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The rough, hairy surfaces of many insects and spiders serve to render them
water-repellent; consequently, when submerged, many are able to survive by virtue
of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen
from the ambient water may allow this layer to function as a respiratory bubble
or ‘plastron’, and so enable certain species to remain underwater indefinitely. Main-
tenance of the plastron requires that the curvature pressure balance the pressure
difference between the plastron and ambient. Moreover, viable plastrons must be of
sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to
meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase
chemistry, we enumerate criteria for plastron viability and thereby deduce the range
of environmental conditions and dive depths over which plastron breathers can
survive. The influence of an external flow on plastron breathing is also examined.
Dynamic pressure may become significant for respiration in fast-flowing, shallow and
well-aerated streams. Moreover, flow effects are generally significant because they
sharpen chemical gradients and so enhance mass transfer across the plastron interface.
Modelling this process provides a rationale for the ventilation movements documented
in the biology literature, whereby arthropods enhance plastron respiration by flapping
their limbs or antennae. Biomimetic implications of our results are discussed.

1. Introduction
Strategies for water-repellence are identical in the plant and animal kingdoms, and

have provided important guidance in the development of industrial superhydrophobic
surfaces (Herminghaus 2000; Wagner et al. 2003; Otten & Herminghaus 2004;
Abdelsalam et al. 2005; Chen et al. 2005; Shirtcliffe et al. 2006; Feng & Jiang 2006;
Cao, Hu & Gao 2007; Nosonovsky 2007). Quite generally, a rough, waxy surface is
presented that increases the energetic cost of wetting and so discourages fluid–solid
contact (de Gennes, Brochard-Wayart & Quéré 2003). If a hydrophobic surface is
sufficiently rough, water cannot penetrate the roughness elements, an intervening
air layer persists, and the system is said to be in a Cassie state (Cassie & Baxter
1944). Such is the case for lotus leaves, that are known to be both water-repellent
and self-cleaning owing to their complex surface roughness (Neinhuis & Barthlott
1997; Barthlott & Neinhuis 1997). Conversely, if the surface is sufficiently smooth or
hydrophilic, a Wenzel state (Wenzel 1936) may obtain, in which water impregnates
the roughness elements. While metastable Cassie states may arise (Lafuma & Quéré
2003; Cao et al. 2007), the general criterion for a Cassie state is that it be energetically
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(a) (b)
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Figure 1. Scanning electron microscope images of the integument of the water-walking insect
Mesovelia. (a, b) As with most water-walking insects, Mesovelia exhibits a two-tiered hair layer
on its thorax (body cavity), with the inner layer, the microtrichia, supporting a plastron in
case of submergence. (c, d) Note the spiracle, through which it breathes, nestled among the
microtrichia. True aquatic insects are more often characterized by a narrow range of hair
geometries (Thorpe & Crisp 1949). Images courtesy of M. Prakash.

favourable relative to the wetted Wenzel state. In terms of mechanics, maintenance of
the Cassie state requires that the Laplace pressure generated by the intruding interface
balance the applied pressure. For roughness characterized by a single length scale δ,
this requirement for water-repellency may be simply expressed as σ/δ > �p where σ

is the surface tension and �p is the pressure difference. We proceed by considering
a physical system for which the maintenance of water-repellency is quite literally a
matter of life and death.

Many aquatic and semi-aquatic arthropods (insects and spiders) are rendered water-
repellent by virtue of a rough, waxy exterior festooned with hairs (Andersen 1977;
Perez-Goodwyn 2007; Bush, Hu & Prakash 2008). The advantages of this integument
are several-fold: it enables many species of insects and spiders to walk on water
(Bush & Hu 2006), survive the impact of raindrops (Andersen 1977), and endure brief
periods of submersion (Andersen & Polhemus 1976; Spence, Spence & Scudder 1980).
Water-repellency is particularly pronounced among select species of insects (Schmidt-
Nielsen 1975; Brown 1987) and spiders (Lamoral 1968; Stratton, Suter & Miller 2004;
Schütz & Taborsky 2003) that occupy marine habitats. Breathing for such arthropods
generally occurs through a series of spiracles, small surface openings typically located
on the thorax (figure 1; Hinton & Jarman 1976). Consequently, when these creatures
are submerged, their respiratory demands may be satisfied provided a thin layer of
air is maintained along their body surface (figure 2; Thorpe & Crisp 1947a, b, c;
Thorpe 1950). The air bubble serves as an external lung that exchanges O2 and CO2

with the surrounding water (de Ruiter et al. 1951). In many cases (Chaui-Berlinck,
Bicudo & Monteiro 2001; Matthews & Seymour 2006), the respiratory function of
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Figure 2. (a, b) The Fisher spider Dolomedes triton. The air layer along the Fisher spider’s
exterior is approximately 0.2 mm thick and is responsible its silvery sheen. The layer contributes
to the spider’s buoyancy and so facilitates re-surfacing; moreover, it serves as an O2 supply.
(Photograph courtesy of D. Hu.) (c) The backswimmer Notonecta hangs inverted from the free
surface. Its respiratory bubble covers the bulk of its body.

this air bubble is limited so that it serves as a diminishing resource: the bubble volume
decreases steadily over time and the arthropod can remain underwater only for a
finite period. The creatures of particular interest to our study are those that can stay
submerged indefinitely and are thus relieved, at least on respiratory grounds, from
making regular ascents to the water surface. In this circumstance, the air bubble,
or ‘plastron’, maintains a constant volume. Mass transfer across the plastron surface
depends on the chemical gradient across the interface and so is particularly efficient
in well-aerated water (Thorpe & Crisp 1947b; Rahn & Paganelli 1968).

By incorporating biological, chemical and mechanical considerations, a model of
plastron dynamics is developed. Specifically conditions are identified for which a
plastron may be maintained indefinitely with no deterioration of respiratory function.
We shall demonstrate that the maximum dive depth of a plastron breather is limited
by two constraints: the maintenance of water-repellency, and the creature’s respiratory
demands. While water-repellency is enhanced by a tall, tightly packed hair lattice,
such a configuration may make it impossible for the arthropod to breathe, particularly
near the free surface. Resolving the nature of the resulting tradeoff is the principal
goal of our study. To this end, we develop a quantitative model that allows us
to rationalize a number of poorly understood observations of plastron breathing
reported in the biology literature. We consider an idealized geometry in which the
plastron surface is supported by hairs lying parallel to the arthropod’s body for
which a two-dimensional hair lattice is appropriate. The pressure difference across
the plastron surface determines its shape and so the interfacial area available for
gas exchange. Building on the previous analyses of Ege (1918), Thorpe & Crisp
(1947a, b, c, 1949), Hinton (1976), and others, the resulting coupling between plastron
mechanics, surface and gas-phase chemistry is considered. Predictions are made for
the range of environmental conditions over which plastron breathing is viable in a
quiescent fluid.

