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We consider the role of flexibility in the weight-bearing characteristics of bodies
floating at an interface. Specifically, we develop a theoretical model for a two-
dimensional thin floating plate that yields the maximum stable plate load and optimal
stiffness for weight support. Plates small relative to the capillary length are primarily
supported by surface tension, and their weight-bearing potential does not benefit from
flexibility. Above a critical size comparable to the capillary length, flexibility assists
interfacial flotation. For plates on the order of and larger than the capillary length,
deflection from an initially flat shape increases the force resulting from hydrostatic
pressure, allowing the plate to support a greater load. In this large plate limit, the
shape that bears the most weight is a semicircle, which displaces the most fluid
above the plate for a fixed plate length. Exact results for maximum weight-bearing
plate shapes are compared to analytic approximations made in the limits of large
and small plate sizes. The value of flexibility for floating to a number of biological
organisms is discussed in light of our study. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4757121]

Introduction: In his treatise On Floating Bodies, Archimedes1 examined the stability of objects
wholly or partially submerged in a fluid. He surmised that if an object is less dense than the suspending
fluid, it will partially project above the surface, displacing a volume of fluid with a weight equal
to its own. This proposition, commonly known as Archimedes’ principle, is true for large objects,
but neglects capillary effects that arise at small scales, specifically, at scales small relative to the
capillary length. Keller2 generalized Archimedes’ principle to small floating bodies by showing that
the vertical force from surface tension is equal to the weight of liquid displaced by the meniscus.
We here extend this class of problems by elucidating the role of flexibility in interfacial flotation.

Many biological organisms that float, such as hydrophytes (e.g., water lilies) and water walking
insects,3 are not entirely rigid. There are several reasons for organisms to be flexible, including
decreased weight and increased robustness when subjected to external forces.4 Hydrophytics are
aquatic plants rooted in the soil. During times of flood, their petals bend and close, thereby protecting
their genetic material in response to increasing hydrostatic pressure.5 Flexibility is exploited by
several creatures that reside at the water surface, both individually and collectively. The insect
Anurida attracts others of its kind by bending its back and deforming the interface, so that a colony
can behave like a self-assembling raft.3 Other such living rafts may form from assemblages of
mosquito eggs6 or whirligig beetles.7 Though individual ants flounder at the interface, ant rafts,
comprised of thousands of individuals, are able to stay afloat for months in the flood-prone rain
forests of Brazil.8 Might such interfacial organisms, as individuals or a collective, exploit flexibility
to support a greater load?

The role of flexibility in interfacial flotation has only been considered relatively recently. Vella
et al.9 examined the weight-bearing characteristics of a raft composed of thin rigid strips. Several
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studies have been inspired by the legs of water-walking insects, including examinations of the
flexure of a floating cylindrical rod forced at one end10 and the deformation of a thin sheet pressed
against a liquid interface.11 Ji et al.12 modeled a water strider leg as a cantilever beam and compared
the results of their predictions to experiments with flexible fibers. Zheng et al.13 considered the
relative importance of water strider leg deformation and surface texture in weight bearing. Floating
hydrophobic rods of various cross sectional shapes were studied by Liu et al.14 Reis et al.5 computed
the shape of a floating two-dimensional strip subjected to a point force at its center. Consideration
was given to the balance between the work done by hydrostatic forces and bending energy of the strip
while the contribution of surface tension to flotation was neglected. Vella6 demonstrated that rafts
with finite bending stiffness can support greater loads than their rigid counterparts, and verified these
theoretical predications with an experimental study of floating rafts of self-assembled thin strips.
For floating plates, one expects surface tension forces to dominate forces resulting from hydrostatic
pressure for plates much smaller than the capillary length. The equilibrium shape of such small plates
will thus have little influence on the maximum load the plate can support, which will be prescribed
by its edge length. Conversely, large plates will be supported predominantly by hydrostatic pressure
on the plate; consequently, maximum loads will be supported by plates that displace the most fluid.

In “Flotation of hinged plates,” we consider a two-dimensional hinged plate with a torsion
spring, so that bending is permitted only at a single point. To determine whether flexibility is
advantageous, we derive the maximum load (specifically, the maximum plate density) that can be
supported. The effect of increasing spring stiffness on the equilibrium plate shape is determined.
These results are useful in developing intuition for “Continuously deformable plates,” where we
generalize our model to the case of continuously deformable plates. The cases of small, large, and
intermediate sized plates are considered, and plate configurations and approximations for the optimal
spring stiffness (those capable of supporting the greatest load) are derived. Our results are reviewed
in “Discussion,” where their bearing on the form of some aquatic plants is discussed.

