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Viscous sheet retraction
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We present the results of a combined theoretical and numerical investigation of
the rim-driven retraction of flat fluid sheets in both planar and circular geometries.
Particular attention is given to the influence of the fluid viscosity on the evolution
of the sheet and its bounding rim. In both geometries, after a transient that depends
on the sheet viscosity and geometry, the film edge eventually attains the Taylor–
Culick speed predicted on the basis of inviscid theory. The emergence of this result
in the viscous limit is rationalized by consideration of both momentum and energy
arguments. We first consider the planar geometry considered by Brenner & Gueyffier
(Phys. Fluids, vol. 11, 1999, p. 737) and deduce new analytical expressions for the
speed of the film edge at the onset of rupture and the evolution of the maximum
film thickness for viscous films. In order to consider the expansion of a circular hole,
we develop an appropriate lubrication model that predicts the form of the early
stage dynamics of film rupture. Simulations of a broad range of flow parameters
confirm the importance of geometry on the dynamics, verifying the exponential hole
growth reported in early experimental studies. We demonstrate the sensitivity of the
initial retraction speed on the film profile, and so suggest that the anomalous rate
of retraction reported in these experiments may be attributed in part to geometric
details of the puncture process.

1. Introduction
Sheet retraction arises in a wide range of physical settings, ranging from fuel

injectors to foams in the food industry to biological membranes (for an overview see
de Gennes, Brochart-Wyart & Quéré 2003). The disintegration of fluid sheets is of
primary importance in the context of fluid fragmentation or atomization (Lefebvre
1989; Bayvel & Orzechowski 1993; Villermaux 2007). Commonly, such atomization
processes involve a cascade from fluid volumes to sheets to filaments to droplets, a
route that depends critically on the dynamics and stability of fluid sheets and their
bounding rims. Depending on the application at hand, film rupture can be either
desirable, as in spray formation (e.g. Pomeau & Villermaux 2006), or undesirable, as
in curtain coating (e.g. Miyamoto & Katagiri 1997).

The initial observations of soap film rupture were reported by Dupré (1867) and
Rayleigh (1891). Their studies motivated the experimental work of Ranz (1950), who
observed that, following puncture, the film recedes under the influence of surface
tension at a constant speed, and that fluid accumulates in a roughly circular rim as
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2 cm

Figure 1. The bursting of a soap film. Times are indicated in each frame. The sequence lasts
approximately 7.6 ms.

it is drawn away from the point of puncture (see figure 1). Dupré (1867) incorrectly
deduced the retraction speed of the film, based on the erroneous assumption that the
surface energy lost due to retraction is converted purely into kinetic energy

U =

√
4γ

ρH
=

√
2uc, (1.1)

where ρ, γ, H correspond to the density, surface tension and thickness of the
film, respectively. Taylor (1959) and Culick (1960) independently corrected Dupré’s
calculation using an argument based on the conservation of momentum of the film
and found that the retraction speed uc was a factor of

√
2 less than that predicted by

Dupré, as will be reviewed in § 2.1.
McEntee & Mysels (1969) confirmed experimentally the Culick–Taylor theory for

soap films of thickness greater than 0.1 μm. Keller (1983) extended the previous work
of Taylor (1959) and Culick (1960) by considering sheets of non-uniform thickness
and Keller & Miksis (1983) considered time-dependent inviscid potential flows in
which a wedge-shaped initial free surface profile admits self-similar solutions. In § 2.1
we shall demonstrate why uc is achieved even in the viscous limit, where there is fluid
motion upstream of the tip.

While the bulk of experiments on retracting fluid sheets have been conducted with
water sheets or soap films in air, Debrégeas, Martin & Brochard-Wyart (1995) and
Debrégeas, de Gennes & Brochard-Wyart (1998) presented a series of experiments
using films with viscosity of the order of one million times that of water. They
used polymer polydimethylsiloxane (PDMS) films obtained by dipping a ring into an
isopentane solution of the polymer. After lifting the ring from the solution, the solvent
evaporated, leaving behind a suspended film of pure PDMS with thickness of the
order of 10–50 μm, much thicker than a typical soap film (of characteristic thickness
∼1 μm). Accurate measurements of the retraction process revealed behaviour that
was markedly different from that predicted by inviscid theory. In particular, they
found that the fluid no longer collects in a rim as it retracts. Moreover, the rim does
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not retract at a constant speed; rather, the hole radius grows exponentially as

r0exp
(t) = R0 exp

( t

1.4τ

)
, (1.2)

where τ = μH/2γ, with R0 being the initial hole size and μ the film’s dynamic
viscosity. The exponential hole growth was also supported by a simple theoretical
argument, in which surface energy released during retraction was equated to the
energy dissipated through the action of viscosity, that predicted:

r0 (t) = R0 exp
( t

2τ

)
. (1.3)

While Debrégeas et al. (1995) did not consider viscoelastic effects in deriving
(1.3), they did suggest that the exponential behaviour may be due in part to the
viscoelasticity of the films. However, the typical shear rate of the PDMS films was
below those at which non-Newtonian behaviour sets in (e.g. Deyrail et al. 2007). In the
subsequent experimental studies of Dalnoki-Veress et al. (1999) and Roth et al. (2005),
film rupture was used as a means to measure the viscosity of molten polystyrene films
with viscosities of the order of 1012 times that of water. Dalnoki-Veress et al. (1999)
probed the nonlinear viscoelastic regime, where it was found that the viscous time
scale τ decreased markedly with decreasing film thickness. This effect was attributed
to the reduction in film viscosity caused by the large shear strain rates caused by
the hole expansion. Roth et al. (2005) found an initial transient regime where the
expansion of the hole was faster than exponential; fitting to the data was achieved
by introducing a time-dependent viscosity.

Following the work of Debrégeas et al. (1995), Brenner & Gueyffier (1999) studied
the retraction of a two-dimensional planar sheet numerically using a one-dimensional
Trouton-type lubrication model. They were able to identify three distinct regimes
depending on the Ohnesorge number, defined as

Oh =
μ√

2Hργ
(1.4)

that expresses the relative importance of viscous resistance to surface tension forces
(see figure 2). In the low Oh regime (Oh < 0.1), they found that capillary wave
disturbances are generated ahead of the retracting rim. As the Ohnesorge number is
increased, the capillary waves disappear and the rim diffuses in towards the bulk of
the sheet. Finally in the high Oh regime (Oh � 10), they found that no rim forms at
all, in accord with Debrégeas’ observations. In all cases considered, the sheet edge
was found to approach the Culick–Taylor speed in the long time limit.