Fluid flow is also critical to certain underwater breathers. The aquatic insect
Potamodytes tuberosus, a relatively large freshwater beetle, inhabits shallow, fast-
flowing streams on Africa’s Gold Coast. Stride (1954) demonstrated that Potamodytes
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tuberosus orients its body so as to create a stationary, cavitation bubble in its lee. As
noted by Stride (1954) and examined in greater detail below, the cavitation bubble
results from Bernoulli pressure lows resulting from large flow speeds. Indeed, Stride’s
field observations suggest that Potamodytes tuberosus relocates to more briskly flowing
streams once the flow velocity in its local habitat drops below a well-defined critical
value. Moreover, biologists have reported a variety of ‘ventilation movements’ whereby
arthropods increase O2 and CO2 exchange by flapping their limbs for relatively brief
periods (Brocher 1912b; de Ruiter et al. 1951; Gittelman 1975) or their antennae
for extended periods (Brocher 1912a). In the case of the lake insect Neoplea striola,
for example, such ventilation movements are observed as the insect emerges from its
winter hibernation and needs to expand its plastron to support its increased metabolic
activity (Gittelman 1975). In order to rationalize the above observations, we examine
the role of fluid flow on underwater breathing, exploring both its direct influence
through dynamic pressures and its indirect influence on boundary layer transport.

The paper is organized as follows. In § 2, we describe the simplified model geometry
of the hair lattice and plastron interface. In § 3, we present a model of the gas-phase
chemistry associated with plastron respiration. A detailed analysis of the resulting
governing equations is given in § 4, where we derive criteria for viable plastron
respiration in a static ambient. The role of dynamics is investigated in § 5. The
biological implications and possible biomimetic applications of our study are discussed
in § 6.

2. Plastron mechanics
To serve as an effective vehicle for gas exchange, a plastron must be securely affixed

to those portions of the arthropod’s body containing spiracles (figure 1). Thorpe &
Crisp (1947a) and Crisp (1949) note that water-repellency of arthropod cuticle is
enhanced when the hairs are equidistant from their neighbours and tilted so as to lie
parallel to the plane of the surface. In certain species, the hair lattice density increases
in the immediate neighbourhood of the spiracles so as to prevent spiracle flooding in
the event of plastron collapse further afield; however, this complication will not be
examined here. Plastron hairs typically form a series of inverted L-shapes: after rising
perpendicular to the arthropod’s body, the hairs execute a right-angle bend (figure 3a;
Vogel 2006; Brocher 1912a, b; Thorpe & Crisp 1949; Hinton 1976; Andersen 1976,
1977). Although this hair configuration is not universal among plastron breathers
(e.g. Elmis maugei, Riolus cupreus, Phytobius velatus – Thorpe & Crisp 1949), we shall
adopt this idealized geometry here for the sake of simplicity.

It is noteworthy that arthropod integument is not entirely rigid, and that individual
hairs may bend under the influence of capillary forces (Bush et al. 2008). Thorpe &
Crisp (1947a) suggested that plastron stability may be jeopardized by the collapse
of the plastron hairs; however, Hinton (1976) concluded that plastron hairs will
only buckle at great depths (of order 400 m), and that plastrons are ‘wetted long
before there is any question of the collapse of the hair pile itself ’. Moreover, Brocher
(1912a, b) noted that there is a degree of overlap between adjacent plastron hairs, thus
further contributing to the stability of the hair lattice (figure 3a). We thus proceed by
assuming that the lattice geometry is fixed and independent of the ambient pressure.
The implications of flexible cuticle for plastron stability are examined in § 6.

Figure 3 illustrates the idealized two-dimensional geometry of the hair lattice and
plastron interface. The plastron is maintained against the pressure of the overlying
fluid via surface tension. Hence, the liquid–gas interface is curved and has a shape
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Figure 3. (a) The characteristic geometry of the plastron hair pile: bent hairs lie tangent
to the body surface, optimizing water-repellency. (b) The idealized two-dimensional model
geometry of the plastron hairs and interface.

satisfying the two-dimensional Young–Laplace equation

�p

σ
= −∇ · n =

ηxx(
1 + η2

x

)3/2
, (2.1)

subject to the boundary conditions

ηx(0) = 0, ηx

(
1
2
[β − D sin (θ − φ)]

)
= tan φ . (2.2a, b)

From the reference coordinates defined in figure 3(b), it may be seen that boundary
condition (2.2a) is applied at a point equidistant between adjacent hydrophobic hairs,
(2.2b) at the triple point. Here σ ∼ 72 dyn cm−1 is the surface tension, n the unit normal
vector, η(x) the interface height, β the centre-to-centre spacing between adjacent hairs,
D the hair diameter and φ the angle the interface makes to the horizontal at the
point of contact with the hydrophobic hairs. This angle depends on the pressure drop
across the plastron interface, �p ≡ p − pbub . In what follows, we fix the equilibrium
contact angle to be θ =105◦, a value representative of arthropod cuticle (Holdgate
1955; Perez-Goodwyn 2007; Vogel 2006).

With the coordinate system origin placed between neighbouring hairs as in
figure 3(b), (2.1) can be integrated with respect to x and the boundary condition
(2.2a) applied to yield

ηx =
x√

(σ/�p)2 − x2
, (2.3)

where the pressure drop across the interface can be written as

�p ≡ p − pbub =
σ

r
.

Here r denotes the radius of curvature of the interface, which can be expressed in
non-dimensional form as

r

β
=

1

2 sinφ

[
1 − D

β
sin (θ − φ)

]
. (2.4)
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The above results show that bubble collapse will occur when �p > σ/rmin where, for a
fixed hair geometry, the minimum radius of curvature, rmin , can be deduced from (2.4)
by varying over the angle φ. In this circumstance, the hydrophobic hairs are unable
to retain the plastron against the surface of the insect, so the bubble is displaced by
an advancing front of water (Bico, Thiele & Quéré 2002). To quantify this criterion
for plastron collapse, some measure of the bubble pressure, pbub , is necessary. We
shall therefore return to consider the mechanical stability of the plastron following
§ 3, where we calculate pbub from the gas-phase chemistry.

