constants, indepen-
dent of �, in accord with our experimental observations
and previous studies [8]. Moreover, the collapse of the
nondimensionalized experimental data confirms that, be-
fore the transition, the flight characteristics _�?, UG?

, and

�? are independent of the cross-sectional geometry, which
implies that the dimensional rotation rate scales with

1=tref � h1=2w�1, as suggested in [8].
The transition parameter � increases with � and the

buckling transition occurs when � ¼ �? ¼ �?

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�= _�?

p

.
After the transition, Z, _�, UG, and � only depend on
�=�? and on the aerodynamic parameters. The solution
can be expanded in �=�? both around the critical point
and in the limit of long wings. At the transition, the

deflection Z increases sharply as the square root of the
length but tends to an asymptotic value for long wings
[Fig. 3(a)]. The increased Z deflection causes the wing to
rotate at a smaller rate, which confirms the main effect of
bending on the aerodynamics, namely, an increased dis-
sipative torque that opposes rotation. This decrease in _� is
first linear at the transition and goes to zero asymptotically
for long wings [Fig. 3(b)]. On the other hand, the velocity
UG increases slightly before reaching an asymptotic value.
While moderate, the increase is confirmed by our experi-
mental data [Fig. 3(c)] and implies a small increase in the
descent rate. Finally, the angle of descent� asymptotically
decays to zero [Fig. 3(d)], corresponding to a decreased
range.
Our study has rationalized an abrupt change in the flight

characteristics of rectangular flexible wings that accompa-
nies their buckling transition, and so highlights the dra-
matic influence of elasticity on passive flight. For tumbling
wings, flexibility leads to diminished flight characteristics,
namely, an increased descent rate and decreased range.
This trend suggests a trade-off: while a lighter wing will
have greater descent times, it may suffer a buckling insta-
bility, which may diminish its flight characteristics. In the
context of plant colonization, this conclusion is corrobo-
rated by the form of the tumbling seed pods of Ailanthus
altissima. We measured their surface density, length L �
5 cm, width w � 0:5 cm, thickness h � 10 �m, and rota-
tion rate. Estimating � for the equivalent rectangular wing
yields � � 5, comparable to the critical value for buckling.
Nevertheless, these tumbling seed pods are never observed
to buckle, presumably owing to the chiral shape of the
seedpod, which increases the bending stiffness and so
represents a novel example of plant adaptation to aeroelas-
tic constraints.
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FIG. 3 (color online). Comparison between the analytical so-
lution to our reduced model for the flight dynamics of flexible
tumbling wings and experimental data of measured (a) total
deflection Z, (b) linear velocity UG, and (c) rotation rate _� of
the wing as a function of �=�?. Figure (d) represents the angle
of descent tan� as a function of _�.
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