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Low Reynolds Number Hydodynamics
Vector methods for solving Stokes flow problems :

" Here we wish to disciss some vu-y powerful ideas for solvmg Stokes- equations’
(and related linear equations). The techniques are limited to special geometries (for
example, spherical or cyhndrrca.l coordinates) but the ideas allow many problems
to be.collapsed essentially: to one problem ' :

1. Some prehxmna.ry remarks about vectors vectors and pseudo (a.xxal) vectors
It is important to make a distinction between proper (or true) vectors, say the_"

position vector X, the velocity field 1u(x) or a force F, and so-called pseudo vectors,

say the angular velocity vector 1or a torque, quantltles which generally involve the
notion of a cross product. Recall that in defining the: cross-(or vector) prodiict of
two vectors, we invoked a. conventlon, the “right hand rule,” which introduces an.
element of arbitrariness to the direction of the cross product.
Thus, we have the following rules relating true and pseudo vectors :
(i) the cross product is a pseudo operation : -

(ii) the cross product of two true vectors is a pseudo vector; e. g xAF=L.

(iii) the: cross product of a pseudo vector and a true vector is a true vector, e.g.. .
u=0Ax. : :

(iv) pseudo scalars - for examp]es the inner product of a true vector, say x, “and
a pseudo vector, say {1, produces a pseudo scalar x - f} since the arbitrariness
of sign remains associated wrth the pseudo vector. Similarly, one may. deﬁne_
pseudo tensors.’ - :

2. Harmonic functions .

A function is called harmonic if it satisfies Laplace’s. equation V3% = 0.

We will most often be concerned with problems in spherical coordinates. The
va.nable r=|x| (x is the usual “position vector) measures distance from the origin.

Exterior problems ; r > 0

Let us first discuss ezterior problems, for which r > 0 In spherncal coordinates,
assuming that there is no 4 or ¢ dependence, V2 = —; e (r ) Hence, by direct
‘substitution; we see that & =1/r (r's 0) is.a solution to the Laplace equatlon. The
functxon 1/¥'is known as the fundamental solution. - .

'Furthermore, by taking the gradient of Laplace’s. equatlon we see that 1f ¢I) 1s:__.,|
‘harrmonic, then so is ' V® since certainly V3(V®) = 0. Hence, V(1/r) = —x/r? is a;,
harmonic vector function. Continuing in this manner, VV(1/r) = =X/r3 + 3xx/r5 -
is a harmonic second rank tensor. Notice that the harmonic functions generated in -
this way decay as r — oo and are typically denoted as

®_(nin) = VY.V () W

n
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The functions &_ (n+1) aTe called solid spherical harmonics of degree —(n+1). They
are clearly defined to within an arb:tra.ry multxphcat:ve constant and it is common
to see them written as

: ;;Q—-l =; & = @ g==—— _ (2)
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Interlor problems

For completeness, we give the form of the solid sphencal ha.rmomc funct:ons
necessary for describing interior problems, i.c.. those that include the origin r = 0.

One can venfy by direct’ dxﬂ'erentlatxon that &, = r3nfly. (n41) isalsoa solution -

to Laplace s equatlon V’Q,. =0. Notlce that because of the additional powers of

r, these functlons remain bounded as r —» 0. The ﬁrst few of these functions a.ref'

(aga.m ignoring minus s1gns)

Bo=1 6‘12-—‘-%x“r &= r21‘=-"3x‘xs"

z,z, zk

(21, Jk + 3] 6;1: + 37:611) 15

&; =

where we have used index notation for ease 'of wrlting the final expression which
represents a third rank harmomc functlon

3. Example : The ‘use of lmea.rlty a.rguments and vector sphencal harmonics. to
solve for heat conduction from a uniformly heated sphere (infinite conductivity) in
a linear temperature gradient.
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' 1':.6-2_

