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We examine the complex dynamics arising when a water droplet bounces on a horizontal soap film

suspended on a vertically oscillating circular frame. A variety of simple and complex periodic bouncing

states are observed, in addition to multiperiodicity and period-doubling transitions to chaos. The system is

simply and accurately modeled by a single ordinary differential equation, the numerical solution of which

captures all the essential features of the observed behavior. Iterative maps and bifurcation diagrams

indicate that the system exhibits all the features of a classic low-dimensional chaotic oscillator.
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Couder et al. [1] have recently shown that oil droplets,
when placed on a vertically vibrated oil bath, may bounce
indefinitely rather than coalescing. The dynamics of the
bouncing droplets are extraordinarily rich. Feedback be-
tween the droplet and its wave field may lead to self-
propulsion [2] and diffraction of these walking droplets
as they pass through a slit [3]; moreover, multiple droplets
may lock into complex orbital motions [2] or lattices [4].
We here demonstrate that a droplet on a vertically vibrated
soap film may similarly avoid coalescence, and that the
bouncing droplet represents a textbook example of a cha-
otic oscillator, with many features common to the bounc-
ing of an inelastic ball on a solid substrate.

Drops of uniform size (R ¼ 0:08 cm) bounce on a hori-
zontal circular soap film of radius A ¼ 1:6 cm vibrated
with vertical displacement B cosð2�ftÞ (Fig. 1). The drop-
let and soap film consist of a glycerol-water-soap mixture
(80% water, 20% glycerol, <1% soap) with density � ¼
1:05 g cm�3, viscosity � ¼ 2 cS, and surface tension � ¼
22 dyn cm�1. Drops of uniform size (R ¼ 0:8 mm) and
mass (m ¼ 2:25 mg) were extruded from an insulin sy-
ringe (needle diameter 0.35 mm). For the bouncing states,
the characteristic drop impact speeds (U� 4–32 cm s�1)
are much less than the characteristic wave speed on the
film (a film thickness of 4 �m indicates a wave speed of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�=�h
p � 330 cm s�1). The influence of capillary waves
is thus assumed to be negligible, and the film described as
quasistatic: it deforms instantaneously in response to the
forcing imposed by the droplet. The Weber number We ¼
�U2R=� lies between 0.06 and 3.9. During impact, the
droplet remains roughly spherical: maximum center line
distortions of 13% were observed (at We ¼ 3:9), so the
surface energy of drop distortion is less than 3% that
associated with soap film distortion. Beneath the droplet,
the soap film lies tangent to the droplet, and so roughly
assumes the form of a spherical cap of radius R. Beyond
the droplet, the pressure is atmospheric on either side of the
soap film, which thus assumes the form of a catenoid as
confirmed experimentally [5]. The spherical cap and cat-

enoid match at a point M corresponding to an angle �
(Fig. 1). The vertical deflection of the soap film Z and the
resulting vertical force F on the droplet may be expressed
in terms of �:

Z

R
¼ 1� cos�þ sin2� ln

�

tan�2
�

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
q

Þ
�

;

F ¼ 4��Rsin2�;

(1)

where � ¼ ðRsin2�Þ=A. The force-displacement relation
FðZÞ is shown in Fig. 2(a). In the range 0<Z=R < 3, the
film responds as a linear spring, F ¼ kZ, where the effec-
tive spring constant k ¼ 8�

7 �. The force then saturates,

achieving a maximum at � ¼ �=2, and decreases there-
after. This quasistatic description of the film was used
successfully by the authors [5] to deduce a criterion for
breakthrough of a droplet striking a stationary film [6].
When the droplet strikes a static soap film at a speed U,

the drop is in apparent contact with the film for a time tc.
Dissipation during rebound results in the kinetic energy at
takeoff being less than that at impact. Figure 2(b) illus-
trates the dependence of the dimensionless contact time
�c ¼ tc=�� and dissipated energy �ðV2=2Þ on the dimen-

FIG. 1. Experimental system: a droplet of radius R ¼ 0:08 cm
bounces on a soap film of radius A ¼ 1:6 cm vibrated with
vertical displacement B cos2�ft. The soap film assumes the
form of a spherical cap beneath the droplet, and a catenoid
beyond the matching point M.
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sionless impact speed V ¼ U=ðg��Þ, where �� ¼ ffiffiffiffiffiffiffiffiffi

m=k
p

and g is the gravitational acceleration. Note that the contact
time is independent of the impact speed V and proportional
to �c, as is consistent with the film behaving as a linear
spring, and as was observed for droplets bouncing on
hydrophobic substrates [7]. The dissipated energy in-
creases as V3, a scaling that we shall exploit in our theo-
retical modeling.