The retraction time scales are different in the high and low Oh regimes. Since
numerical simulations indicate that the characteristic speed uc is independent of Oh,
the length scale prescribes the characteristic retraction time. Naturally, this length
scale is a measure of the distance from the tip over which the film is disturbed,
and depends on the relative importance of viscosity to surface tension, as quantified
through Oh. In the low Oh regime, the motion is primarily concentrated near the
tip, so that the characteristic length scale is prescribed by H . This implies that the
characteristic time scale is

τinv =
H

uc

=

√
ρH 3

2γ
, (1.5)

which is of the order of microseconds for the soap films in the experiments of
Ranz (1950). Conversely, in the viscous, high Oh limit, a larger portion of the film
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Oh < 0.1

0.1 < Oh < 10

10 < Oh

Figure 2. Schematic illustration of the three distinct regimes obtained for a retracting sheet
by Brenner & Gueyffier (1999). As Oh progressively increases, the capillary waves and then
the rim disappear through the action of viscosity.

is accelerated by the unbalanced surface tension force near the tip and the flow is
characterized by a length scale Oh H equivalent to the Stokes length μ/ρuc identified
by Brenner & Gueyffier (1999). Hence the characteristic retraction time is given by

τvis =
Oh H

uc

=
μH

2γ
. (1.6)

This time was of the order of seconds for the PDMS films used in Debrégeas et al.
(1995) and hours for the polystyrene films used in the experiments of Roth et al.
(2005).

Following the work of Brenner & Gueyffier (1999), two-dimensional simulations
of planar sheet retraction were presented by Song & Tryggvason (1999), who took
into account the effect of the ambient fluid. They found that even when the ratio of
ambient to sheet viscosity is O(0.1), the influence of the ambient fluid is minor. Their
results however were somewhat limited due to the short extent of the fluid sheet,
and no conclusion could be drawn concerning the dynamics in the long time limit.
More recently, Sünderhauf, Raszillier & Durst (2002) performed two-dimensional
simulations of the Navier–Stokes equations, but neglected the ambient fluid on the
basis of the prior work of Song & Tryggvason (1999). They focused primarily on
exploring the acceleration phase of the film edge towards the terminal Taylor–Culick
speed and provided some insights into the stability of falling liquid sheets. Critically,
these previous works were not able to capture the exponential regime observed by
Debrégeas et al. (1995), a shortcoming that, as suggested by Brenner & Gueyffier
(1999) and demonstrated here, can be attributed to the planar geometry considered.

We here elaborate on the retraction dynamics of flat sheets by building upon the
work of Brenner & Gueyffier (1999); specifically, we clarify the effects of viscosity
and geometry by solving the appropriate Trouton-type model for both planar and
circular geometries. In § 2, we further explore the model of Brenner & Gueyffier
(1999) for planar sheets in order to obtain several new insights. In § 2.1 we present the
conservation laws and use them to clarify why (2.3) adequately describes flow with
viscous dissipation, despite the fact that viscosity was neglected in its derivation. In
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h(x, t)

Figure 3. Planar sheet geometry. The sheet retracts from left to right under the influence of
the capillary force acting at its edge.

§ 2.2, we calculate an analytic expression for the hole growth during the early stages
of retraction and the maximum film thickness in the high Oh limit. In § 3, we develop
a new theoretical model that allows us to investigate the expansion of a circular
hole for arbitrary Ohnesorge number. By examining the lubrication equations in the
high Oh limit, we demonstrate that the exponential hole growth in the high Oh limit
can be deduced directly from the lubrication equations, thus providing an alternative
derivation to the energy argument of Debrégeas et al. (1995). Our model is solved
numerically to elucidate the effects of viscosity, geometry and initial conditions. We
conclude in § 4 with a discussion of the potential importance of three-dimensional
and other effects neglected in our model.

2. Planar sheets
We proceed by considering the model of Brenner & Gueyffier (1999) for the

retraction of a planar semi-infinite viscous sheet under the influence of surface
tension (figure 3). For a planar sheet of thickness h(x, t) moving under the influence
of surface tension forces along the x-axis with speed u(x, t)

ut + uux =
4μ

ρh
(hux)x +

γ

ρ
κx, (2.1a)

ht + (hu)x = 0, (2.1b)

where κ(x, t) corresponds to the curvature of the film profile,

κ =
(1/2)hxx(

1 + (1/4)h2
x

)3/2
. (2.2)

Experimental study of the retraction of a planar film is impractical owing to
unavoidable edge effects and the difficulties inherent in producing a perfectly linear
rupture. For films bound between two parallel wires, edge effects can become dominant
and the retraction rate significantly reduced (Chepushtanova & Kliakhandler 2007).
Nevertheless the planar geometry is governed by relatively simple equations that we
show yield analytic solutions for the early expansion. Moreover, it yields physical
insight that shall guide us in modelling the more experimentally feasible circular
geometry.
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uc = δl/δt

δm = ρHδl

H

δl

γ, ρ

Figure 4. Retraction of a planar film. In time δt, the tip of the film moves by a distance
δl = Ucδt. The mass of the fluid (per unit length) accumulated in the rim during that time is
δm= ρHδl.

2.1. Conservation laws

Taylor (1959) and Culick (1960) deduced the constant speed of retraction by assuming
that the film preceding the rim is at rest and expressing the force balance on the
rim as a balance between the rate of change of rim momentum Prim and the surface
tension force exerted on the rim

dPrim

dt
= uc

dm

dt
= 2γ, (2.3)

where uc is the constant rim speed and m the rim mass per unit length (see figure 4).
The rate of change of the rim mass satisfies

dm

dt
= ρHuc. (2.4)

Henceforth, the constant speed

uc =

√
2γ

ρH
(2.5)

found from (2.3) and (2.4) became known to be the Taylor–Culick speed.
To demonstrate that (2.3) arises at arbitrary viscosities, we consider a planar sheet

of finite initial length L. At any instant, the edge of the sheet is located at x0(t).
Imposing the conditions

h(x0, 0) = hx(L, t) = hxx(L, t) = 0, (2.6a)

u(L, t) = ux(L, t) = 0 and (2.6b)

h(L, t) = H, (2.6c)

we can deduce the conservation laws for the mass, momentum and energy. The total
mass of the fluid (per unit length) is

m = ρ

∫ L

x0

h dx. (2.7)

Mass conservation trivially follows from (2.1b) since

dm

dt
= ρ

∫ L

x0

ht dx = −ρ hu|Lx0
= 0. (2.8)

More importantly, an expression for the total sheet momentum,

Ptot = ρ

∫ L

x0

hu dx, (2.9)
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can be found by multiplying (2.1b) by u and (2.1a) by h and adding them together.
Thus, we obtain the equation

(ρhu)t +
(
ρhu2 − 4μhux − γ hκ − 2γ

(
1 + 1

4
h2

x

)−1/2 )
x

= 0. (2.10)

Integrating the first term from x0 to L gives

ρ

∫ L

x0

(hu)t dx =
dPtot

dt
+ ρu (x0)

2 h (x0) =
dPtot

dt
. (2.11)

Combining this with the integral of the second term from x0 to L, evaluated by using
(2.6), yields

dPtot

dt
= 2γ, (2.12)

under the assumption that hx → ∞ as x → x0. Hence, we find that even though
the dissipation due to viscosity is not directly described by Taylor’s and Culick’s
momentum balance, its inclusion does not alter the veracity of their result. With
this simple calculation, we see the role of viscosity in the dynamics of retraction: it
affects how the momentum is distributed through the film, but does not affect its
terminal speed uc. As also pointed out in the two-dimensional numerical calculations
of Sünderhauf et al. (2002), in the long time limit, half of the surface energy is
converted to kinetic energy, while the other half is ultimately dissipated through the
action of viscosity.

