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1.1 Lagrangian vs. Eulerian points of view

In fluid mechanics we describe the motion of liquids and gases (such as water and air) using
the approach of continuum mechanics, wherein the fluid is characterized by properties that
are aggregates over a large number of individual molecules. When we talk about a ‘Auid
particle’, we mean an infinitesimally small region of fluid when discussing mathematical
formulations (when taking limits for derivatives, for example) but we understand that the

region is nevertheless large in comparison with the mean spacing between molecules. Each

fluid particle has associated with it various physical properties, such as temperature and

density, and is assumed to have a well defined position and velocity.

There are two different mathematical representations of fluid flow: the Lagrangian
picture in which we keep track of the locations of individual fluid particles; and the Eule-

rian picture in which coordinates are fixed in space (the laboratory frame).

The Lagrangian picture is not often used for theoretical developments but can provide
a useful picture of fluid flow in experiments. For example, in oceanography, buoys and
patches of dye are deposited on the sea surface and their positions are noted as they vary

in time. The density p and velocity u are described mathematically by

Velocity u = u(xy,1),

.DBTLSE'ty p= P(Xo, t))

l.e., the field values are those of a fluid particle at some time ¢ after the particle was
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‘released’ at the initial position Xp.

Yo ~ Paihline\/u(xo, 1)
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The loci of fluid particles are called ‘pathlines’ and it is clear that these lines may

cross, since two different fluid particles may occupy the same position in space at different

times.

Since these coordinates describe the motion of individual particles, the acceleration of

a particle is given simply by
. Ou
Acceleration a=—=.

If the fluid is incompressible then the density of each fluid particle remains constant in

time, which is expressed mathematically as

| 8
Incompressibility E” = 0.

In the Eulerian picture, the velocity and density are given by

Velocity u = u(x,1),

Density p= p(2;1),

where x is a fixed location in the laboratory frame, and thus u and p are the velocity and
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density of the fluid particle that is instantaneously at position x at time ¢.
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The velocity vectors form a vector field that is assumed to be differentiable and hence
there are ‘streamlines’ that are everywhere parallel to the local velocity vector. Streamlines

can never cross except at point sources or sinks of fluid.

In order to compute the acceleration of a fluid particle with these coordinates, we
must realise that after a small time é¢ the particle is at the new position x + éx with

velocity

u(x + 6x,t + 6t) = u(x,t) + (éx - V)u + &f% + O(6x2, 6t2).

Thus the acceleration of the fluid particle is

6x,t + 6t) — t
Acceleration lim u(x Fdmyt + 50 —ulx0) = gu +u-Vu= 22

§t—0 6t at
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The operator — = — + u- V is called the ‘material derivative’ or ‘substantial derivati-

Dt — &t

vative’. It is the rate of change with time following a fluid particle.
In the Eulerian picture, incompressibility is expressed by

Incompressibility % =0,

since it is the density of a fluid particle that remains constant, not the density of the fluid

at a fixed position in space.



1.2 Conservation of mass

Consider an arbitrary fixed control volume V' in the laboratory frame

The rate of change of the mass of fluid contained within V is equal to the mass inflow

through the boundary 0V of V. Thus

d
< dV=—/ —
dt vp avp

where n is the outward normal to V. Applying the divergence theorem to this equation,

op .,
jvadv.._ﬁv-(pu)dv.

Since these integrals are equal for arbitrary control volumes, it can be deduced that the

we obtain

integrands must also be equal. Thus the differential equation expressing conservation of

mass 1s
Op
Mass conservaton - + V:(pu) = 0.
This equation is readily rearranged into the form
D
_...'?, + Pv.u = 0’

from which we see that if the fluid is incompressible

Incompressibility Vau=0.



1.3 The Stress Tensor

Consider a small tetrahedron of fluid aligned with local, rectangular coordinate axes e(1),
e(?, e®). The forces exerted by the fluid exterior to the tetrahedron on the surfaces of the
tetrahedron are F(=%) on the three surfaces having outward normals in the three negative

coordinate directions —e; and F on the sloping face of the tetrahedron, which has outward

normal n.
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The magnitude of the surface forces, which are due to molecular jostling and to short-
range van der Waals forces, are proportional to the surface area of the tetrahedron, which .
is of order V?/3, where V is the volume of the tetrahedron, whereas the inertial forces
(mass X acceleration) and long-range body forces, such as gravity, are proportional to V.