TeMmP

Céoup

The pliysical problem we.wish to consider is the temperature distribution out-

side a perfectly conducting sphere imbedded in a material of conductivity k. As-
sume that in the absence of the sphere the temperature varies_j linearly with posi-
tion, T*°(x) = G - x, where G is the temperature gradient in the material; i.c.
VT = G Ge, as in the figure.above. The mathematlcal problem statement is

e V’T =0 for r > 1
subjecttfo boundary conditions
T=0 onr=1 T—G.x as r— .
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- It is often, useful _tq'_ re’vq_rité ;'t,he,__px__'bb]em-in terms of disturbance variables so
_that the unknown function decays as r — oo.” Let T = G -x + T'. ‘Then, the ;
disturbance temperature field T satisfies. e B

Vs

T'=~G:x. onr=1 150 asr—oco
To constriict & solution wé note that T” satisfies a linear equation and linear bound: -
ary conditions. The only “forcing” in the problem is the témperature gradient G so. -
G (both its magnitude and direction) must determine 7'.-Hence, as'T" is a solution
to Laplace’s equation, construct a decaying harmonic scalar function linear in G as

 Gex
_T'=._§'—-‘~ )

where « is a coefficient to be determined from the boundary conditions,
- Atr=1wehavée T'= -G .x - a = —1. Hence, we hadve the solution

L 1.
T(x) = G-x[1~ r_3] ‘. (4)
K G = Ge,, where e; = cosf e, - -'sin_-d epin sphencal codfdinates, then
T(r,0) = Greoso[1 = -;3-]

Exercise : Consider the same problem but allow the sphiere to have a finite thermal
conductivity, say k. Solve for the temperature field inside and outside ‘the sphiere:



4. Lamb’s general’ solutnon a véry"uséfiil"'me'f.l:iod' for ~coxi"‘s%rﬂéti‘1’1‘g’-sblﬁtions" to
Stokes flow probleins Ao
The most common form of Lamb’s genera.l solution involves-expansions in -
spherical harmonics; see, for example, Lamb Hydrodynamics §335,336 and Happel‘
& Brenner Low Reynolds Number Hydrodynamsca p. 62.
- The alternative presentation described here involves a minimum of notation
and I have found it to be the most useful form from the sta.ndpomt of apphca.tlons
(I call.it the “Hinch method” after Dr..E. J. Hmch of Cambridge University who
taught me the method and ideas.) .
Let'’s begm by recallmg Stokes equa.tlons

BV =Vp  Viu=0

It may be verified by direct substitution that the velocity and pressure fields can
be represented by :

ufx) = Vé + xAVY + V(x-A) — 24, (50).

o) = mV-A, ()

where ¢(x);¥(x) and A(x) are harmonic scalar and vector functions, respectively
(V24 =0 = V3y; V2A = 0). Similar to the linearity a.rguments used to construet .
the solution to the heat conduction problem on the previous page, we will use the
linearity of the Stokes flow problem to construct the functions ¢,¢ and A. (I
solving a problem in dimensionless form, just drop the from equation 5b ) '

Exercise : Show by direct substitution that. the representation (5) for u,p_
satlsﬁes contmmty a.nd the Stokes equations.

It is important to recognize that the terms mvolvmg ¢ and 3 repreesent the

" most general velocity field which is both harmonic_and divergence-free while the.
terms - involving A represent the partxcular ‘solution accounting for the. pressure
field. Also, notice that it is the divergence of :A that completely accounts for-the
pressure field. Hence, any dwergence-free contributions to A may be neglected since -
such contributions may be absorbed into terms involving ¢ and 3. Finally, notice
" that since u is a true vector, it follows that ¢ is a pseudo scalar function.

5. Translation of a rigid sphere - revisited
Consider the translation of a rigid spherical partlcle at Jow Reynolds’ numbers
The mathematical problem statement is

#V%u = Vp Veu=0 _g

subject to boundary conditions

u=U at r=ae and (u,p)— (0,p) as r— oo.
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Nondimensionalize these equations -using the particle radius 4 as.the characteristic
length scale, the particlespeed U = U} as the characteristic velocity and uU/a as. .
the charactenstlc pressure This leads to the dimensionless problem statement :