To obtain the corresponding energy equation, we multiply (2.1b) by u2 and (2.1a)
by hu and add them, which yields, after some algebra:(

1

2
ρhu2 + 2γ

√
1 +

1

4
h2

x

)
t

+

(
1

2
ρhu3 − 4μhuux − γ uhκ − (1/2)γ hxht(

1 + (1/4)h2
x

)1/2

)
x

= −4μhu2
x. (2.13)

Integration with respect to x and use of the boundary conditions (2.6) yields

d

dt
(Ek + Eγ ) = D, (2.14)

where we identify

Ek =
1

2
ρ

∫ L

x0

hu2 dx, (2.15)

Eγ = 2γ

∫ L

x0

√
1 + 1

4
h2

x dx, (2.16)

D = −4μ

∫ L

x0

hu2
x dx, (2.17)

as the total kinetic energy, surface energy and viscous dissipation of the sheet,
respectively. This approach reveals why Dupré’s original argument of balancing
surface energy lost and kinetic energy gained by the retracting film predicted an
incorrect retraction speed. Culick (1960) argued against the prediction of Dupré
(1867) on physical grounds, attributing the discrepancy to the energy lost while the
undisturbed film accelerates to the constant Taylor–Culick speed. We now see that
the momentum conservation equation yields the correct expression for uc, since the
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viscous forces are internal to the film and so do not contribute to the momentum
budget (2.12).

2.2. Early stages of retraction

We proceed by deducing a new analytic expression that describes the initiation of
sheet retraction in the high Oh limit. Non-dimensionalizing the equations by

t = τvis t
∗, x = OhHx∗, h = Hh∗ and u = ucu

∗,

we can write the momentum equation in non-dimensional form as

u∗
t∗ + u∗u∗

x∗ =
4

h∗ (h∗u∗
x∗)x∗ +

1

2
Oh−2κ∗

x∗ . (2.18)

If we assume that the fluid sheet consists of a nearly semi-circular cap followed by
a straight edge, there occurs a singularity in the curvature at x∗

s = (2Oh)−1, since at
t∗ = 0 it satisfies

κ∗ =

{
−2Oh2 0 � x∗ < (2Oh)−1

0 x∗ > (2Oh)−1 . (2.19)

Therefore, we can approximate κ∗
x∗ initially by a delta function

κ∗
x∗ = 2Oh2δ(x∗ − x∗

s ). (2.20)

We further assume that during the initial stages of retraction, the film thickness
remains uniform to leading order, x∗

s is small compared to the axial extent of the
film, the delta-function structure of the curvature gradient κ∗

x∗ is preserved and
the fluid contained in the semi-circular cap moves at the tip speed. By neglecting the
convective term, we thus reduce the problem to

ut = 4uxx + δ (x − xs) , (2.21)

where we have dropped the stars for convenience. These simplifying assumptions are
expected to be strictly valid only in the high Oh regime, where the viscous effects
dominate inertia at the onset and resist the shape change of the fluid film, specifically
the development of a pronounced rim.

The velocity is assumed to be continuous, which allows us to integrate (2.21) from
xs −ε to xs +ε for some small ε > 0. Taking the limit as ε → 0 yields a jump condition
for ux

[ux] = − 1
4
. (2.22)

Away from the discontinuity at xs (which without loss of generality we set as xs = 0)
we are left with the heat equation

ut = 4uxx, x � 0, (2.23)

which we solve subject to the conditions

u(x, 0) = 0, ux(0, t) = − 1
4
, u(x, t) → 0 as x → ∞, (2.24)

the second of which comes from the jump in ux at xs and is obtained when there are
no velocity gradients within the fluid cap. The solution to (2.23) can be obtained by
the method of Laplace transforms that yields

u(x, t) =

√
t

π
exp

(
− x2

16t

)
− 1

4
xerfc

(
x

4
√

t

)
. (2.25)
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Figure 5. Plot of the tip velocity versus time during the early stages of retraction for different
Ohnesorge numbers. The plots for Oh = 100, 500, 1000 and 10000 are indistinguishable. The
dotted curve shows the theoretical result u∗ =

√
t∗/π, which is in good agreement with numerics

up to a time t ≈ 0.4τvis , where τvis = μH/2γ .

In dimensional variables, the tip speed and displacement may be expressed as

u(0, t) = uc

√
t

πτvis

, x0 =
2

3
√

π

(
t

τvis

)3/2

H. (2.26)

Solving (2.1) together with conditions (2.6) in a similar manner as described in
the Appendix for the axisymmetric case, we show in figure 5 the evolution of the
tip speed for various Ohnesorge numbers that verifies the validity of our calculation
for short times. This result supports the suggestion of Brenner & Gueyffier (1999)
that the geometry plays an important role in the retraction dynamics. The edge of
a planar film initially recedes with a displacement that scales as t3/2 while in the
experiments reported in Debrégeas et al. (1995), Dalnoki-Veress et al. (1999) and
Roth et al. (2005), the initial retraction of a circular hole follows an exponential law.

Despite our simplifying assumptions, the analytical solution obtained matches
perfectly the numerical simulations at early times (t < 0.2τvis ). At later times and
for Oh > 50, the agreement is quite good with an error of less than 6 % at t ≈ τvis .
Beyond that time, a number of neglected effects become significant, such as hx and
the convective term, thus rendering our approximation invalid. In figure 6, we plot
the evolution of the tip speed for various Oh. We see that for films of Oh > 100, the
tip speeds converge. This behaviour could be anticipated from (2.21), where Oh does
not appear.

2.3. Maximum film thickness

In the high Oh limit, no visible rim forms as the sheet retracts; therefore, by mass
conservation, the film thickness must increase with time. To find the evolution of
the film thickness hm(t), we examine (2.18). We assume that the semi-circular cap is
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Figure 6. Velocity of the film edge for different Ohnesorge numbers. In the high Oh limit
the velocity curves become indistinguishable.

preserved at all times. The dimensionless curvature is thus assumed to be

κ∗ =

⎧⎨
⎩−2Oh2

h∗
m(t)

0 � x∗ < 1
2
h∗

m(t)/Oh

0 x∗ > 1
2
h∗

m(t)/Oh

. (2.27)

The maximum film thickness is expected to be at the point of discontinuity in
curvature, the centre of the semi-circular cap, where x∗

0 = (1/2)h∗
m(t)Oh. Plugging this

expression for κ∗ into (2.18), integrating over an interval around x∗
0 and shrinking the

interval to zero yields the jump condition at x∗
0

[h∗u∗
x∗] = − 1

4
. (2.28)

Just to the right of x∗
0 , we use mass conservation (2.1b) and the jump condition (2.28)

to find

hm (t) = H

(
1 +

1

4

t

τvis

)
, (2.29)

where H is the initial film thickness. The linear increase in film thickness is confirmed
with the numerical results shown in figure 7. Since having a discontinuity in curvature
would complicate the implementation of a numerical solution, we smooth the initial
curvature gradient as discussed in the Appendix. The slope of the line is corrected to
account for this smoothing by writing

hm = H

(
1 +

1

8
Hκ0

t

τvis

)
, (2.30)

where κ0 corresponds to the initial curvature at the tip. It is also important to note
here the marked difference with the low Oh regime films, where the rim remains
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Figure 7. Maximum film thickness hm versus time for different Ohnesorge numbers. In the
high Oh limit, hm grows linearly in time, confirming the theory represented by the dotted line
that corresponds to (2.28). The numerical results (solid curves) at Oh = 0.5, 1.0, 10, 100 and
1000 correspond to profiles with κ0 = 2.1.
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rr0 (t)

h(r, t)

h(∞, t) = H

Figure 8. Circular sheet geometry. A circular hole expands on a flat fluid sheet owing to the
radial surface tension force that acts on its toroidal edge.

circular, so mass conservation dictates that the maximum film thickness, specifically
the rim radius, increases according to

√
t/τinv .