On a sinusoidally forced soap film, periodic bouncing
occurs in the range where the soap film behaves as a linear
spring (Fig. 3). The droplet trajectory is prescribed by a
force balance: the drop accelerates in response to gravity
and the force applied by the soap film, the latter of which
acts only when the drop is in apparent contact with the film.
A dissipative force proportional to kU2=g accounts for the
dissipated energy, which grows as V3. Writing the force
balance in the accelerating reference frame of the bounding
ring introduces a sinusoidal forcing term. In dimensionless
form, the force balance thus assumes the form

d2y

d�2
¼ �Hð�yÞy� 1��Hð�yÞj _yj _yþ � cosð!�þ	Þ;

(2)

where � ¼ t=��, y ¼ �Z=ðg�2�Þ, � ¼ 4�2Bf2=g, ! ¼
2�f��, andHðyÞ is the Heaviside function. The coefficient
� ¼ 0:01 is inferred from the experimental data reported
in Fig. 2(b). In many respects, the numerical solution of
Eq. (2) yields remarkably good agreement with the experi-
mental data. In Fig. 4(a), we demonstrate the excellent
agreement between the observed trajectory of a drop re-
leased above an unforced film and that predicted by Eq. (2)
for � ¼ 0.

The film forcing provides energy to the droplet. If this
energy precisely balances that lost through dissipation
during impact, the droplet executes a periodic bouncing
motion. We denote by (m, n) a periodic state in which the

droplet bounces n times and the soap film oscillates m
times during a single period. A myriad of simple (n ¼ 1)
and complex (n > 1) periodic states were observed experi-
mentally, including (1, 1), (2, 1), (3, 1), (3, 3), and (2, 2)
(Fig. 3). Mode transitions characterized by either aperiodic
transients or period-doubling cascades were observed as
the forcing parameters were varied (see supplementary
material in Ref. [8]). Multiperiodicity is apparent in
Figs. 3(a)–3(c): multiple periodic solutions (1, 1), (2, 1),
and (3, 1) arise for precisely the same forcing parameters
ð!;�Þ ¼ ð0:6; 1:1Þ, but different initial conditions. With
! ¼ 0:6 fixed, complex periodic states were apparent at
higher � [Figs. 3(d) and 3(e)], and ultimately chaos
emerges for � � 1:1 [Fig. 3(f)]. As seen in Figs. 4(b)
and 4(c), the computed periodic solutions of Eq. (2) are
remarkably close to those observed experimentally; in
particular, the landing and takeoff phases are in good
agreement. As a caveat, we note that complex modes (m,

FIG. 3. Spatiotemporal diagrams of bouncing states observed
experimentally at ! ¼ 1:1 (f ¼ 33 Hz). The images are formed
by compiling side-by-side vertical center line columns of suc-
cessive video images: time is represented by the horizontal
coordinate. For a periodic bouncing state denoted by (m, n),
the droplet bounces n times, while the soap film oscillates m
times. (a) Mode (1, 1) at � ¼ 0:6. (b) Mode (2, 1) at � ¼ 0:6.
(c) Mode (3, 1) at � ¼ 0:6. (d) Mode (3, 3) at � ¼ 0:7. (e) Mode
(2, 2) at � ¼ 1:2. (f) Chaotic motion at � ¼ 1:1.

FIG. 2. (a) Relation between the maximum soap film deflection Z and the resulting vertical force F acting on the droplet. Triangles
represent experimental measurements inferred from droplet trajectories. The solid line corresponds to the force anticipated on the basis
of our theoretical approximation of the soap film shape (1). The dashed line is the linear approximation F ¼ 8��Z=7, valid for
Z=R < 3. (b) Left axis, solid circles: Energy dissipated, �ðV2=2Þ, during impact on a static soap film as a function of the dimensionless
impact speed V ¼ U=ðg��Þ. The dashed line is the best-fit �ðV2=2Þ ¼ 0:016V3. Right axis, triangles: Contact time �c ¼ tc=�� as a
function of the impact speed V. The dashed line is the best-fit law �c ¼ 3:52. The solid lines correspond to the numerical solution of
Eq. (2) with � ¼ 0 and � ¼ 0:01. Characteristic error bars are shown.
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n > 1) and the onset of chaotic motion are observed at
slightly lower accelerations in the experiments than the
numerics.