" Thus the surface forces must balance by themselves in the limit as V — 0 and we obtain

F=-) FP

k
= z F) (by Newton’s 3rd law)
k

o Ar =Y 4B
k

where T is the stress, which is the force per unit area acting on a surface, and A is

the area of the k** surface of the tetrahedron. From projective geometry, we have that
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A(K) = An . e®, Thus the stress can be written as

5 (Z .,(k)e(k)) -

k
=0o-n

where o = Z‘T(k)e(k) is the stress tensor, which is independent of the direction n. The

k
components of the stress tensor are given by
k) (k
gij = ZT,-( )eg- ),
k

(k)

But e; " = 0Ojk, SO

o =19,
which is the 7th component of the force per unit area exerted by the fluid on a surface

with normal in the j th coordinate direction.

The most important statement relating to the stress tensor is that the force per unit

area (stress) exerted by the fluid on a surface with unit normal n pointing into the fluid is

given by

Stress T=o0-1



1.4 The momentum equation

Consider the arbitrary fixed control volume of section 1.2. The rate of change of the total
momentum within the control volume is effected by the inflow of momentum through the
boundary, and the forces acting on the fluid, which comprise both body forces (total per

unit volume) and surface forces. Thus

d
— [ pudV = —/ (pu)u-ndS momentum fux
dt Jy av
+ [ fdV body forces
v
+ c-ndS surface forces
av

Use of the divergence theorem gives

g / 0 / ] 0
— )dV = — — u:)dV + dV + —(0;)dV
L&(Pu) Vaxj(pu uJ) Vf Vamj(aj)

Again, since this expression holds for arbitrary control volumes, the integrands must equate

to give
D 0
p—u +u (EP‘ + V-(pu)) =f+V.o.

The second term is zero by conservation of mass, so

D
The momentum equation -b% =f+ V.o



1.5 Stress tensor for a Newtonian fluid

In this course, we shall be concerned solely with Newtonian fluids, which are those that
are assumed to have two fundamental properties: the fluid should be isotropic; and there
should be a linear relationship between stress and the rate of strain of the fluid. In addition,
we require that the long-range forces exert no couple on individual molecules (a counter
example to this last requirement is provided by magnetic fluids — see homework). With

this latter condition, we can show that the stress tensor is symmetric as follows.

The rate of change of the angular momentum of a fluid particle is equal to the moment

of the forces acting on the particle. Thus

4 x/\(pu)dV:]x/\de+/ xA(o-n)dS
dt Jv v av

The term on the left-hand side and the first term on the right-hand side are each of order
V4/3 as V — 0, while the last term, representing the couple exerted by the surface forces

is of order V. Thus the surface moments dominate the equation and must tend to zero as

V — 0. We can apply the divergence theorem to this equation to give

Oz/ x A (c-n)dS
av
—] _53._-(6.‘ x.o‘ )dV
— Va-Tm i7kLjVkm
0
=/ eijk5jm0kmdv+/ Gijk-’cja—-—akde
14 v Tm
0
=/ eijkdkjdv-i—/ e,—,-kxja—akde
v v Tm

Now, provided that the stress tensor is differentiable so that V- is finite, the second term

in this last equation is of order V4/3 while the first term is of order V as V' — 0. So the

first term dominates the equation and shows that
€ijk0k; =0
i.e., that the stress tensor is symmetric (i =ah)
Next, we note that we can always write
oi; = —pbij + d; with d;; =0
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thus splitting ¢ into an isotropic part and a non-isotropic part called the deviatoric stress

tensor.

Deviatoric

p
‘ dyy
d
p /;
P dyo
d
p 1

The isotropic part of the stress tensor gives a force that pushes equally in all directions

Isotropic

and so we interpret the constant p as a pressure. The deviatoric stress arises from deviations
of the flow local to a fluid particle and we assume therefore that d is a function of the

velocity gradient Vu with d = 0 when Vu =0.

Here is where we assume that Newtonian fluids are linear, by which we mean that d

is a linear function of Vu, so that

auk

ij = Aijriz—-
dJ Jk’aml

Finally, we assume that the fluid is isotropic so that A is isotropic and hence is given

by
Akt = A6ijbrt + pbirbji + véidij,

where ), p, v are constants, this being the most general isotropic fourth-rank tensor.
From symmetry, we deduce that
dij = dji = Aiju = Ajin = B =,
while the fact that d is traceless gives

dii=0=>Aiu=0=23A+p+v=0,

whence A = —2u. Hence

o, (Oui | Ouj p Ok o
b =p (6:1:3- * 0:5;) ~3 kﬁu
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or
d =2pe — 2u(V-u)l,

where e is the symmetric part of the velocity gradient ei; = & (% + %) If the fluid
b 1

is incompressible, so that V-u = 0 then

o= —pl +2pe.

The constant p is called the dynamic viscosity of the fluid.

Putting this stress tensor in the general momentum equation yield the Navier-Stokes

equations
Du
‘ —— = _Vp+uV?u
Navier Stokes Dt Pk
Vu=0.
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