3. Circular hole expansion
We now turn our attention to flow in flat films initiated by nucleating a hole of

radius R0 at time t = 0 (see figure 8). To complement the numerous experimental
studies on film rupture (see for example Ranz 1950; McEntee & Mysels 1969;
Debrégeas et al. 1995; Roth et al. 2005), we develop a new theoretical model that
allows us to investigate the film motion for arbitrary Ohnesorge numbers.
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Holes in thin films do not necessarily open. In an axisymmetric configuration, the
azimuthal curvature contributes a component to the surface tension force that opposes
hole expansion. Depending on the initial film shape and hole radius, situations may
arise where the hole will contract and close, and film rupture is averted (Taylor &
Michael 1973). We shall henceforth proceed by considering configurations for which
holes expand.

3.1. Derivation of the film equations

We consider the Navier–Stokes equations in cylindrical coordinates (Batchelor 1967)

Ut + UUr + V Uz = −Pr/ρ + ν(Urr + Uzz + Ur/r − U/r2), (3.1)

Vt + UVr + V Vz = −Pz/ρ + ν (Vrr + Vzz + Vr/r) , (3.2)

where U is the radial velocity, V the velocity along the axis and P the fluid pressure.
We neglect any azimuthal dependence on the basis of the experiments of Debrégeas
et al. (1995), who confirmed that the resulting motion is purely radial via particle
tracking. We also have the continuity equation

(Ur)r + (V r)z = 0, (3.3)

together with the normal and tangential stress boundary conditions at z =h(r, t)/2,
respectively,

−P

ρ
+ 2ν

[
Ur sin2 θ − (Vr + Uz) sin θ cos θ + Vz cos2 θ

]∣∣∣∣
z=h/2

=
γ

ρ
κ, (3.4a)

2 (Vz − Ur ) sin θ cos θ + (Vr + Uz) (cos2 θ − sin2 θ)
∣∣
z=h/2

= 0, (3.4b)

where tan θ = hr/2 is the slope of the interface and κ is the curvature of the boundary:

κ(r, t) =
(1/2)hrr(

1 + (1/4)h2
r

)3/2
+

(1/2)hr

r
(
1 + (1/4)h2

r

)1/2
. (3.5)

Finally the kinematic boundary condition may be written as

ht + U |z=h/2 hr = V |z=h/2 . (3.6)

For a slender sheet, assumed to be symmetric about z =0, we use a Taylor expansion
about z = 0, to write

U (r, z, t) = u(r, t) + u2(r, t)z
2 + · · · , (3.7a)

V (r, z, t) = v1(r, t)z + v3(r, t)z
3 + · · · , (3.7b)

P (r, z, t) = p(r, t) + p2(r, t)z
2 + · · · . (3.7c)

This approach was successfully used in the past to study jet breakup (Eggers &
Dupont 1994; Eggers & Brenner 2000). Matching powers of z in (3.3) we find that to
the lowest order in z

v1 = −
(

ur +
u

r

)
, (3.8)

v3 = −1

3

(
u2r +

u2

r

)
. (3.9)
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Similarly, (3.1) and (3.2) yield

ut + uur = −pr/ρ + ν(urr + ur/r − u/r2 + 2u2), (3.10)

v1t + uv1r + v2
1 = −2p2/ρ + ν(v1rr + v1r/r + 6v3). (3.11)

In the long wavelength limit, h � hr we find that to leading order in h the boundary
and kinematic conditions, (3.4a), (3.4b) and (3.6) become, respectively,

−p

ρ
=

γ

ρ
κ − 2νv1, (3.12)

2u2 = −2
hr

h
(v1 − ur ) − v1r , (3.13)

ht + uhr = v1h. (3.14)

We eliminate v1 in (3.14) using (3.8) to find

ht +
1

r
(urh)r = 0. (3.15)

Similarly, elimination of u2 and p from (3.10) using (3.12), (3.13) and (3.8) yields

ut + uur =
4ν

h

((
h

r
(ur)r

)
r

− uhr

2r

)
+

γ

ρ
κr . (3.16)

Equations (3.15) and (3.16) constitute a system of lubrication equations that describe
the retraction of a circular sheet. However this long-wavelength approximation is not
valid everywhere and the equations become singular as we approach the film tip.
Similar difficulties arise in various applications of the lubrication approximation;
nevertheless, such models perform surprisingly well. For instance, in Eggers &
Dupont (1994), the lubrication model yields excellent agreement with experimental
observations of jet breakup and pendant drop formation.

3.2. Early stages of expansion

We proceed by performing an early-time analysis of the governing equations (3.15)
and (3.16) in the high Oh limit, by following the ideas developed in § 2.2 for planar
sheets. Introducing the scalings

r = OhHr∗, h = Hh∗, u = ucu
∗, R0 = OhHR∗

0 and t = τvis t
∗, (3.17)

we write (3.16) in non-dimensional form as

u∗
t∗ + u∗u∗

r∗ =
4

h∗

[(
h∗

r∗ (u∗r∗)r∗

)
r∗

− u∗hr∗

2r∗

]
+

1

2
Oh−2κ∗

r∗ . (3.18)

We assume that initially the rim corresponds to the inner portion of a torus and
matches onto a flat sheet. The film curvature thus becomes

κ∗ =

{
2Oh2

(
− 1 + r∗

s −r

r

)
R∗

0 � r∗ < r∗
s

0 r∗ > r∗
s

, (3.19)

where r∗
s = R∗

0+(1/2)Oh−1 is the point where the rim and the flat sheet meet. Note here
the second term in the expression for the curvature that arises from the axisymmetry
of the problem. Dropping the stars for convenience, we find that in the same limit
considered for early-stage planar sheet retraction (i.e. convective terms negligible, and
h constant for r > rs) the same jump condition arises, namely,

[ur ] = − 1
4
. (3.20)
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To the right of the jump, h variations are neglected, so we consider

(ur)t = 4

[
(ur)rr − (ur)r

r

]
, (3.21)

which can be solved by separation of variables to yield

u = Aeλ
2tK1

(
1
2
λr

)
, (3.22)

where A and λ are constants to be determined and K1 is the modified Bessel function
of the second kind of order 1. Note that the modified Bessel function of the first
kind I1 diverges as r → ∞ and is thus dropped since u → 0 at infinity. Denoting the
radius of the punctured hole and its time derivative by r0 and ṙ0, respectively, we take
rs ≈ r0(t) to obtain