Flotation of hinged plates: Here we examine the simplified case of two rigid plates connected
by a torsion spring. Consider the two-dimensional geometry in which two infinitely long rigid plates
of width b and thickness t (such that b � t) are connected by a torsion spring with spring constant
per unit width Ks (Fig. 1(a)). The air density is assumed to be negligible relative to that of the liquid,
ρ, and the solid plate, ρs. The capillary length is defined as �2

c = σ/ρg where σ is surface tension
and g gravity, and the elastocapillary length is �2

ec = Ks/σ . The hinge angle is α and the interfacial
slope φ is related to the plate edge depth by h = �c

√
2 − 2 cos φ. The plate edge depth, h, is the

distance from the undisturbed interface to the plate’s outer edge and must be less than or equal to two
capillary lengths; otherwise, the meniscus will collapse. The contact angle between the plate and the
interface may take on a range of values due to the possibility of pinning at the plate edge. To increase
the load on the plate uniformly, its density ρs is increased. As the load increases, the plate will sink
and, depending on the magnitude of Ks, bend. Beyond some maximum load (to be determined), the
plate will sink. Our approach extends the work of Vella et al.9 through consideration of the torsion
spring, which imposes an energetic penalty to flexure.

Ks

φ

α

b

t

σ

ρ

D, ρs

z x
h

α

z x
h

(a) (b)

η(x)

b

FIG. 1. (a) Two-dimensional geometry of the hinged two-plate configuration. Two plates, each of length b, thickness t,
and density ρs are connected by a torsion spring with spring constant Ks. The outer plate edges are a distance h below the
undisturbed interface. Flexure causes the plates to lie at an angle α with respect to the horizontal. The density of the liquid is
ρ and the surface tension is σ . (b) Dark shaded regions show fluid displaced above the meniscus, whose weight is equal to
the vertical component of surface tension, while the light shaded region shows the volume of fluid displaced above the plate.
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Energetics: We seek to identify the configuration parameters (α, h) that minimize the total
system energy. The potential energy associated with the work done on the system by external forces
is V . We express V as the combination of work done by: hydrostatic pressure on the interface, EH, i,
hydrostatic pressure on the plate, EH, p, gravity on the plate, Ep, and surface tension on the plate, Eσ ,

V = EH,i + EH,p + Ep + Eσ . (1)

We define U to be the combination of surface or “free” energy, S, and the potential energy stored in
the torsion spring, Es = Ks(2α)2/2,

U = S + Es. (2)

A body will deform to the configuration that minimizes the system’s total potential energy,
� = U − V . We thus identify the configuration parameters that result in zero variation in to-
tal potential energy, δ� = δU − δV = 0, or that correspond to a stationary point in the energy
landscape.15 The variation in the energy terms is

δV = ρg
∫

η(x)dxδε + ρg

((
2bh cos α + b2 cos α sin α

)
δh +

(
b3

3
sin α + b2h

)
δα

)
...

− ρs gt
(
2bδh + b2 cos αδα

) + 2σ (sin φδh + b (sin φ cos α − cos φ sin α) δα) , (3)

δU = σδ� + 4Ksαδα = σ

∫
∇ · �ndxδε + 4Ksαδα, (4)

where z = η(x) is the known equation of the interface and δε is the incremental displacement of
the interface. The outward vector normal to the interface is �n and δ� is the incremental change
in arc length along the meniscus. We describe the plate configuration by parameters α and h and
set the variation in energy with each parameter to zero. Two equations must be satisfied for static
equilibrium:

δ�

δh
= −ρg

(
2bh cos α + b2 cos α sin α

) + 2bρs gt − σh
√

4�2
c − h2 = 0, (5)

δ�

δα
= 4Ksα − ρg

(
b3 sin α

3
+ b2h

)
+ ρs gtb2 cos α

+ σb

(
−h

√
4�2

c − h2 cos α + (
2�2

c − h2
)

sin α

)
= 0. (6)

These equations express, respectively, the force balance on the plate and the balance of torques
about the torsion spring. The surface energy and the gravitational potential energy associated with the
interface cancel precisely, as follows from application of the Young-Laplace equation at the interface,
ρgη(x) = −σ∇ · �n: along the meniscus, the curvature, and hydrostatic pressures are in balance.