Vu_=_.Vp__- V.-u=0

with R WA O : _
' L= 'fJ at 1 u-»O . as r—+oo,

' where U= U/ U is a unit vector in the direction of translatxon |

Let us now solve this problem using Lamb’s general solutnon,‘equatlon 5. The

only ‘forcmg in“the problem is the true vector 0. ‘Hence, we choose the harmonic
funct)ons ¢é,¢ and A as :

¥ =0 since there is no way to form a pseudo scalar 'func'tio_n_ u'sihg U

. | i
s=aX  a=pl ©

5 Thgn,.ﬁsé_i:n‘g:'('5')_'.?;6'.dgte;'mine the form of u(x),p(x) leads to-

R )
" W) = et BSE

It only remains to evaluate the two unknown coeficients @ and f using the boundary
conditioris. Since u =0 at r =1 for all pesitions x on the sphere. surface we have

B (a _; ﬂ)U 3 (3a+ ﬁ)ﬁ xx  for ‘fxl = 1
from which we conclade s

Hence, o= 1/4 and B =+3/4. Therefore, the dunensxonless velocxty and pressure: ;
fields in the ﬂuld are’ gwen by O, . .

= 38 [I ""]-%?-a i -F | e
P(x) = Poo (Sb) .
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It remains to calculate the hydrodynamic’ force the fluid - exerts on the particle:

As always the hydro‘dynarmc force exerted by the ﬂmd on the partlcle is gwen by»

integrating the' stress ‘over the particle surface :* -

F = /.n ‘T dS.
. s

Calculating the stress requires some tedious algebra, most of which amounts to '

taking the gradient of x and 1/r and is greatly simplified using index notation. For
example, the rate of stram tensor E is ngen by

_[— _ﬁX+xU+U xI I‘Jm] 3;20:x1 6Um]

Evalua.ted on the particle surface | r=1,x=mn, we find the dxmensxonless force per

unit area to be g

~ rY 3 '
=—p_'°°n_—§U-nn+'§U-nn—--fJ

2.
W )
A Prcsscvo’nﬁnbu‘“m _ : v.scous n‘f" bwhen
It remains to do the surface integration. Here we make use of the followmg
identity valid for integration over spherical surfaces NOTE » g nds= 0’- ]t)) [, {hec
. . 1vérgénte
. / an dS = 47r ir o S S ﬂeortsm
Js S 45 = 411' for s,ahere
Hence we have S
F= / n-TdS= —'211-127- —~ 450 ‘—1-—6:&1‘1 (9a)
s . —
: © o Sressvre. IS COVS, 5 y L
or in dimensional terms , T ""'h” hon " Eon !whm
"F = —6nuaU. . Stokes drag | (98)

From 9a we see that the pressure gradient across the particle contributes

one-third the value of the drag, while the viscous stress contributes two-thirds of
the drag. These ratios change for different particle shapes and different Reynolds

numbers. The drag arising from the presure distribution over the particle is called

Jorm drag and the drag arising from viscous stresses is called friction drag.

We conclude with a simple force balance on a spherical particle sedimenting at.

‘steady state. A force balance requires that the hydrodynamic drag be balanced by
the gravitational force and the buoyancy force due to the dlsplaced ﬂuld Hence

0= ZFOTCGS thdrp + Fprav;ty + Fbuoyant

47ra.3 ' 41ra:_”
Pp8 = ——PE.

= —6rpalU +

6
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Therefore, the steady translation of the particle is

U = ——(pp- —p)g.  Stokes setting velc:>ci'ty (10)

6. Example : A rotating spherical particle in a quiescent fluid
. As an additional example of this vector method of solving Stokes flow problems,
determine the velocity field due to.a rotating sphere in a fluid that is otherwise at

rest. e

The angular-velocity of the éj_)here is denote'd.ﬁy f). Since the ~deﬁnit’.-i01:1.? of the
angular velocity involves the right-hand rule, f2 is a pseudo vector. . o
~ Now construct the velocity nsing Lamb’s general solution, equation (5). Choose

the harmonic functions ¢,% and A as .,

. f1-x e ‘ S ,
| : ¢='GT $=0 A=0-_/: ,_:(’lr\_%—)
Hence, : ) /6 - - TeRM 1w
. . . . .I;I AMF - & (o .
u(x)=xAV¢'=—anr/;x. A gwes s \
p(x) = 0.