ṙ0 = Aeλ
2tK1

(
1
2
λr0

)
(3.23)

upon application of the boundary condition u(r0, t) = ṙ0(t). To proceed further, we
note that the argument of K1, λr0/2, is small during early stages of retraction. By
retaining only the first-order term in the small argument expansion of K1, we find

ṙ0 =
2Aeλ

2t

λr0

, (3.24)

which gives r0(t) = R0e
λ2t/2. This allows us to write the sheet speed to the right of the

cap as

u =
λ3R2

0

4
eλ

2tK1

(
1

2
λr

)
. (3.25)

Just to the right of the jump, we calculate the velocity gradient at r = rs ≈ r0 and
expand the derivative of K1 to obtain

ur (r
+
s ) = −λ2/2 (3.26)

to leading order in r0. Thus far, λ remains unknown and needs to be determined
by the jump condition. Unlike the planar case, there are non-zero velocity gradients
within the cap when r0 is sufficiently small. Solving for the flow within the cap cannot
be done analytically, but we note that the term hr/h dominates the other terms in
(3.18), which thus assumes the form

hr

h

[
(ur)r

r
− u

2r

]
= 0. (3.27)

By requiring the continuity of u(r, t) at r = r0, this equation may be solved for u to
yield

u =
λ2R

3/2
0

2r1/2
. (3.28)

The velocity gradient at r = r−
s is thus

ur (r
−
s ) = −λ2/4. (3.29)

Using (3.26) and (3.29) in (3.20) we find that λ=1. We therefore conclude that the
hole grows exponentially during the early stages of retraction

r0(t) = R0 exp

(
t

2τvis

)
, (3.30)
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as expressed in dimensional variables. Hence the exponential hole growth reported
by Debrégeas et al. (1995) need not be attributed to viscoelastic effects; rather, it
is a generic feature of circular hole retraction on a viscous sheet. We note that
our approach, based entirely on the lubrication equations, complements the energy
argument of Debrégeas et al. (1995).

3.3. Simulation results

The governing equations are solved numerically as described in the Appendix. Even
though we explored a wide range of Oh, particular attention was given to the high
Oh regime, in order to make comparisons with recently reported experimental work
(e.g. Debrégeas et al. 1995; Dalnoki-Veress et al. 1999; Roth et al. 2005). The regimes
identified in the work of Brenner & Gueyffier (1999) are also present in the retraction
of circular sheets (figure 2). While the differences between the two geometries are
not significant at low Oh, there are striking differences in the retraction dynamics in
the high Oh regime. For the sake of clarity of presentation, we devote § § 3.3.1, 3.3.2
and 3.3.3 to discussions of the high (Oh � 10), moderate (0.01 < Oh < 10) and low
(Oh < 0.01) Ohnesorge number regimes, respectively.

3.3.1. High Oh simulations

Experiments in the high Oh limit have been limited to fluids with long chain
polymers, specifically PDMS in Debrégeas et al. (1995) and molten polystyrene in
Dalnoki-Veress et al. (1999) and Roth et al. (2005). We proceed by demonstrating
that the essential features of retraction reported are captured by a Newtonian fluid
description.

Figure 9 illustrates the evolution of typical film profiles and midplane velocities at
various Oh. As Oh increases beyond 100, the rim diffuses towards the bulk of the
film, thus making the film appear to be of uniform thickness. We note that even at
high Oh, the film is slightly thicker near the rim and very gradually thins further
away from the tip. It is also important to note that the region of influence of the tip
motion, which grows in time as more fluid is set into motion, is directly proportional
to Oh.

Just as the velocity curves for a planar sheet asymptote to a single curve in the
high Oh limit (see figure 6), something similar can be said for the circular sheet.
However, the initial size of the nucleated hole must now be considered. In particular,
having written the momentum equations in non-dimensional form using (3.17) and by
assuming that the film profile near the tip is preserved, we can replace the derivative
of the film curvature with the approximate expression

κ∗
r∗ ≈ 2Oh2δ

(
r − r∗

0

)
, (3.31)

provided that the azimuthal curvature term in (3.5) is much smaller than the curvature
of the film profile, i.e. H/R0 
 1. Doing so leaves us with a set of dimensionless
equations that are independent of Oh. Therefore, different simulations will yield
almost identical results provided that r∗

0 , the dimensionless initial hole radius, is the
same. In other words, curves that have the same ratio HOh/R0 will yield virtually
indistinguishable self-similar velocity curves, as confirmed by our simulations. For
example, tip speeds of a simulation with Oh = 104 and R0 = 50H are indistinguishable
from these with Oh =103 and R0 = 5H .

Figure 10 indicates the dependence on Oh of the approach of the sheet tip to the
Taylor–Culick speed. High Oh films require substantially more time than low Oh
films to approach uc. Viscous forces delay the acceleration process, because a larger
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Figure 9. Evolution of the film boundaries (panel a) and midplane speeds (panel b) for high
Oh and initial hole size R0 = 50H in time increments of δt =10 τvis . Curves A to F correspond
to times t∗ = t/τvis = 0, 10, 20, 30, 40 and 50, respectively. Distances are scaled by the film
thickness H . As Oh is progressively increased from 10 to 104, the rim becomes less pronounced
and diffuses towards the bulk. Concurrently, the region of influence of the disturbance caused
by the tip motion extends further into the film and its lateral extent is proportional to Oh.

amount of fluid needs to be accelerated by surface tension forces concentrated near
the film edge.

In figure 11 we confirm the exponential retraction rate observed in the experiments
(see Debrégeas et al. 1995; Dalnoki-Veress et al. 1999; Roth et al. 2005) during the
early stages of retraction. We note that the higher the Oh, the longer the hole grows
according to the exponential law. By comparison with figure 10, we infer from our
simulations that the deviation from the exponential behaviour occurs quite early in
the retraction process, typically when the rim speed is of the order of 0.2uc.

In order to assess how Oh affects the acceleration phase, we plot in figure 12 the
time required for the tip to attain 30 %, 60 % and 90 % of the Taylor–Culick speed
for different Oh. Each simulation was initialized with a hole radius of R0 = 50H. As
can be inferred from the theoretically predicted exponential law (1.3), the times t1,2
needed for the tip to attain the speed of a certain fraction of uc that correspond to
Oh1,2 satisfy the relation

t1

Oh1

− t2

Oh2

= 2 log

(
Oh1

Oh2

)
, (3.32)

provided Oh1,2 � 100 and the punctured hole is not large. At lower Oh, there is a
clear deviation from this relation, which indicates that the rim acceleration is different
from that predicted in the viscous limit.
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Figure 13. Variation of initial hole size for Oh =1000: (a) hole radius versus time and (b) tip
speed versus time. For small initial hole radii, the agreement with the theoretically predicted
exponential rate lasts for longer times. For larger initial radii, the retraction speed rapidly
approaches the planar limit considered in § 2.