Equation (2.3) can be further integrated to obtain the interface shape. For a
prescribed hair geometry, we can therefore determine the total vertical deflection of the
interface. This in turn specifies the minimum height of the hair lattice, hmin = η(x = 0),
required to prevent the interface from touching down under the influence of the
applied pressure:

hmin = r (1 − cosφ) − D

2
[1 − cos (θ − φ)], (2.5)

where h is defined in figure 3(b). Note that in the limit of a sparse lattice, D/β � 1,
(2.5) can be simply expressed as

hmin =
β

2
. (2.6)

For fixed D and β , the interface is uniquely prescribed by r/β and φ. Figure 4(a)
shows the dependence of r/β and φ on the non-dimensional hair diameter, D/β . As
r/β → ∞, the interface becomes flat and therefore φ → 0. The radius of curvature
becomes vanishingly small as D/β → 1 and φ → θ − 90◦. Figure 4(a) shows that r/β

is not, in general, a monotonic function of the interface angle, φ. When the interface
is deflected to its maximum possible extent, adjacent interfaces located on opposite
sides of a given hydrophobic hair are just at the point of overlap such that r = β/2
and

D

β
sin (θ − φ) + sinφ = 1, (2.7)

which defines the maximum possible interface angle, φmax < θ , as a function of the
geometric parameter D/β .

Because the interface is assumed to be a circular arc as illustrated schematically in
figure 3(b), the interface or gill length between adjacent hydrophobic hairs is given
by 	 =2φr; thus,

	

β
= 2φ

r

β
=

A

Ap

(2.8)

prescribes the relative magnitudes of the plastron surface area, A, and the underlying
planar area, Ap. We note that Ap is much easier to estimate than A because the latter
depends on the interfacial curvature.

The dimensionless gill length, 	/β , may be greater than unity if the interface is
sharply curved and much smaller than unity if the interface curvature is relatively
small and the hair lattice tightly packed, i.e. D/β → 1. Thus 	/β may vary over a broad
range and is not simply an O(1) quantity (figure 4b). When 	/β is relatively small,
the respiration surface area is small and thus the exchange of O2 and CO2 across
the plastron interface is restricted. Respiration imposes a minimum gill length, below
which the plastron becomes devoid of O2 in steady state. Figure 4(a, b) therefore
represents idealizations; real plastrons are better represented by figure 4(c, d), in
which the minimum gill length required for respiration is prescribed by the vertical
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Figure 4. Interface angle, φ, as a function of the non-dimensional radius of curvature, r/β ,
and the dimensionless gill length, 	/β , for D/β = 0, 0.25, 0.5, 0.75, 1 where D and β are
defined in figure 3(b). (a, b) Zero respiration rate. (c, d) Finite respiration rate. In (c, d), there
is a minimum interface length and a corresponding (φ-dependent) critical radius of curvature,
shown by the dashed lines.

dashed line. Corresponding to this minimum of 	/β , figure 4(c) shows the critical non-
dimensional radius of curvature. As these results make clear, underwater breathing
via plastrons is characterized by both a maximum and minimum interface angle,
where, in general, φmax <θ and φmin > 0◦. For φ >φmax interface overlap will occur.
For φ <φmin , the plastron will be of insufficient area to accommodate the gas exchange
required for respiration.

Figure 4(c) shows that a plastron must be both mechanically stable so that the
Laplace pressure, σ/r , balances �p ≡ p−pbub , and be of sufficient surface area to meet
the respiratory demands of the arthropod. Plastrons with φmin � φ � φmax that are both
stable and functional as a gill are termed viable and can be maintained indefinitely
without long-term deterioration. Whereas plastron stability favours a tightly packed
hair lattice, the plastron surface area may become too small to support respiration
with D/β → 1, especially close to the free surface where the ambient pressure causes
only slight interfacial deflections.

3. Gas-phase chemistry
The time-dependent exchange of gases from the plastron to the surrounding water

column can be described using the three-component model summarized in Thorpe &
Crisp (1947b) and Rahn & Paganelli (1968). It is assumed that the time rate of change
of the bubble volume depends on the respiration rate, the plastron surface area and
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the difference of concentrations of the chemical components across the liquid–gas
interface. Thus

V̇O2
=

A (α D̂)O2

δ̄O2

(xO2
HO2

− pO2
) − q, (3.1)

V̇N2
=

A (α D̂)N2

δ̄N2

(xN2
HN2

− pN2
), (3.2)

V̇CO2
=

A (α D̂)CO2

δ̄CO2

(xCO2
HCO2

− pCO2
) + q, (3.3)

where q is the rate of O2 consumption and CO2 production, A is the plastron surface
area and Vj and pj are, respectively, the volume and partial pressure of chemical
constituent j in the plastron. Moreover, xj is the dissolved gas concentration, Hj

the corresponding Henry’s law constant, δ̄j the spatially averaged (mass diffusion)

boundary layer thickness, αj the solubility and D̂j the diffusion coefficient. In the
biology literature, it is customary to group the latter three variables together in the
form of a constituent-dependent ‘invasion coefficient’:

Jj ≡ (α D̂)j

δ̄j

. (3.4)

In equations (3.1)–(3.3), we assume that, as in Rahn & Paganelli (1968) and
Geankoplis (1993), the rate-limiting step in mass exchange is diffusion through a thin,
poorly mixed layer of water adjoining the plastron. Conversely, it is assumed that
pO2

, pN2
and pCO2

do not vary over the spatial extent of the plastron. Although this
is only an approximation, it is consistent with the observation of Thorpe & Crisp
(1947b) that gas-phase concentrations within the plastron are ‘fairly uniform’ (see
also Hinton & Jarman 1976).

Equations (3.1)–(3.3) can be rearranged to solve for the partial pressure of each
chemical constituent. Thus for example,

pO2
= xO2

HO2
−

(
V̇O2

+ q

A JO2

)
. (3.5)

By Dalton’s law, the total pressure within the plastron is the sum of the partial
pressures of all of its chemical components:

pbub = pH2O + pO2
+ pN2

+ pCO2
, (3.6)

where pH2O denotes the partial pressure of water vapour. The time-varying bubble
pressure is thus given by

pbub = pH2O + xj Hj −
(

V̇O2
+ q

A JO2

)
− V̇N2

A JN2

−
(

V̇CO2
− q

A JCO2

)
, (3.7)

where, for notational convenience, Einstein’s summation convention is applied, i.e.

xj Hj = xO2
HO2

+ xN2
HN2

+ xCO2
HCO2

.