Buckingham’s theorem indicates five dimensionless groups, defined in Table I. The dimension-
less plate stiffness is related to the ratio of the elastocapillary length and the capillary length by
ks = (�ec/�c)2. Thus, for a fixed capillary length, the plate shape is prescribed by either the plate
stiffness or elastocapillary length. The Bond number, Bo = (b/�c)2 = β2, is of particular interest.
We focus on the two extremes of plate size; henceforth, “small” and “large” plates correspond to the

TABLE I. Relevant dimensionless groups.

Plate half-length b β = b
�c

Spring constant ks = Ks
ρg�3

c
= �2

ec
�2

c

Plate thickness t τ = t
�c

Plate stiffness  = E I
ρg�4

c
= �2

ec
�2

c

Plate edge depth h H = h
�c

Load D = Dτ = ρs−ρ
ρ

τ

Density ρs − ρ D = ρs−ρ
ρ

Bond number Bo = b2ρg
σ

= b2

�2
c

= β2
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limits of β � 1 and β � 1, respectively. Non-dimensionalizing (5) yields

2βD = 2βH cos α + β2 cos α sin α + H
√

4 − H 2, (7)

4ksα + Dβ2 cos α = β3

3
sin α + β2 H + β cos αH

√
4 − H 2 + β sin α

(
H 2 − 2

)
. (8)

Equation (7) expresses the dimensionless force balance, from which the generalization of
Archimedes’ principle emerges:2 the weight of the plate is equal to that of the fluid displaced
above both the meniscus and the plate (Fig. 1(b)). Equation (8) expresses the dimensionless torque
balance: the torques resulting from hydrostatic pressure and surface tension are resisted by the spring
torque and that resulting from the weight of the plate.

We seek the configuration parameters that result in the maximum load Dmax for a fixed β, along
with the optimal plate stiffness k∗

s necessary to reach that configuration. The problem is expressed
as an optimization problem,

max
α,H,ks

D(β, α, H, ks) s.t. �F(β, α, H,D) = 0, �τ (β, α, H,D, ks) = 0. (9)

From the objective function and first constraint, the configuration parameters are determined ana-
lytically as a function of plate size,

HmaxD =
2
(√

2 + β
)

√
4 + 2

√
2β + β2

, αmaxD = arccos

⎛
⎜⎜⎝

√√√√1

2
+

8 + β2
(
−2 + √

2β
)

16 + β4

⎞
⎟⎟⎠ (10)

and substituted into (7) to find the maximum load,

Dmax = β

4
+

√
2 + 1

β
. (11)

Figures 2(a) and 2(b) illustrate the dependence of the optimal configuration parameters and density
on the plate size. The optimal stiffness k∗

s for a given plate size is found by solving (8) assuming the
optimal configuration defined in (10). The relationship between plate size and optimal stiffness is
shown in Fig. 2(c).

The behavior in the limits of large and small plates is deduced by considering the dominant
terms in (7) and (8). For small plates, the force and torque balances become, respectively: 2βD
≈ H

√
4 − H 2 and 4ksα + Dβ2 cos α ≈ β cos αH

√
4 − H 2 + β sin α

(
H 2 − 2

)
. The force and

torque balances are prescribed by contributions from the spring, the weight of the plate, and the
surface tension. It is clear that H = √

2 maximizes the vertical component of surface tension acting

β = c

Max load Dmax

β
4

1
β

α

H

(a) (b)

β = c β = c

3

k∗
s

√
2/2

k∗
s

β3

12π
√

2

k
∗ s

(c) Optimal stiffness

FIG. 2. (a) Plate hinge angle α and plate edge depth H that maximize load as a function of plate size β = b/�c. Small plates
maximize the surface tension force by sinking to a depth H = √