We proceed by looking at the effect of the initial hole size on the retraction
dynamics. Figure 13(a) shows the evolution of the hole radius for a number of
different initial radii, when Oh = 1000. The calculations indicate that the smaller the
initial hole size, the longer the hole radius grows exponentially according to (1.3). As
expected, the circular geometry is thus influencing the dynamics for longer when the
initial hole radius is smaller: when the hole radius is large, the film motion rapidly
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versus time for Oh= 8 × 103 and R0 = 40H . The inset shows the corresponding initial film
profiles in the vicinity of the tip. A more pointed initial film profile retracts faster until its tip
relaxes to a semi-circular cap; thereafter, the film retracts at the theoretically predicted rate
shown by the dashed curve, corresponding to (3.30). The dotted line indicates the experimentally
observed retraction rates reported by Debrégeas et al. (1995).

approaches the planar limit considered in § 2 (see figure 13b). Variations in the initial
hole radius affect the low Oh films to a lesser extent, mainly due to the shorter time
scales involved in the approach to uc.

The discrepancy between the time scale of hole growth deduced by Debrégeas et al.
(1995), 1.4τ (see (1.2)), and that predicted by theory, 2τ (see (1.3)), prompts us to
look at the effect of the initial film profile on the initial stages of retraction. The
initial film profile near the tip need not be semi-circular. We adopt the film profile of
(A 8) discussed in the Appendix, whose sharpness can be conveniently modified via
a single parameter, α > 0. As α → 0, the tip approaches a circular cap; the curvature
at the tip increases with α according to (A 9). In figure 14, we show the effect on the
retraction rate as the initial tip profile becomes progressively more pointed. Sheets
with more pointed tips initially retract faster owing to the enhanced surface tension
force. Eventually as the rim acquires a more circular form, the retraction slows down
to the rate predicted by theory. Whether the pointed initial profile is the source of
the anomalously large retraction rate observed by Debrégeas et al. (1995) cannot be
assessed due to uncertainty in the film shape and the limited duration over which
their data was collected.

Roth et al. (2005) similarly observed that the rate of retraction is faster at the onset
of retraction; fitting of the experimental data was achieved by assuming an empirically
deduced time-dependent viscosity. However, our calculation yields a behaviour that
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Figure 15. Hole radius versus time. The experimental data of Roth et al. (2005) is presented as
circles, and our simulations for Oh = 1000 and α = 32 by a solid line. After an initial transient
of order τvis = μH/2γ , the retraction rate decreases to that predicted by (3.30), corresponding
to the dashed line.

is similar to their experimental observations, suggesting that the initial retraction rate
they observe might be reasonably attributed to the initial puncture shape. This is
demonstrated in figure 15, where we show the experimental results of Roth et al.
(2005) with the results of our simulations. As a caveat, we note that the Ohnesorge
number of the experiments was of the order of 1012, a value not attainable in our
simulations. Nevertheless, using a pointed initial profile for Oh = 1000 and α = 32 we
confirm that the behaviour observed in the experiments of Roth et al. (2005) can also
arise for Newtonian films.

3.3.2. Moderate Oh simulations

Moderate Oh films (0.01 < Oh < 10) arise in most configurations of practical
importance, for example the bursting of soap films. In figure 16 we show the evolution
of the tip velocity for different Oh, when the initial hole radius is R0 = 50H . Not much
can typically be said about the acceleration phase of the film edge because it happens
extremely rapidly, on a timescale of the order of microseconds. For comparison, we
included the calculation for a high Oh film (Oh = 100) to illustrate that the transition
to uc happens on a much longer time scale at moderate Oh. It is also worth noting
that in the Oh = 0.04 case, there is temporarily a slight reduction in the acceleration
of the tip, because of the capillary waves generated ahead of the rim. These waves
transfer momentum upstream of the advancing rim and the associated wave drag
presumably slows down the rim.

In figure 17 we show the evolution of typical film profiles and radial midplane
velocities. At low Oh, the motion is more localized to the vicinity of the edge. The
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Figure 16. Speed of the film tip versus time since rupture for moderate Oh. Note the relatively
slow retraction of the Oh = 100 film. (Inset) Early stages of retraction. When Oh =0.04, there
is a brief reduction in the rate at which the film approaches uc, due to the production of
capillary waves ahead of the rim.

surface tension forces impart acceleration to the rim, which in turn collides with the
quiescent fluid in the bulk of the film. The inertia of the fluid ahead of the advancing
edge is thus responsible for rim growth. Film retraction at Oh < 0.1 is accompanied
by capillary waves that precede the rim. We note that similar behaviour was reported
in the inertial dewetting of thin films by Buguin, Vovelle & Brochard-Wyart (1999).
The work of Song & Tryggvason (1999) provided some physical insights regarding
rim and capillary wave formation on planar sheets. In particular, via two-dimensional
simulations, they argued that the curvature variations near the tip generate local
vorticity that initiates the retraction of the edge. For high Oh films, this vorticity
diffuses through the bulk of the film so that no rim forms.

While the study of vorticity in our one-dimensional model is not possible, we can
gain some insights into the flow by constructing an approximation to the velocity field
using the expansions from § 3.1. Using the velocity u and film thickness h obtained
from our simulations, we plot the velocity field (U, V ) along the (r, z) directions in
polar coordinates and the pressure along the midplane of the film using the set of
equations (3.7). Even though the computation of u and h is second-order accurate in
δr and the computations for U and V involve the evaluation of higher derivatives
of u, it is possible to capture the essential features of the flow. Figure 18 shows the
velocity field in the film together with the pressure along the midplane for films in the
three regimes of interest. In the high Oh regime (Figure 18a), the pressure field attains
its maximum near the film tip and monotonically decreases towards the bulk. This
pressure gradient essentially generates the flow that drives the retraction. As the Oh
is decreased (Figure 18b), we see that the pressure is nearly constant in the rim and
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Figure 17. Evolution of the film boundaries and midplane velocities for moderate Oh in time
increments of δt = 20 τinv . Curves A to F correspond to times t∗ = t/τinv = 0, 20, 40, 60, 80
and 100, respectively. The initial hole radius is R0 = 50H. Note the generation of the capillary
waves that are most pronounced for Oh= 0.04 and the associated oscillations in the midplane
velocities. As Oh is increased, the capillary waves diminish and the rim begins to diffuse
towards the bulk of the film.

then drops at the junction of the rim and the sheet. From the velocity field in the lab
frame we notice a weak backflow towards the rim that necessarily contributes to rim
growth. For the low Oh film (Figure 18c) at each successive neck there are pressure
drops and we see circulating flow, confirming the local generation of vorticity.

3.3.3. Low Oh simulations

The situation is markedly different for Oh < 0.04. A simulation was run for
Oh = 0.01, frames of which are shown in figure 19. As expected, the capillary
waves generated are of higher amplitude than the Oh = 0.04 case. When these waves
grow sufficiently in amplitude, they begin to interact with the growing rim. As time
progresses, this interaction becomes more violent, causing the thickness of the neck
near the rim to approach zero. At t = 100τinv , when the simulation was terminated, the
film was on the verge of pinch-off: a sharp curvature arose that was barely resolved
with our grid spacing.