Equation (3.7) can be further simplified by noting that under normal conditions,
pH2O � pbub and JCO2

	 20 × JO2
(Rahn & Paganelli 1968). Therefore, to leading

order

pbub 	 xj Hj −
(

V̇O2
+ q

A JO2

)
− V̇N2

A JN2

. (3.8)
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Once steady state has been achieved, V̇N2
= V̇O2

= 0, so (3.8) reduces to

pbub 	 xj Hj − q

A JO2

. (3.9)

Because q > 0, one can identify

pbub < xj Hj (3.10)

as a fundamental requirement for plastron stability. The concentrations of dissolved
O2, N2 and CO2 often depend strongly on the hydrostatic pressure, the degree of
photosynthetic and biological activity, or chemical reactions with the underlying
sediment, and therefore frequently exhibit complex spatial, diurnal and seasonal
variability (Dokulil 2005). Sidestepping such complications, we note that in many
cases of biological relevance (e.g. shallow lakes with low biological productivity),
xj Hj � patm. Because the bubble pressure is typically subatmospheric, plastron
breathers do not require any of the specialized biological adaptations used by fish to
breath at high pressures (Vogel 2006).

Obviously pj > 0; hence, at steady state, (3.5) requires that

xO2
HO2

>
q

A JO2

, (3.11)

which is the basic criterion for plastron functionality. For a given water chemistry,
(3.11) places an upper bound on the rate of O2 consumption, q , or equivalently
a lower bound on the interface area, A. Specifically, (2.8) and (3.11) indicate that
pO2

> 0 provided

Λ ≡ xO2
HO2

Ap JO2

q
>

1

	/β
, (3.12)

where the non-dimensional parameter Λ prescribes the dissolved O2 content of the
water column relative to the respiration rate per unit planar area. One expects Λ

to be relatively large in well-aerated streams so that a functional plastron can be
maintained over a wide expanse of the water column (figure 4a, b). By the same
token, one expects Λ to be relatively small in deep stagnant lakes, where a functional
plastron can only be maintained over a restricted range of depths (figure 4c, d).

4. Plastron viability
4.1. Mechanical stability

The plastron is mechanically stable provided an interface shape exists that satisfies
the normal stress balance: �p ≡ p − pbub = σ/r . At steady state, V̇j =0, the bubble
pressure may be expressed as (3.9) and the ambient pressure as p = patm + ρ g H

where ρ is the water density, g =9.8 m s−2 the gravitational acceleration and H the
dive depth. The normal stress balance thus takes the form:

patm + ρ g H − xj Hj +
q

A JO2

=
σ

r
. (4.1)

When steady conditions cannot be assumed, the pressure is expressed by (3.8) and
the criterion for mechanical stability takes the form:

patm + ρ g H − xj Hj +
q

A JO2

=
σ

r
− V̇O2

A JO2

− V̇N2

A JN2

. (4.2)
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An arthropod with a stable plastron at its maximum dive depth may thus attain
a transient stability at still greater depths provided V̇O2

< 0 or V̇N2
< 0. In this case,

however, the plastron is compressed and the corresponding diminution of bubble
volume may lead to plastron collapse.

In the remainder of our study, we shall focus on the steady-state condition V̇j =0.
We thus identify the range of environmental conditions in which (i) the stability
condition (4.1) is satisfied, and (ii) the plastron is of sufficient area for respiration.
Consistent with the nomenclature of § 2, a viable plastron is one that satisfies both
conditions (i) and (ii). Non-dimensionalizing (4.1) yields

Bo + � =
1

r/β
− Q

	/β
, (4.3)

where

Bo =
ρ g H

σ/β
, Q =

q

Ap JO2
(σ/β)

, � =
patm − xj Hj

σ/β
. (4.4a–c)

Here, Bo is the Bond number, which prescribes the non-dimensional dive depth.
Furthermore, Q and � denote, respectively, the non-dimensional respiration rate and
saturation pressure deficit. Supposing that O2 demand varies as the two-thirds power
of animal volume (McMahon & Bonner 1985) suggests that Q is independent of
the arthropod size. This conclusion must be applied with care, however, because
arthropod respiration does not universally scale as q ∼ volume2/3 (Gittelman 1975).
Moreover, as suggested by Thorpe & Crisp (1949) and Gittelman (1975), q is expected
to vary by an order of magnitude depending on the arthropod’s level of activity; for
example, q is substantially reduced during periods of hibernation. Finally, while
Q > 0, � can be either positive or negative corresponding, respectively, to sub- and
super-saturation with respect to the atmosphere.

4.2. Viability

Figure 5 shows solutions to the plastron stability equation (4.3) for various D/β and
Q. The finite range of r and 	 over which the plastron is viable, being mechanically
stable while satisfying the arthropod’s respiratory requirements, are precisely defined
in equations (2.4), (2.7), (2.8) and (3.12). The curves of figure 5 are shown only
over this range. When there are no respiratory demands on the creature, Q =0,
there is no minimum gill length required for respiration, and no minimum dive
depth: min(Bo + �) = 0. As expected the maximum dive depth (as indicated by the
stars) increases monotonically with D/β . The latter trend also applies when Q > 0
(figure 5b–d); however, as is obvious from (4.3), plastron stability is reduced by
respiration. We note that for a fixed water chemistry, there are typically two values of
r/β corresponding to a particular non-dimensional dive depth, Bo. This degeneracy
is analogous to the non-unique Cassie states that have been documented in the case
of a hydrophobic surface with sinusoidal micro-topography (Carbone & Mangialardi
2005). Notwithstanding this geometric distraction, each of the curves of figure 5
exhibits a well-defined maximum and minimum. The discussion can therefore be
simplified by computing, for a given D/β and Q, the maximum or minimum possible
values of Bo+� (corresponding to the maximum or minimum dive depths for a fixed
water chemistry).

We note that the radius of curvature that maximizes Bo + � does not necessarily
coincide with the minimum possible value of r/β . Consider for example the middle
curves of figures 4(c) and 5(d), corresponding to D/β =0.5 and Q =1. In figure 4(c),
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Figure 5. Bo + � versus r/β where Bo and � are, respectively, the dimensionless dive
depth and saturation pressure deficit (see (4.4a, c)) and r/β is the dimensionless radius
of curvature defined by (2.4). Different curves correspond to different hair geometries, i.e.
D/β = 0, 0.25, 0.5, 0.75 and 1. Stars indicate the maximum of each curve. (a) Q = 0, (b)
Q = 0.25, (c) Q = 0.5 and (d) Q = 1, where Q is the non-dimensional respiration rate defined by
(4.4b). In each case, xO2

HO2
/(σ/β) = 1.46 corresponding, for example, to a centre-to-centre hair

spacing of 10 μm and an O2 saturation fraction of 50%. Consequently Λ → ∞, Λ= 5.85, 2.92
and 1.46, respectively, in (a) to (d), where Λ is defined by (3.12). The Λ value used to generate
(d) coincides with that used to generate figure 4(c, d).

r/β achieves a minimum value of 0.373, while in figure 5(d), Bo + � achieves
a maximum value of 1.60 when r/β = 0.401. This nuance was overlooked by Crisp
(1949) yet is fundamental to characterizing the role of respiration in plastron dynamics.
Consistent with (4.3), it reflects the fact that Bo+� is a function of both the Laplace
pressure and the pressure drop associated with respiration, the latter depending
explicitly on the gill length, 	/β .