2 while large plates maximize fluid displaced by assuming a
plate tilt angle α = π /4. The shaded area represents the region where bending allows the plate to support a greater load than
a flat plate of the same size. (b) Maximum load as a function of dimensionless plate size, β = b/�c. (c) Optimal stiffness k∗

s
(specifically, that which bears the most weight) as a function of plate size. The optimal stiffness for large plates depends on
size because the dominant terms in the force and torque balances are due to hydrostatic pressure and increase with plate size.
The weight of small plates is supported primarily by surface tension, thus the independence of k∗

s on plate size for β � 1.
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H

β

β H(a) (b) β H

H

β

(c)β ∼ H

H

β

FIG. 3. The dependence on plate size. Horizontal striped regions represent fluid displaced by the bent plate only. Diagonal
striped regions indicate where only the flat plate displaces fluid. (a) For plates much smaller than a capillary length, the
plate edge depth H determines the amount of fluid displaced (accurate to O(β/H )), and therefore the maximum plate load.
Bending such small plates decreases the total fluid displaced by narrowing the column of fluid displaced above the plate,
thereby diminishing its weight-bearing characteristics. (b) Bending is advantageous for plates on the order of the capillary
length if more fluid is displaced by bending than is lost by narrowing the fluid column above the plate. (c) Large plates
displace significantly more fluid by bending: flexibility thus enables them to bear greater loads.

on the plate, in accord with Fig. 2(a). This depth also maximizes the liquid displaced, consistent
with the generalization of Archimedes’ principle.2 We see from Fig. 3(a) that for small plates (β �
1), bending only serves to reduce the column of fluid displaced above the plate, decreasing the load
the plate can bear. In the limit of β → 0, the optimal hinge angle is zero and k∗

s = √
2/2, as may be

deduced by considering higher order terms. For these conditions, the maximum load is Dmax ∼ 1/β.
Plates with ks < k∗

s are bent and support slightly smaller loads, while stiffer plates remain flat.
For plates much larger than the capillary length, β � 1, the force and torque balances become,

respectively: 2βD ≈ β2 cos α sin α, and 4ksα + Dβ2 cos α ≈ β3

3 sin α, when ks ∼ O(β3). The force
and torque balances are now prescribed by the spring, the weight of the plate, and hydrostatic
pressure. The configuration parameter H does not appear in the leading order terms for the force
and torque balances of large plates, indicating that large plates are insensitive to surface tension. We
return to Archimedes’ principle: the plate load is maximized when the most fluid is displaced, or
α = π /4, as in Fig. 2. From the torque balance, the optimal stiffness associated with this configuration
is k∗

s = β3/(12
√

2π ) (Fig. 2(c)), for which the load is Dmax ∼ β/4 (Fig. 2(b)). When the plate is
much larger than the plate edge depth H, the bulk of the fluid displaced is associated with the plate
deformation rather than the meniscus, as shown in Fig. 3(b).

For any plate size, bending is advantageous if the plate size and tilt angle lies in the shaded
region in Fig. 2(a), allowing the plate to bear a greater load than a flat plate. For plates on the order of
a capillary length, β ≈ O(1), both the hydrostatic pressure and surface tension are important in the
force and torque balances. For these plates, the optimal bending angle is determined by the trade-off
between fluid displaced by bending the plate and the narrowing of the fluid column displaced above
the plate. Thus, as shown in Fig. 2(a), the optimal plate tilt angle lies between 0 and π /4, the optimal
angles in the limiting cases of small and large plates, respectively.

We proceed by extending our results from a hinged to a continuously deformable plate. For
small plates, we expect flat plates, at a depth of

√
2�c, to support the greatest load since they displace

the most fluid (as in Fig. 3(a)). We anticipate flexure to assist with weight-bearing for plates above
a critical size. In the larger plate limit, we expect the optimal weight-bearing large plate shape to be
that which displaces the most fluid, specifically, a semicircle.

For a continuously deformable plate of a given size, we search for the plate shape that minimizes
the total energy while maximizing the plate load: max D s.t. δ� = 0. Components of potential
energy for continuously deformable plates are a generalization of those developed in “Flotation of
hinged plates” and can be written in integral form. Henceforth, EI is the bending stiffness per unit
width of the plate so the elastocapillary length is �2

ec = E I/σ and the dimensionless stiffness is ,
as defined in Table I. We represent the shape of the continuous plate by its curvature, parameterized
by the vector �c with n elements. The principle of minimum potential energy results in a vertical
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(a) (b)

β = b/ c β = b/ c

Max load Dmax

β

π

Optimal stiffness Λ∗

β−3
β−1

FIG. 4. (a) Maximum load as a function of dimensionless plate size, β = b/�c for a flexible plate. (b) Optimal bending
stiffness * (specifically, that which bears the most weight) as a function of plate size. The optimal stiffness for large plates
depends on size because the dominant terms in the force and torque balances are due to hydrostatic pressure while the weight
of small plates is supported primarily by surface tension.

force balance and a torque balance, reducing the optimization problem to

max
H,�c

D(β, �c, H,),

(12)
s.t. �F(β, �c, H, ks,D) = 0, �τi (β, �c, H,,D) = 0, i = 1, 2, ...n.