The inset of figure 19 shows the evolution of the tip speed, which oscillates with an
amplitude that increases over time, as the rim interacts with the waves it generates.
This can be compared with the Oh =0.04 film in figure 16, where the influence of
waves is only apparent during a short initial interval, and the tip speed increases
monotonically towards uc. An indication exists in the work of Song & Tryggvason
(1999) that this wave–rim interaction can occur for Oh =O(0.01); however, their two-
dimensional simulations were not carried out long enough to see whether it becomes
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Figure 18. Velocity field and midplane pressure for (a) Oh =1.0, (b) Oh = 0.2 and (c) Oh = 0.01.
The velocity field is depicted by the arrows and the curve corresponds to the dimensionless
pressure P ∗ = Hp/γ along the film midplane. For Oh = 1 (a), a monotonic decrease in the
pressure prohibits the formation of a rim, which diffuses towards the bulk of the film. As Oh
decreases, a rim begins to form due to the pressure drop at the rim neck (b). For Oh = 0.01
(c), vorticity generates capillary waves that are connected to the rim via a neck region. Note
the pressure lows in the neck regions produced by the high local curvatures.

more violent at later times. Such increasing oscillations of the tip speed were also
observed at the edge of a contracting filament in the simulations of Notz & Basaran
(2004) (figure 20). Depending on the Ohnesorge number, there were cases where the
filament profiles they obtained were not single-valued functions of r near pinch-off.
As a caveat, we note that our lubrication model presumes a single-valued film profile
and so cannot always accurately predict pinch-off times. Simulations at even lower
Oh (Oh = 0.005) reveal that sheet breakup can swiftly follow the initiation of sheet
retraction.
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the rim after an initial transient. This interaction becomes more violent as time progresses and
eventually causes breakup. (Inset) The evolution of the tip speed resulting from the rim–wave
interaction.

Figure 20. A contracting filament at Oh =0.001 can exhibit similar breakup characteristics
with a retracting sheet (reproduced from simulations of Notz & Basaran 2004).
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4. Discussion
We have presented the results of a combined theoretical and numerical examination

of the retraction of fluid sheets, giving particular attention to elucidating the influence
of the sheet viscosity. First, we have clarified the shortcomings of the attempt of Dupré
(1867) to use an energy principle to obtain the retraction speed, and corrected it by
appropriate manipulation of the lubrication equations. In the planar geometry, half
of the surface energy is converted to kinetic energy, and the other half dissipated
through the action of viscosity, as was demonstrated numerically by Sünderhauf et al.
(2002). We found that viscous forces do not contribute to the total momentum of the
film; consequently our formulation yields the same long time limit deduced by Taylor
(1959) and Culick (1960) from inviscid theory. This result can also be understood on
the grounds that the viscous forces within the film are internal forces that do not
contribute to the film’s momentum budget. Most significantly, our study has yielded
insight into the transient approach to the Taylor–Culick speed, a transient influenced
by both geometry and viscosity.

In the low Oh regime (Oh < 0.01), sheet retraction is inertia-dominated and capillary
waves form ahead of a growing rim. For moderate Oh (0.01 < Oh < 10), no capillary
waves form ahead of the rim and for the high Oh (Oh � 10) films, the retraction is
dominated by viscosity and no rim forms. Brenner & Gueyffier (1999) were the first
to identify these regimes in the two-dimensional planar geometry. We have extended
their work on retraction in this geometry by predicting analytically the dynamics in
the high Oh regime at the onset of rupture. In particular, we deduced that the edge
of the film recedes initially according to t3/2, and that the maximum film thickness
grows linearly in time. The retraction dynamics are markedly different in the circular
geometry.

We have developed a lubrication model that allows us to investigate the retraction
dynamics of a circular hole and made comparisons of our model with the experimental
investigations of Debrégeas et al. (1995), Dalnoki-Veress et al. (1999) and Roth et al.
(2005). Our direct manipulation of the lubrication equations to deduce the early
stage dynamics in the high Oh limit provides an alternative to the energy argument
presented by Debrégeas et al. (1995). Our results have also confirmed the conjecture of
Brenner & Gueyffier (1999) that geometry is important in sheet retraction especially in
the high Oh regime. During the initial stages of retraction, the circular hole punctured
on a sheet expands with a radial speed ∼et/2τ , while the planar sheet recedes with a
speed ∼

√
t/τ . This difference is associated with the contribution to the surface tension

force coming from the azimuthal curvature that opposes the initial expansion of the
circular hole and the viscous stresses that are relatively large when the punctured hole
is small. In the long time limit the governing equations asymptote to those arising in
the planar geometry and the rim speed approaches uc.

We suggest that the discrepancy between the predicted and observed retraction
rates in the study of Debrégeas et al. (1995) may be attributed in part to the details
of the puncture, specifically the initial film profile. We have demonstrated that the
initial retraction rate could be made faster with a slightly pointed initial film profile,
but as time progresses, the retraction rate approaches that of a film with a nearly
semi-circular initial profile. Similar observations were made by Roth et al. (2005) in
their experiments on polystyrene films, but were not attributed to the film profile. It
is hoped that our findings may motivate and inform further experiments on the early
stages of film retraction.

Finally, we note that our model neglects any three-dimensional effects; specifically,
variations in rim radius expected to accompany capillary instability of the rim (e.g.
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McEntee & Mysels 1969; Pandit & Davidson 1990). While rim instability is related to
the Rayleigh–Plateau instability, the physical picture is more complex owing to rim
growth. For instance in the moderate Oh regime, if a rim of radius R were to pinch

off due to the capillary instability, it would do so after a time τc ∼
√

ρR3/2γ , which

can be comparable to the appropriate time scale of retraction, τinv =
√

ρH 3/2γ . This
is especially true at the onset of retraction, where H and R are comparable. The
tendency of the rim growth to suppress the onset of this instability was apparent
in the experiments of McEntee & Mysels (1969) and demonstrated in the numerical
simulations (at Oh = 0.1 and 0.03) of Fullana & Zaleski (1999), who suggested that
the rim will eventually become unstable to perturbations with wavelengths that are
typically a few orders of magnitude larger than the film thickness. The stability of
the rim is enhanced not only by rim growth, but by the action of viscosity as was
confirmed in the experiments of Debrégeas et al. (1995), Dalnoki-Veress et al. (1999)
and Roth et al. (2005). Improved understanding of the rim stability will contribute to
our ability to predict drop sizes resulting from film disintegration (see Bush & Hasha
2004; Bremond & Villermaux 2006; Roisman, Horvat & Tropea 2006; Villermaux
2007).

John W. M. Bush gratefully acknowledges the financial support of the NSF through
Career Grant CTS-0130465. The authors thank Jens Eggers for a number of valuable
exchanges.

Appendix. Numerical method
In non-dimesionalizing the governing equations (3.15) and (3.16), the time scale is

chosen according to the Ohnesorge number. By selecting the larger time scale of τinv

and τvis , we facilitate the computations since with the same computational cost, we
can integrate the equations further in physical time. Since τvis =Oh τinv , τinv and τvis

are the appropriate time scales for, respectively, Oh < 1 and Oh > 1.
Equations (3.15) and (3.16) are rearranged to solve for f = h2, because the slope of

h, which goes like
√

r − r0(t) near the tip, becomes infinite there. Doing so avoids the
difficulties in taking the derivatives of h to evaluate the curvature at the tip, which
now transforms to

κ = 8
2ffrr − f 2

r(
16f + f 2

r

)3/2
+

fr

r
(
16f + f 2

r

)1/2
. (A 1)

In their examination of jet breakup, Eggers & Dupont (1994) remedied the difficulty
of hr blowing up at the tip by fitting an even quartic polynomial to the jet profile
in this region. Our approach is more natural in terms of implementation as the
discretization of the equations is done without resorting to polynomial fits.