Figure 5 may be applied to determine the range of environmental conditions
that guarantee plastron viability. Consider for example the curve of figure 5(d)
corresponding to D/β = 0.25 and Q =1. A viable plastron may be maintained between
Bo + �= 0 and Bo + �= 1.46. For Bo + �> 1.46, the bubble pressure will exceed
its maximum steady value, forcing the plastron to become unstable to diffusion and
eventually collapse. This process can be arrested only by returning to shallower or
better aerated waters. For the top curve of figure 5(d), where D/β = Q =1, max(Bo +
�) = 2.38 is realized when r/β =0.261. Mechanical stability cannot be maintained
for Bo + �> 2.38, while plastron functionality cannot be maintained for r/β < 0.261.
The minimum dive depth, realized as r/β → 1/2, is given by min(Bo + �) = 1.45,
suggesting that a viable plastron may be untenable in near-surface waters. As these
examples illustrate, plastron viability is, in general, constrained by two factors: (i) the
Laplace pressure must balance the pressure drop across the interface, and (ii) the O2

concentration within the plastron must remain non-zero.



286 M. R. Flynn and J. W. M. Bush

5

3
2

10
0.8 0.6

(a)

0.4 0.2
D/β

m
ax

(B
o+

Δ
)

�

5

3
2

10
0.8 0.6

(b)

0.4 0.2
D/β

m
in

(B
o+

Δ
)

�

5

3
2

10
0.8 0.6

(c)

0.4 0.2
D/β

m
ax

(B
o+

Δ
)

�

5

3
2

10
0.8 0.6

(d )

0.4 0.2
D/β

m
in

(B
o+

Δ
)

�

5

3
2

10
0.8 0.6

(e)

0.4 0.2
D/β

m
ax

(B
o+

Δ
)

�

5

3
2

10
0.8 0.6

(f )

0.4 0.2
D/β

m
in

(B
o+

Δ
)

�

Figure 6. Maximum and minimum permissible values of Bo + � versus D/β and Q where
Bo and � are, respectively, the dimensionless dive depth and saturation pressure deficit
(see (4.4a, c)), Q is the dimensionless respiration rate defined by (4.4b) and D and β
are the geometric parameters defined in figure 3(b). (a, b) xO2

HO2
/(σ/β) = 2.92; (c, d)

xO2
HO2

/(σ/β) = 1.46; (e, f ) xO2
HO2

/(σ/β) = 0.73. Dissolved O2 concentrations correspond
to a centre-to-centre hair spacing of 10 μm and a water saturation fraction of 10%, 50% and
25%, respectively. For clarity of presentation, data corresponding to max(Bo + �) > 5 and
min(Bo + �) < 0 are not shown. The lower plateaux indicated in (c) and (e) delineate areas in
which (3.11) cannot be satisfied for any choice of r/β: a functional plastron cannot exist in
these regions.

Min(Bo+�) and max(Bo+�) are shown in figure 6 for a range of D/β and Q where
each horizontal pair of figures corresponds to a different concentration of dissolved
O2 in the water column. Consistent with the discussion of figure 5, plastron-breathing
arthropods can maintain a permanent physical gill only between the shaded surfaces.
The general trend of max(Bo + �) decreasing with increasing respiration rate, Q,
and lattice spacing, β , is evident in figure 6(a, c, e). In general there exists a minimum
(Bo+�) that follows similar trends (figure 6b, d, f). Arthropods having a large demand
for O2 relative to body area will have great difficulty maintaining a stable physical
gill at any appreciable depth. As indicated by figure 6(e, f), the situation is especially
tenuous in poorly aerated waters for which no interface geometry can sustain a
positive O2 concentration according to (3.11). These constraints on plastron viability
have important implications vis-à-vis biomimetic applications of plastron respiration
to be discussed in § 6.
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Hair Spacing between Lattice
diameter, adjacent hairs, height,

Species D(μm) β (μm) h(μm) Source

Stenelmis crenata 0.2 0.5 − 0.6 3–5 Thorpe & Crisp (1949)
Aphelocheirus aestivalis 0.4 0.5 3 Hinton (1976)
Elsianus aequalis 0.8 1.8 − 2.0 12 Thorpe & Crisp (1949)
Macrelmis corisors 1.0 1.6 − 1.8 16 Thorpe & Crisp (1949)
Haemonia mutica 2.0 2.5 14 Thorpe & Crisp (1949)

Table 1. Hair lattice geometries for a variety of aquatic insects capable of sustained plastron
breathing.

While a rudimentary application of Laplace’s equation suggests that the influence
of a large metabolic rate on decreasing pbub might be offset by expanding
the hair diameter so that the hair lattice becomes more tightly packed, careful
inspection of figure 6(a, c, e) shows that such is not necessarily the case. For Q � 1,
increasing D yields a paltry gain in the maximum dive depth, which is given
by Hmax = σ max(Bo)/(ρ g β) (see (4.4a)). Hmax depends strongly on β; therefore,
decreasing the spacing between adjacent hydrophobic hairs does allow for notably
deeper dives. As demonstrated by figure 6, however, max(Bo + �) and min(Bo + �)
typically change in tandem. Therefore, as suggested by figure 4, arthropods capable
of surviving at great depths may find, paradoxically, that their plastrons become
ineffective at shallower depths, where the plastron interface is of insufficient surface
area to meet their respiratory demands. Taken together, these observations may help
to rationalize the wide range of reported hair lattice geometries, examples of which
are provided in table 1.

4.3. Biological case studies

Our developments provide insight into the behaviour of the pygmy backswimmer
Neoplea striola, a lake insect studied by Gittelman (1975). During the late autumn, as
the water temperature decreases and dissolved gas concentration increases, Neoplea
striola enters a state of winter hibernation. Because its basal metabolic rate is very
low, Neoplea striola remains submerged for several months using a small thoracic
plastron to satisfy its modest respiratory needs. The insect emerges from hibernation
during spring once the water temperature reaches 10 to 12 ◦C and uses the ventilation
movements documented in § 1 to rapidly increase the volume of its respiratory
bubble. However, the resulting increase of the plastron surface area is not sufficient
to compensate for the decrease in xO2

and increase in q: when swimming actively in
relatively warm water, the insect will asphyxiate unless it makes periodic ascents to
the free surface to replenish this air store.

