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We interpret dx/dt as the time rate of change of the x-coordinate position of our observer, i.e., dx/dt is the
x-component of the velocity, w, of our observer. Thus
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and Eq. 4.1-4 becomes

; %=@ﬂ+m@a+m@a+m@3. (4.1-5)

3 In vector notation this becomes,

ds_ (8S\, }

| dr‘(aﬂ“" vSs,  (4.1-6) ,

and in index notation we express this result as :,
I

ds_as, (83 !

dr at (axi)' @.1-7) l

Here the repeated indices are summed from 1 to 3 in accordance with the summation convention[2]. If our
observer moves with the fluid, i.e., w = v the time derivative is called the material derivative and is denoted

by
: DS _aS
Dr =3t +v-VS. (4.1-8)
If our observer fixes himself in space, w = 0, and the total time derivative is simply equal to the partial time
derivative
dS _aS
_—— f =0 "
TRETE or w (4.1-9)
Now we wish to consider the total time derivative of the volume integral of S over the region ¥.(t). |
Here ¥,(t) represents an arbitrary (hence the subscript a) volume moving through space in some specified

manner. The time derivative we seek is given by

‘ DERWATION
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'; dt Yalt) Sey= .l:rTu At : ’ (4.1-10) REYNOLID
To visualize the process under consideration, we must think of a volume, such as a sphere, moving through 1.??;::?

space so that the velocity of each point on the surface of the volume is given by w. The velocity w may be a
function of the spatial coordinates (if the volume is deforming) and time (if the volume is accelerating or i
decelerating). At every instant of time some quantity, denoted by S, is measured throughout the region
occupied by the volume ¥.(t). The volume integral can then be evaluated at each point in time and the time
derivative obtained by Eq. 4.1-10.

In Fig. 4.1.1 we have shown a volume at the times t and t + At as it moves and deforms in space. During
the time interval At the volume sweeps out a “‘new” region designated by Vu(At) and leaves behind an
“old” region designated by Vi(At). Clearly we can express the volume ¥,(t + At) as

Va(t + A1) = Va(t)+ Vu(At) — Vi(At), (4.1-11)
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92 The Basic Equations of Momentum and Energy Transfer

dV..= +w-n At dA
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Fig. 4.1.1 A moving volume T.01).

so that the integral of S(r + At) in Eq. 4.1-10 can be put in the form

f S(t+At)dV = S(r+_u)dv+f
T A

Vitarn)

S(I+A1)qu—f S(t+At)dv,.

Tain) Vitan

4.1-12
Substitution of Eq. 4.1-12 into Eq. 4.1-10 leads to ( )
4 {f St+andv—[ S(t)dv}
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dt J;',ru e BT: At

+ lim
Ar—0

f S(t+At)qu—j S(t+At)adv,
Vitdry At Vitar) (4‘1_13)

In treating the first term on the right-hand-side of Eq. 4.1-13 we note that limits of integration are the same
so that the two terms can be combined to give

f S(t+Ar) dv—f S(t) dv} ;
. Valt) Valt) T _ L
lim = = lim {——Ar fw [S(t +At)— S(t)] dV}. (4.1-14)

Since the limits of integration are independent of At the limit can be taken inside the integral sign so that
Eq. 4.1-14 takes the form

[ sa+anav-[ swav ~
Iim { 3L 0t) A Voir) } =J‘ Iim [S(t +At) SQ)]' (4.1_15)
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Here we must recognize that S(t +At) and S(t) are evaluated at the same point in space so that the
integrand on the right-hand-side of Eq. 4.1-15 is the partial derivative and Eq. 4.1-15 takes the form

[f S(:+Az)dv—f S(t)dV} ' -
Valt) LA _ 3
o _Lm Bav. (4.1-16)

We can now return to-Eq. 4.1-13 and express the time rate of change of the volume integral as

lim
A0

S(t+At)dVy,— f
Vi{Ar)
At

S(t+At)dV,|
(4.1-17)
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From Fig. 4.1.1 we note that the differential volume elements of the “new™ and *“‘old” regions can be
expressed ast

dVy=+w-nAtdAy, (4.1-18)
and

dVi=-w-nAtdA. (4.1-19)

Use of Eqgs. 4.1-18 and 4.1-19 allows us to express the volume integrals as area integrals, thus leading to

S(t+At)w-nAtdAn+ [ S(t+At)w-nAt dAI}
1} Ag

; R
Sdv = ':'..m( dV+]1m{ o

dt Jv,m at b
(4.1-20)

On the right-hand-side of Eq. 4.1-20 we can cancel At in the numerator and denominator and note that
A1(+A;-—>&f,,(t) as Afr-—0,
_so that Eq. 4.1-20 takes the form

d : a3
— — — + ai 3 ; )
dt alr) h Talr) (ar av J;a(” Sw-ndA (4.1-21)

This is known as the general transport theorem. A more rigorous derivation is given by Slattery [3]. If we let
our arbitrary volume ¥, (t) move with the fluid, the velocity w is equal to the fluid velocity v, the volume
V.(t) becomes a material volume designated by ¥,.(t), and the total derivative becomes the material
derivative, Under these circumstances Eq. 4.1-21 takes the form

D P
D[ save| (Sav+ sva 2
o L fm, )dV+[  Sveonda 4.1-22)

and is called the Reynolds transport theorem.

Conservation of mass
The principle of conservation of mass can be stated as,

{the massofabody} = constant, . (4.1-23)
or in the rate form

{time rate of change of the mass of a body} = 0. (4.1-24)

Using the language of calculus we express Eq. 4.1-24 as

D
. dv =0. (4.1-25)
Dt Vo () p

¥See Reference 2, Sec. 3.4 for a detailed discussion of this point.