Since this is a free boundary problem, where the tip of the film moves, solving the
system of equations requires the remeshing of the domain at each time step. To avoid
this difficulty, we map the computational domain (r ′, t ′) to the physical (r, t)-plane
via the transformation

r =

(
1 − r0 (t)

L

)
r ′ + r0 (t) , (A 2a)

t = t ′, (A 2b)

where 0 � r ′ � L and L is the radial extent of the film. Under this mapping, the
edge of the film is always located at r ′ =0 in the computational domain and r = L
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is mapped to r ′ =L; the free boundary problem is thus transformed into a fixed
boundary problem. The derivatives must be transformed accordingly by

∂

∂t
=

∂

∂t ′ − 1 − r ′/L

1 − r0 (t) /L
u0 (t)

∂

∂x ′ , (A 3a)

∂

∂x
=

1

1 − r0 (t) /L

∂

∂x ′ , (A 3b)

where the tip speed

u0 =
dr0

dt
. (A 4)

In Eggers’ work, the failure of the lubrication approximation is remedied by
neglecting the effect of viscosity near the tip; in the jet breakup problem, the condition
at the jet tip is apparently not critical. Nevertheless, choosing the appropriate tip
condition is crucial here and needs to be addressed more carefully. We see that when
θ = π/2 and f =0, (3.4b) is trivially satisfied no matter what form u2 takes. Hence,
we infer u2 by extrapolating over the values of u2 in the interior, found using (3.13).
Quadratic extrapolation requires

u2|tip =
x1x2 (x2 − x1) u2,3 + x1x3 (x1 − x3) u2,2 + x2x3 (x3 − x2) u2,1

x1x2 (x2 − x1) + x1x3 (x1 − x3) + x2x3 (x3 − x2)
, (A 5)

where xi = ri − r0 is the (i + 1)th node in the computational grid at which u2 takes
the value u2,i . Substituting θ = π/2 and f =0 in (3.4a) gives

− p

ρ

∣∣∣∣
tip

=
γ

ρ
κ − 2νu0r

. (A 6)

Using (A 6) in (3.10), we find that the velocity at the film edge evolves according to

du0

dt
=

γ

ρ
κr + 2ν

(
− u0rr

+
u0r

r
− u0

r2
+ u2

)∣∣∣∣
tip

. (A 7)

The presence of the viscous term is essential here: its absence causes the hole to
expand at a faster rate.

At the far end of the film (r → ∞), Neumann conditions are used for the thickness
and velocity. As far as the initial film profile is concerned, it is imposed rather
arbitrarily, by using a profile of the form

f ∗ (
r∗, 0; α

)
= 1 −

(
1
2

− α − r∗ + R∗
0 + 1

2

√
(1 + 2α)2 + 4(r∗ − R∗

0)(2α + r∗ − R∗
0 − 1)

)2

,

(A 8)

where α is a parameter that controls the curvature profile and r∗ � R∗
0 . Equation

(A 8) was constructed by perturbing trajectories on the phase plane of a particular
dynamical system and essentially represents a smoothing of a semi-circular cap
together with a rectangular strip. The smaller we take α, the more pronounced the
peak in the curvature gradient, and the finer the mesh required to resolve the sheet
shape. In the numerical computations, we typically used α =1/20 to 1/100. As we
increase α, the tip curvature and its gradient increase according to

κ(r = R0; α) = −2 − 4α, (A 9)
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Figure 21. (a) Film profiles and their corresponding (b) curvatures and (c) curvature gradients
for different values of α. Curves A to F correspond to α = 0.2, 0.1, 0.05, 0.02, 0.01 and 0,
respectively.

κr (r = R0; α) =
48α2(3 + 2α)

1 + 2α
. (A 10)

Figure 21 shows some representative plots of these profiles. Choosing such forms for
the initial film profile allows us to study the effect of the initial tip curvature on the
retraction dynamics by simply varying the parameter α.

Following Eggers & Dupont (1994), the numerical solution of (3.15) and (3.16)
was implemented with a centred finite difference scheme on a staggered mesh
over the interval 0 � r � L. Implementation with a non-staggered grid introduced
spurious oscillations in the curvature in the long time limit. Note that similar spurious
oscillations occur in the pressure field, when the Navier–Stokes equations are solved
by prescribing all velocities and pressures at the nodes of a Cartesian grid. Generally,
we use a smoothly varying non-uniformly spaced mesh

0 = r1 < r2 < · · ·< rN = L , (A 11)

and solve at each time step for fi , the square of the thickness at r = ri and for ui, the
film speed r = ri+1/2 = (ri + ri+1)/2 (see figure 22). Defining

�ri = ri+1 − ri, (A 12)

�ri+1/2 = ri+1/2 − ri−1/2, (A 13)

we discretize the equation for hi (3.15) at each point ri and the equation for ui (3.16)
at each point ri+1/2. Doing so, we define

Qi(h, u) = c

[
�ri−1ui + �riui−1

�ri + �ri−1

−
(
1 − ri

L

)
u0

]
fi+1 − fi−1

�ri + �ri−1

+ 2fic

(
2

ui − ui−1

�ri + �ri−1

+
1

ri + r0c

�riui−1 + �ri−1ui

�ri + �ri−1

)
, (A 14)
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Figure 22. The staggered grid used for the computation. The values of fi are prescribed at
the mesh points ri and the values of ui are prescribed at (ri + ri+1) /2.

Wi (h, u) = c
[
ui −

(
1 − ri+1/2

L

)
u0

] ui+1 − ui−1

�ri+3/2 + �ri+1/2

− 1

2
c
κi+1 − κi

�ri

− 8Ohc2

fi + fi+1

[
1

�ri

(
fi+1

ri+1 + r0c

(ri+3/2 + r0c)ui+1 − (ri+1/2 + r0c)ui

�ri+3/2

− fi

ri + r0c

(ri+1/2 + r0c)ui − (ri−1/2 + r0c)ui−1

�ri+1/2

)

− fi+1 − fi

�ri

(
1

2

ui+1 − ui−1

�ri+3/2 + �ri+1/2

+
3ui

4
(
ri+1/2 + r0c

)
)]

, (A 15)

where c(t) = 1/(1 − r0(t)/L) and the curvatures κi are formed as the usual second-
order centred finite differences, defined at the mesh points ri . Time integration was
performed with the implicit θ-weighted finite difference scheme

f t
i − f t−δt

i

δt
+ θQi(h

t , ut ) + (1 − θ)Qi(h
t−δt , ut−δt ) = 0, (A 16)

ut
i − ut−δt

i

δt
+ θWi(h

t , ut ) + (1 − θ)Wi(h
t−δt , ut−δt ) = 0, (A 17)

where ht and ut correspond to the solution vectors at time t, and δt is the time
step of the computation. In order to solve resulting system (A 16), we use a matrix-
free Newton–Krylov method which is presented in more detail in Savva (2007); an
overview of Jacobian-free methods can be found in the paper by Knoll & Keyes
(2004) and further details can be sought in numerical analysis texts (see for example
Kelley 1995, 2003).
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