The utility of (4.3) is further demonstrated by examining the range of dive depths
attainable by a particular insect with a fixed hair geometry. We focus specifically on
the freshwater aquatic insect Haemonia mutica that maintains plastron bubbles along
portions of its thorax, abdomen, head and long antennae (Thorpe & Crisp 1949). As
reported by Doyen (1976), Haemonia mutica is a relatively slow-moving insect that
occupies relatively still and densely vegetated marine environments.

Using reported values for the rate of O2 consumption, q , and the planar area,
Ap, of plastron in contact with Haemonia mutica (Thorpe & Crisp 1949) together
with a representative value for the invasion coefficient of O2 in stagnant water
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Figure 7. (a) Bo +� versus the dimensionless radius of curvature, r/β , where Bo and �
denote, respectively, the dimensionless dive depth and saturation pressure deficit (see (4.4a, c))
and r/β is given by (2.4). Overlapping curves show the influence of the dissolved O2

concentration for O2 saturation fractions of 25 %, 40 %, 55 %. . . 100%. The maximum of
each curve is indicated by a star. (b) Analogous Bo versus r/β curves for low (25 %) and
high (75 %) N2 saturation fractions. Figures are representative for Haemonia mutica for which
D = 2.0 μm, β = 2.5 μm, q = 3.9 × 10−12 m3 s−1 and Ap = 1.2 × 10−5 m2 (Thorpe & Crisp 1949).

(JO2
= 3.5 × 10−11 m3N−1 s; Rahn & Paganelli 1968), it can be shown from (3.12) that

a functional plastron (i.e. pO2
> 0) requires a dissolved O2 concentration, xO2

HO2
, of at

least 5.16 kPa, corresponding to an O2 saturation fraction of 24.2%. Figure 7a shows
Bo+� as a function of r/β for O2 saturation fractions of 25%, 40%, 55% . . . 100%.
When xO2

is small, there is very little difference between max(Bo+�) and min(Bo+�);
however, the difference increases with increasing xO2

. As a result, low ambient O2

concentrations are associated with a relatively narrow range of dive depths. This
dependence is illustrated graphically by figure 7(b), which shows Bo as a function of
r/β . Figure 7(b) is similar to figure 7(a) except that the ordinate consists only of the
non-dimensional dive depth, Bo, i.e. the contribution of the saturation pressure deficit,
�, has been removed. It is assumed that xCO2

is negligible while xN2
is fixed at either

25% or 75% of its saturation value. Although we neglect the depth dependence of
gas concentration, figure 7(b) offers two important insights. First, the maximum and
minimum dive depths are sensitive to the concentration of dissolved N2 in the water
column: when xN2

is relatively large, a viable plastron can be maintained at greater
depths. This result is consistent with the classic experiment of Ege (1918) who observed
that the dive times of insects are greatly increased if their plastron is composed of both
O2 and N2 rather than pure O2. Second, as xO2

is progressively decreased, Haemonia
mutica will eventually have to rise in the water column. This deduction is consistent
with the observation of Thorpe & Crisp (1949): “Haemonia. . . tends to climb upwards
when the aquarium is not well aerated. . . If conditions in the aquarium are allowed
to get very bad it may even climb out”.

5. The influence of dynamics
5.1. Dynamic pressure

The preceding discussion has focused on static conditions where the external flow
velocity, U , is negligible. As noted in § 1, however, a number of species rely critically
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on an ambient flow for underwater breathing. To incorporate flow effects into the
governing equations, (4.3) may be re-written as

Bo + � − We =
1

r/β
− Q

	/β
, (5.1)

where the Weber number, We, is defined as

We =
Eu ρ U 2

σ/β
. (5.2)

Here Eu is the Euler number that characterizes dynamic pressure variations along
the arthropod’s body. Because Eumax ∼ 1 (Kundu 1990), the minimum requirements
for the dynamic pressure to affect plastron stability can be written as

U 2

g H
� 1,

ρ U 2

|patm − xj Hj | � 1. (5.3)

These conditions are likely to be satisfied only for arthropods that inhabit shallow,
fast-moving water. Even in relatively brisk currents, the dynamic pressure contribution
is easily annulled by a minor drop in the dissolved gas concentration. For example
with U = 1 m s−1, ρ U 2 = patm − xj Hj when patm − xj Hj = patm/100. This suggests
that the direct influence of flow, as measured via We, is negligible in lakes where (i) U

is typically minute, and (ii) dissolved O2 concentrations are below saturation. Thus, for
example, the seasonally permanent physical gill supported by the pygmy backswimmer
Neoplea striola (Gittelman 1975) is not significantly influenced by dynamic pressures.

The above scaling analysis illustrates why arthropods that take advantage of an
external flow are most often found in well-aerated and relatively shallow streams.
A case in point is the aquatic insect Potamodytes tuberosus (§ 1) that favours brisk
overflows connecting stagnant flood pools and is only observed at depths of up to
∼ 5 cm (Stride 1954). We note that the respiratory bubble carried by Potamodytes
tuberosus does not strictly qualify as a plastron because the bubble curvature is
opposite to that shown in figure 3(b) so that

pbub − p =
2σ

R̄
> 0, (5.4)

where p = patm + ρ g H − Eu ρ U 2 is the pressure on the bubble’s exterior surface and
R̄ 	 1.5 cm is a characteristic bubble radius (Stride 1954). Therefore, the normal force
balance on the bubble surface may be expressed as

Bo′ + �′ − We′ = −(Q′ + 2), (5.5)

where

Bo′ =
ρ g H

σ/R̄
, We′ =

Eu ρ U 2

σ/R̄
, (5.6)

and

Q′ =
q

A JO2
(σ/R̄)

, �′ =
patm − xj Hj

σ/R̄
. (5.7)

Equation (5.5) can be satisfied provided pO2
> 0. Thus, the (dimensional) respiration

rate, q , and bubble surface area, A, must satisfy

xO2
HO2

A JO2
> q. (5.8)
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Under representative flow conditions (i.e. U 	 1 m s−1; Stride 1954), we find that
We ′ � 2Bo ′. Because � 	 0 in well-aerated water, this suggests that the dominant
balance of terms in (5.5) is between We ′ and Q′.