The problem is solved numerically using the MATLAB optimization toolbox. For small plates, the
equilibrium plate shape that minimizes energy and maximizes density is a flat plate, and arises with
bending stiffness as reflected in Fig. 4(b). As in “Flotation of hinged plates,” the surface tension
forces dominate and the flat plate supports the maximum load, Dmax ∼ 1/β, in this small plate limit
(Fig. 4(a)).

The large plate shape that displaces the most fluid above the plate and supports the maximum
density is necessarily a semicircle, an intuitively satisfying result confirmed by the numerical
optimization. Increasing the stiffness or the elastocapillary length, , is equivalent to increasing the
energetic cost of bending. As a result, as  is increased progressively beyond the optimal stiffness
*, the optimal plate shape is gradually less bent and displaces less liquid, as shown in Fig. 5(a)
in the case of large plates, Bo � 1. We note that the plate at the optimal stiffness * is that which
bears the greatest load, Dmax ∼ β/π as illustrated in Fig. 4(a), and that this load decreases for any
other . The plate shapes in Fig. 5(a) resemble those presented by Reis et al.5 for an elastic plate
loaded at its midpoint.

For plates on the order of the capillary length, Bo ∼ 1, both hydrostatic pressure and surface
tension are important and the plate shape that displaces the most fluid is slightly bent, as shown in
Fig. 5(b).

(a) (b)

z

β

Λ∗ = 0.0025Λ = 0

Λ = 0.03

Λ = 0.05

x/β

Λ = 0

Λ∗ = 0.28

Λ = 0.1

Λ = 1
Λ = 100

z

β

x/β

FIG. 5. (a) Plate shapes that maximize load for various stiffnesses, , at large Bo (β = 104). The maximum load is achieved
at the optimal stiffness * = 0.025. At this stiffness, the flexible plate displaces the most fluid, and so can support the greatest
load. (b) Plate shapes that maximize load for various stiffnesses at Bo ∼ 1 (β = 1). A slightly bent plate displaces the most
fluid, and so supports the greatest load.
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We have demonstrated that flexibility can assist in interfacial flotation for bodies on the order
of the capillary length and larger. Consideration of the minimum total potential energy yielded force
and torque balances whose form depended on body size. For plates much smaller than the capillary
length, flat, rigid plates bear the most weight. Such small plates are supported predominately by
capillary forces, thus plate bending results in a diminution of fluid displaced above the plate, as
illustrated in Fig. 3(a), and so diminishes buoyancy.

Plates on the order of the capillary length displace the most fluid when flexible and slightly
bent, as both hydrostatic pressure and capillary forces contribute to weight support. Compared to
optimally flexible large or small plates, intermediate sized plates support the lowest plate density, as
illustrated in Fig. 2(b).

A large plate supports a maximum load by deforming to α = π /4 in the hinged case and to a
semicircle in the continuous case, thereby displacing the maximum fluid volume, and minimizing
the potential energy of the plate. Increasing plate stiffness increases the energetic cost of bending,
forcing the plate to flatten (Fig. 5(a)), thus decreasing its load-bearing capacity.