Apply the boundary conditions u = f0Axonr=1and u —»0 as r — co. Clearly
the latter boundary condition is automatically satisfied and the boundary condition
on the sphere surface is satisfied by choosing & = —1. Therefore,

| u(x) = - | (11)
Now consider the tor (iue acting on the particle. At steady staié, the external torque
L*** required. to rotate the particle is equal and opposite to the torque exerted by
the fluid on the particle. Hence, L**! is calculated as R

L=t = / X A (n-T) dS.
IS 7 :

.The stress ‘tensoi":ié Stfaightforvirard to calculate from u(x). Using index notation
' - Ta=-30z [e5kizi + €5k1T; ). |
On the sphere surface x = n,r = 1, so that A
XA(@-T) =1 = —30A(0AD)=3[na-0)= 0]
or LA | o
/ nA(n.T)dS =-3/ nn dS-N — 3/ ds.
s s . Js -
Using the identity for integrating nn over a spherical surface we have
L = —[4xd — 12701] = 8xN. (12)

Therefore, the dimensional torque required to spin the particle at angular velocity
N is L*** = 8xua3n. - - v
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Low Reynolds Number Hydrodynamlcs

Example : A sedimenting liquid drop = " ( also, sec Patc heler P ‘235-228)

- Consider the translation of a spherical liquid drop in an otherwise quiescent
fluid.. To be spe<:1ﬁc, cons:der the situation where ‘the drop fluid'is a higher densxty_
Pdrop than the surroundmg ﬂmd dens1ty p, 50 ‘that the drop ‘sedimeénts. We are:
interested in determxmng the detailed veloc1ty ﬁeld mmde and outsxde the drop,
well as the translational velocity of the drop. """ : :

We will now construct an exact solution to the low, Reynolds number ﬂow prob-
lem using the vector methods xntroduced earher Both the fluid motion inside and
outside the droplet must be studied and appropriate bounda.ry conditions applied
along the fluid-fluid interface. For s1mphc1ty, we will assume at the outset that the_
drop remains spherical..

' Choose a coordinate system fixed to the instantaneous center of the sphere'
The sphere translates with steady veloc1ty U. Relatwe to an observer fixed in the‘
"laboratory, the governing equatlons are

uV u= Vp ' i‘:,lV'zﬁ)g_Vﬁ

‘A

Whefe i used to denote ‘the droplet phase ‘One boundary condition on’ the
velocity field is the continuity of veloclty .

u=14 at r=da. | (2a)

Also, since the drop remains’ sphenca.l the normal component of the surface veloc1ty
is given by .
u:n=0-n=U.n  at r=0 .. (2b)

The dynamic condxtlon, which sta.tes tha.t the tangentlal strases across the interface.
are contlnuous 1s wntten Sy - hds .

s-n-T:-_--—.-s-n-fi‘. at r=0 ’ (2¢)

where T is the stress tensor. In these equations n is the unit-normal directed from
the drop fluid mto the external ﬂuld and 8is the unit tangent vector along the drop
interface. -

" Finally, far from the tra.nslatmg drop the veloclty vamshes a - O -as . F— 00,

It is worth notmg that if contaminants or a temperature gradient-are present at

the fluid-fluid interface, the tangentxal stress balance must be modified to account
for the resulting tangential interfacial stresses. -Also, no statement is made about
normal stresses since the drop shape has been assumed to be spherical. The normal
stress balance is checked a posteriors and is used to calculate corrections to the drop
shape. We will not discuss this here.

Voa=0 v-'ﬁe-"(j""' _' : '(1'); :

5{r(am|{h'es




At this point the translational velocity of the drop U is an unknown constant
vector and must be determined, a.fter the velocxty ﬁeld is known, from an overall

force balance on the drop

Nondxmensxonahza.tlon L rv D
Choose the drop radius a as the chara.ctenstlc length, U ‘a8 the cha.ra.cterxstlc

velocity and choose chara.ct.enstlc pressures for the two ﬁ'urd phases as pc pU/a-'

and p. = ﬁU/a, with U = gl. .
The dlmensmn]ess problem statement ls

Vu Vp V’ﬁ Vp"j

Viu=0 Vaa=0 ()
with K | |
u =ﬁ u -’ri =1 n ="~:-’('J';-n S g.n-T=2Xs ni‘ ,-at-.-_,f_;:_-l,_- (4a —¢)
u—. 00 as r — oo.