Potamodytes tuberosus appears to have specially designed femora and elytral
tubercles that deflect the oncoming flow in the dorsal direction. As remarked by
Stride (1954), this offers “protection to the anterior parts of the respiratory bubble”
and minimizes the likelihood of the bubble being swept downstream. The elytral
tubercles also ensure a rapid separation of the boundary layer from the insect’s
integument, which creates conditions favourable for the appearance of a cavitation
bubble (Kundu 1990).

To further illustrate the significance of dynamic effects, we contrast the respiratory
behaviour of Potamodytes tuberosus with the aquatic spider Argyroneta aquatica that
occupies central and northern Europe and Asia. As explained by Schütz & Taborsky
(2003), Argyroneta aquatica is able to survive underwater by virtue of a ‘diving bell’,
consisting of an air bubble of approximate volume 1–3 ml enmeshed within a tightly
woven web. As with Potamodytes tuberosus, this respiratory bubble is convex on the
outside and is therefore also qualitatively different from a plastron. Because Argyroneta
aquatica must affix its diving bell to aquatic plants or stones, it cannot occupy the
brisk currents favoured by Potamodytes tuberosus. Consequently, the influence of
dynamics is negligible and the respiratory bubble cannot be maintained indefinitely,
obliging Argyroneta aquatica to make periodic ascents to the free surface to collect a
fresh supply of air along its hydrophobic abdomen and legs. This air is then added
to the respiratory bubble to make up for gas lost to diffusion and respiration.

5.2. Enhanced boundary layer transport

Even when We is relatively small, fluid flow may be important for two reasons. First,
as described in detail by Hinton (1976), moving waters typically have a relatively high
concentration of dissolved gases owing to mixing down from the surface. Second, the
(mass diffusion) boundary layer thickness δ̄O2

is expected to decrease with increasing
U . Supposing that mass transfer to and from a plastron is analogous at leading order
to forced convection over a flat plate, one can apply the Blasius solution to show that

δ̄O2
=

Υ ν1/6 D̂
1/3
O2

β1/2

U 1/2

(
1 − D

β

)1/2

, (5.9)

where ν is the kinematic viscosity and Υ is an O(1) constant. Therefore, from the
definition of JO2

given by (3.4),

JO2
=

αO2
D̂

2/3
O2

U 1/2

Υ ν1/6 β1/2 (1 − D/β)1/2
. (5.10)

Thus larger flow velocities are associated with larger invasion coefficients and smaller
dimensionless respiration rates, since Q ∝ J−1

O2
. Such boundary layer effects may

account for the ventilation movements described in § 1 by which arthropods flap their
limbs or antennae to enhance gas exchange. Similar factors explain the need of certain
species of fish to remain in continual motion lest they suffocate due to inadequate
gas exchange across their gills (Couzin & Krause 2003).

6. Discussion and conclusions
On a small scale, the ratio of surface area to volume necessarily increases, and

surface effects become increasingly important; such is the case with plastron breathers.
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The piliferous arthropod integument repels water to the extent that, when submerged,
a Cassie state is maintained and the resulting air layer may serve as an external gill,
exchanging O2 and CO2 with the surrounding water column (Ege 1918; Thorpe &
Crisp 1947a, b, c; 1949; Vogel 2006). For the idealized, two-dimensional geometry of
figure 3(b), we have identified the circumstances in which an arthropod may remain
submerged indefinitely. Viable plastrons must satisfy two basic requirements: (i) that
the Laplace pressure balance the pressure drop across the plastron interface, and
(ii) that the plastron surface area be sufficiently large that the rate of O2 uptake
matches the arthropod’s metabolic demands. Constraints (i) and (ii) in turn demand
that the plastron pressure be sub-atmospheric in many cases of biological importance
(see e.g. the measurements made by Stride 1954). As a result, plastron breathers do
not depend on the intricate adaptations required by fish to breathe at high pressure
(Vogel 2006).

Parameter regions in which plastron viability is assured are presented in figure 6,
which shows the maximum and minimum dive depths as a function of the
respiration rate, hydrophobic hair geometry and dissolved gas concentration. A
tightly packed hair lattice composed of small-diameter hydrophobic hairs may prove
disadvantageous in near-surface waters where the interface deflection is too small to
facilitate O2 and CO2 exchange across the liquid–gas interface. The benefit of optimal
water-repellency may thus be offset if the creature’s respiration rate is too large. Our
analysis allows us to rationalize a number of biological observations, including range
of depths and corresponding hair lattice geometries available to plastron breathers,
the diving behaviour of hibernating insects, the dependence of dive time on the
concentration of dissolved O2 and N2, and the respiratory value of dynamic pressures
and flapping movements.

The present analysis presents a number of avenues for further exploration. First,
for free-swimming arthropods, the conditions for plastron viability ought to be
coupled with an Archimedean equation that ensures that the arthropod’s bulk density
match that of the surrounding water despite the contribution of the plastron to its
buoyancy. Such a requirement is not universal, however, because many plastron-
bearing (e.g. Haemonia mutica, Neoplea striola – see § 4.3) and non-plastron-bearing
(e.g. Potamodytes tuberosus – see § 5) aquatic arthropods are observed to rest along
lake and river beds or cling to rocks and aquatic plants. Others, such as Elmis
maugei and Riolus cupreus exploit the connection between the tracheal system and
the plastron to ‘float or sink at will, rising and falling in the water in rapid succession
if necessary’ (Thorpe & Crisp 1949). Moreover Gittelman (1975) and Matthews &
Seymour (2006) indicate that the family of backswimmers Notonectidae are able to
regulate their buoyancy by exchanging O2 between their haemoglobin and plastron.
The impact of this exchange on plastron dynamics has not, to our knowledge, been
rigorously examined.