Many water-walking insects are flexible and have length scales on the order of a capillary
length.3 At this scale, we have seen that bending allows an object to bear a greater load than if flat.
To model raft-like structures and plants found in nature, we must generalize our theory to three
dimensions. Nevertheless, our study does provide some insight for three-dimensional objects such
as capillary rafts. Vella et al.16 noted that capillary rafts comprised of many particles exhibit elastic
behavior, and inferred effective values of the Young’s modulus and Poisson ratio for rafts comprised
of various materials, Similarly, Mlot et al.8 inferred the effective constitutive properties of the ant
raft. Our study indicates the manner in which flexibility assists the flotation of these rafts. Floating
flexible biological organisms may deform in a variety of manners. Plants such as lily pads may buckle
or experience out-of-plane folding. Films or membrane-like materials can stretch to withstand large
loads, while the flowers of some aquatic plants may avoid buckling during submergence by having
petals that overlap.5

Modeling more complex rheology and geometry, e.g., variable stiffness distribution along
the plate, would be relatively straightforward using our approach. Comparison with data on the
distribution of material stiffnesses and typical load cycles in various organisms would provide
quantitative confirmation that water plants and floating colonies of interfacial creatures use flexibility
to improve flotation.

The authors thank José Bico for helpful suggestions and the NSF-GRFP and Battelle Memorial
Institute for financial support.

1 T. L. Heath, The Work of Archimedes (Cambridge University Press, Cambridge, 1897).
2 J. Keller, “Surface tension force on a partly submerged body,” Phys. Fluids 10, 3009–3010 (1998).
3 J. W. M. Bush and D. Hu, “Walking on water: Biolocomotion at the interface,” Annu. Rev. Fluid Mech. 38, 339–369

(2006).
4 T. A. McMahon and J. T. Bonner, On Size and Life (Scientific American Library, New York, 1983).
5 P. Reis, J. Hure, S. Jung, J. W. M. Bush, and C. Clanet, “Grabbing water,” Soft Matter 6, 5705–5708 (2010).
6 D. Vella, “The fluid mechanics of floating and sinking,” Ph.D. dissertation (Trinity College, University of Cambridge,

Cambridge, 2007).
7 J. Voise, M. Schindler, J. Casas, and E. Raphael, “Capillary-based static self-assembly in higher organisms,” J. R. Soc.,

Interface 8, 1357–1366 (2011).
8 N. Mlot, C. Tovey, and D. Hu, “Fire ants self-assemble into waterproof rafts to survive floods,” Proc. Natl. Acad. Sci.

U.S.A. 108, 7669–7673 (2011).
9 D. Vella, P. Metcalfe, and R. Whittaker, “Equilibrium conditions for the floating of multiple interfacial objects,” J. Fluid

Mech. 549, 215–224 (2006).
10 D. Vella, “Floating objects with finite resistance to bending,” Langmuir 24, 8701–8706 (2008).
11 K. Park and H. Kim, “Bending of floating flexible legs,” J. Fluid Mech. 610, 381–390 (2008).
12 X.-Y. Ji, J.-W. Wang, and X.-Q. Feng, “Role of flexibility in the water repellency of water strider legs: Theory and

experiment,” Phys. Rev. E 85, 021607 (2012).
13 Q.-S. Zheng, Y. Yu, and X.-Q. Feng, “The role of adaptive-deformation of water strider leg in its walking on water,” J.

Adhes. Sci. Technol. 23, 493–501 (2009).
14 J. Liu, X. Feng, and G. Wang, “Buoyant force and sinking conditions of a hydrophobic thin rod floating on water,” Phys.

Rev. E 76, 066103 (2007).
15 J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics (Wiley-Interscience, Hoboken, 2002).
16 D. Vella, P. Aussillous, and L. Mahadevan, “Elasticity of an interfacial particle raft,” Europhys. Lett. 68, 212–218 (2004).

Downloaded 26 Oct 2012 to 18.111.124.82. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.869820
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092157
http://dx.doi.org/10.1039/c0sm00895h
http://dx.doi.org/10.1098/rsif.2010.0681
http://dx.doi.org/10.1098/rsif.2010.0681
http://dx.doi.org/10.1073/pnas.1016658108
http://dx.doi.org/10.1073/pnas.1016658108
http://dx.doi.org/10.1017/S0022112005008013
http://dx.doi.org/10.1017/S0022112005008013
http://dx.doi.org/10.1021/la800245k
http://dx.doi.org/10.1017/S0022112008002784
http://dx.doi.org/10.1103/PhysRevE.85.021607
http://dx.doi.org/10.1163/156856108X379155
http://dx.doi.org/10.1163/156856108X379155
http://dx.doi.org/10.1103/PhysRevE.76.066103
http://dx.doi.org/10.1103/PhysRevE.76.066103
http://dx.doi.org/10.1209/epl/i2004-10202-x