Here A = ji/u is the viscosity ratio of the two fluids and U= U/ U is a unit vector
in the direction of motion.

- Now apply Lamb’s general solutlon Clearly the solutron to this linear problem

depends completely on 0. For the flow outside the sphencal drop we use, extenor _

harmonics, so similar to the rigid sphere case, choose

0. . 0
$ma—  $=0 A=pT.

The e'x.ternal'velocity and 'pressu're' fields are then given by

CENER R
_______ ) -P(".)_=~ Peo + ﬁ% - 1 e

where poo 18 the consta.nt reference pressure: far from the drop (for an mcompressrble
flow, the pressure is only determined to within an additive consta.nt)

For the flow internal to the drop, use internal harmonics which remain bounded
as ¥ — 0. Hence, choose: o : :

soatox Gm0 AmB0osbkl.
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The mtemal velocnty ﬁeld is then glven by

| a=av- 2ﬁ[2r’U o xx} s, )

) =p-2080.x, | v @y

where p, is & constant reference | pressure inside the drop (p, and p, are not inde-
pendent; their dlfference is proportional to the mterfaclal tension between the two
ﬂUIdS) SR

- It remains to determine the 4 unknown coeﬂiments a,ﬂ,a and" ,B from the
'boundary conditions.

- Continuity of veloc:ty, u=14 at-r=1,x=n, forall x on the surface, yields
"~ the two relatxonshlps ‘ o

a ﬁ-a 4. .._:'_—-3a ﬁ R (7ab)

From the normal veloclty relatlonshlp ﬁ ‘= U ‘n we have

Fmally, it-is necessa.ry to.compute the stress tensors. T T where, for example, i in
dimensionless terms, T = —pI + 2E. This’ requu-es some tedious alebra (mdex
notation. is highly recommended), whmh one can do to find"

(Ux +xU+4x- UI)

T(x) = —pool + a[-6

= ] + Gﬂ , (Ba)
so that
Note : for points on the spherical mterfa.ce, X =mn, |
Also, ,
‘i‘(x) = —poI + $[240 - xT —6(Ux + x0)], (9a)
so that SR L S
Hence, the tange-n:tﬁi:i] stress balance yields (s - n = 0)
—6a=-6)\ — |la=4. ' (10)
Using equations 7a —¢ and 10 to solve for the four coeﬁicienfs, we find
a=-—é—— -ﬂ=M' &= B+23). A= !
SVTIESY) 4(1+2) 2(1+)) 41+

a;m=n? | N



~

The velocxty fields are now known We can riow use this solution to determine
the, translat:onal veloc1ty of the drop. To calculate the hydrodynamxc force exerted

by the outer fluid on the drop, integrate the force per unit area n- T over the drop

'surface (use equatlon Bb)

F = /n Tlr—l dS (18a+6;3)U /nn dS - ﬁaU/ dS - 8w ﬁ U

Therefqrg,:;_et__ummg.:tq dx;nens_l_onal vana‘bl we have

255 |
11
TS Y ey ( )

. -.F.-=72

We see that in the limit X = o F = —67ran which is the Stokes drag resuit
Also, in the limit A\ =0 F= —41ruaU which is the approprlate result for a rising
bubble. As one might expect a bubble of the same radius rises faster than a ‘sphere

with a rigid surface. Balancing the hydrodynamic-force with the gravitational and
buoyancy forces yields an -explicit relationship for the rise velocity as a functlon of -

the density . dlﬁ'erence between the two phasa

2 1+A (Pdrop )02

U 32+3A '3

g | Héda;iﬂafa-nybcz'ynski--foi'_mula' (1912).  (12)