Secondly, the lattice geometry depicted schematically in figure 3 assumes an
idealized array of rigid hydrophobic hairs. Although the two-dimensional model
considered here is an appropriate leading-order description of real arthropods,
variability of hair geometry across species has been documented by Thorpe &
Crisp (1949). Following the discussions of Hinton (1976) and Bush et al. (2008),
we have here assumed that the plastron hairs are effectively rigid; specifically, that
the resistance to bending is large relative to both the capillary forces that could
lead to lattice heterogeneities due to hair aggregation (Kralchevsky & Denkov
2001), and the hydrostatic pressure forces that could cause individual hairs to
buckle. The relative magnitude of the resistance to bending and capillary forces is
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prescribed by

G1 =
elastic resistance

capillary force
=

1

32

D3

L2 	e

(6.1)

where L is the hair length, 	e = σ/E is the elastocapillary length, E 	 1011 dyn cm−2

is Young’s modulus (Bico et al. 2004; Kim & Mahadevan 2006). For the species
described in table 1 we find that G1 varies between 2.2 (Stenelmis crenata) and
1.8 × 102 (Haemonia mutica), but is otherwise an O(10) quantity, supporting the
conclusion that the hydrophobic hairs are relatively inflexible under the influence of
capillary forces. The relative magnitude of resistance to bending and the hydrostatic
force acting over a single hair at a depth H is prescribed by

G2 =
elastic resistance

hydrostatic force
=

1

32

D2

L2

E

ρgH
. (6.2)

For hairs with length-to-diameter aspect ratio L/D = 10, G2 ∼ O(1) at a depth of
300 m, an inference consistent with that of Hinton (1976), who concluded that the
plastron hairs should be stable to buckling at pressures less than 40 atm. As a caveat,
we note that most hairs taper towards their tips, so these tips are most prone to
deflection.

Thirdly, while plastrons are necessarily indicative of a Cassie state, we have
implicitly assumed that this Cassie state is always energetically favourable relative to
the fully wetted Wenzel state. We note that situations may arise in which Cassie states
emerge instead of energetically favourable Wenzel states (Lafuma & Quéré 2003; Cao
et al. 2007); however, the relevance of such metastable Cassie states to plastrons is
unclear. More generally, if physical contact is made between the bubble interface and
the arthropod surface, the integument may transition irreversibly from a Cassie to a
Wenzel state (Lafuma & Quéré 2003; Reyssat 2007; Reyssat, Yeomans & Quéré 2008;
Nosonovsky 2007). To avoid this life-threatening turn of events, the plastron lattice
is often significantly over-designed relative to the minimum lattice height criteria
of (2.5) and (2.6). For example, the plastron breathers Aphelocheirus aestivalis and
Macrelmis corisors exhibit, respectively, centre-to-centre hair spacings β =0.5 μm and
β = 1.6−1.8 μm and plastron thicknesses h = 6β and h 	 9.5β (Thorpe & Crisp 1949;
Hinton 1976; see table 1). Further stability may be offered by the vertical position
of the liquid–gas–solid triple point, which is typically located along the underside of
the hydrophobic hairs. At spatial scales well below the capillary length, it has been
shown that attachment of the liquid–gas interface along the underside of a convex
solid surface corresponds to a local minimum of surface free energy (Nosonovsky
2007).

We conclude by briefly addressing possible technological applications of the present
theory. Shirtcliffe et al. (2006) recently conducted a novel experiment in which a cavity
with a void volume of 2.5 cm3 bound by a superhydrophobic methyltriethoxysilane sol-
gel foam was submerged underwater. A chemical reaction inside the cavity consumed
O2 at a rate of approximately 0.25 ml h−1. When placed in an aerated water bath,
Shirtcliffe et al. (2006) found that the O2 concentration inside the void approached a
finite value. Using scaling arguments, Shirtcliffe et al. (2006) extrapolated their results
and estimated that a diving chamber composed of similar material and having a
planar area Ap = 90 m2 would be required to provide sufficient O2 to meet the normal
respiratory demands of a human.

The equations of § 4 provide an alternative metric for assessing the geometric
demands of self-contained diving chambers. Suppose for example that a chamber,
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β (μm) U (m s−1) Q xj Hj /patm Hmax (m) Hmin (m)

10 1 3.37 1 0.43 0.30
3/4 0 0

0.1 10.7 1 0 0

5 1 1.19 1 3.67 2.22
3/4 0.90 0
1/2 0 0

0.1 3.77 1 0 0

1 1 0.106 1 28.44 0
3/4 25.74 6.14
1/2 20.38 3.55
1/4 3.78 0
0 0 0

0.1 0.337 1 23.11 13.81
3/4 17.28 11.23
1/2 6.45 4.02
1/4 0 0

0.01 1.07 1 0 0

Table 2. Maximum and minimum dive depths, Hmax and Hmin , for a self-contained diving
chamber of planar area Ap = 90 m2 with D/β = 0.5. Here, Q is the dimensionless respiration rate
defined by (4.4b), D and β are the geometric parameters defined in figure 3(b), and xj Hj /patm

is the non-dimensional dissolved gas concentration. For the calculations summarized here, a
normal human rate of O2 consumption of q =1.6 l s−1 is assumed (Linden 1999). The external
flow speed, U , is presumed to modify the invasion coefficient, JO2

, according to (5.10), but is
neglected in the normal force balance (5.1).

constructed of superhydrophobic material with an effective contact angle of θ = 170◦,
has a surface texture similar to the idealized two-dimensional geometry illustrated
schematically in figure 3 with D/β =0.5 and Ap = 90 m2. Then, our model yields
estimates for the maximum and minimum dive depths that may be achieved
for various hydrophobic post spacings, β , external flow speeds, U , and dissolved
gas concentrations, xj Hj . Results are summarized in table 2, and indicate that
while appreciable dive depths are possible, they require very fine micro-topography
in combination with brisk flow speeds and well-aerated water. Under less ideal
circumstances, device performance is compromised so that Hmax is restricted to
relatively modest values (e.g. � 5m) despite the diving chamber’s large planar area. As
the examples of table 2 make clear, the ability of humans to exploit plastron-breathing
apparati is compromised by our large metabolic rate. Nevertheless, superhydrophobic
plastron-bearing materials may find application in marine technology. As suggested
by Shirtcliffe et al. (2006), submerged cavities consisting of specially designed
hydrophobic material might provide the O2 necessary to run fuel cells through a
mechanism analogous to plastron respiration. These fuel cells could in turn supply
power to small underwater vehicles as might find a variety of applications. Provided
their power requirements are relatively modest, only a small flux of O2 would be
needed and therefore only a modest cavity surface area would be required. While
additional factors such as surface bio-fouling (e.g. by algae or barnacles) would need
to be considered for the implementation of such devices, the above analysis provides
an initial step towards identifying the conditions favourable to their deployment.
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Our study is a small step in seeking to rationalize a subtle biological adaptation,
the geometry of arthropod integument. In considering living creatures that have been
evolving for over 200 million years, it is tempting to assume that they are, from a
strictly mechanical perspective, optimized. Be that as it may, it is not always clear what
physics factors into this optimization. For example, the topology of the arthropod
integument is constrained not only by its roles in water-repellency and plastron
breathing, but also by the energetics of hair growth. Furthermore, the desirable dive
depths are influenced by resource abundance, predation effects and light attenuation.
The present analysis simply shows that respiratory requirements must be considered
in rationalizing the topology of arthropod integument.
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