Solutions of Eq. (2) may be displayed on a Poincaré
section by computing the speed and phase at impact,
ðy; _yÞ ¼ ð0;�VÞ. Equation (2) is integrated numerically
from one impact to the next, for various initial conditions
(V, 	). A two-dimensional iterative map may thus be
defined as

Viþ1 ¼ fðVi; 	iÞ; 	iþ1 ¼ gðVi; 	iÞ: (3)

Poincaré sections are represented in Figs. 5(a) and 5(b) for
� ¼ 0:82 and � ¼ 1:82, respectively. For each set of initial
conditions (Vi, 	i), contours of the net energy acquired by
the drop during impact, V2

iþ1 � V2
i , are computed. The

shaded area corresponds to initial conditions for which
energy is gained during impact; in the white area, energy
is lost. Simple modes (m, 1) are represented by single
points that necessarily lie on the boundary of the shaded
area: no energy is gained or lost during impact, so the
bouncing is perfectly periodic over a single forcing cycle.
Complex modes (m, n > 1) are represented by closed
curves that cross the zero-energy boundary. For example,
in the (3, 3) mode [Figs. 3(d) and 5(a)], energy is trans-
ferred to the droplet during the first two impacts, increasing
the leap height; however, during the third bounce, energy is
lost and the initial conditions are recovered. At � ¼ 1:82,
the motion is chaotic, and a strange attractor emerges on
the Poincaré section [Fig. 5(b)]. (See supplementary ma-
terial in Ref. [8] for a Smale map diagnostic.)
A bifurcation diagram [Fig. 6(a)] represents the solution

of Eq. (2) as a function of � for ! ¼ 1:1. For �< 0:17, no
periodic bouncing states are possible: the droplet resides at
rest on the soap film. The first periodic solution (2, 1)
appears at � ¼ 0:17. As � is progressively increased,
simple modes (m, 1) and complex modes (m, n) appear
in turn. At branch points, modes (m, n) execute a period-
doubling transition to a (2m, 2n) mode. For example, the
mode (2, 1) gives rise to a period-doubling cascade that
terminates at � ’ 1:67 [Fig. 6(b)]. Thereafter, the complex
periodic modes degenerate into a strange attractor that may
coexist with stable periodic orbits emerging from other
branches [shaded area in Fig. 6(a)]. For �> 1:91, no
such periodic branches persist, and the chaotic attractor
is the only attracting set.

FIG. 5. Iterative maps ðV;	Þ in polar coordinates. Curves represent contours of energy transferred to the droplet, V2
iþ1 � V2

i , as a
function of impact speed V and phase 	, at ! ¼ 1:1. The droplet gains and loses energy when it impacts in, respectively, the shaded
and white regions. (a) � ¼ 0:82: The filled circles represent simple periodic modes (m, 1), and the triangles, complex periodic mode
(3, 3). Contours are spaced by �ðV2Þ ¼ 2. (b) Chaotic solutions at � ¼ 1:82. The dots correspond to the Poincaré section of a spiraling
strange attractor. Contours are spaced by �ðV2Þ ¼ 5.

FIG. 4. Numerical solutions of Eq. (2) at ! ¼ 1:1 with a
coefficient of dissipation � ¼ 0:01 inferred from Fig. 2(b).
(a) Observed (dots) and simulated (solid line) trajectories of a
droplet bouncing on a stationary soap film (� ¼ 0). (b) Modes
(1, 1), (2, 1), and (3, 1) at � ¼ 0:6. (c) Mode (3, 3) at � ¼ 0:82.
The landing and takeoff phases measured experimentally are
represented by vertical lines denoted by L and T, respectively.
(d) Chaotic motion at � ¼ 2. In (b–c), the dashed line indicates
the ring motion.
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During the period-doubling cascade of (2, 1), bifurca-
tions occur at � ¼ 1:361; 1:631; 1:6679; 1:672 44;
1:673 19; 1:673 349; 1:673 380; . . . . Defining 
i ¼ ð�iþ1 �
�iÞ=ð�iþ2 � �iþ1Þ yields the first terms of the 
 suite as
7:3; 8:1; 6:0; 4:7; 5:1; . . . . This suite slowly converges to a
value larger than the Feigenbaum constant 4.6692, which is
universal for one-dimension quadratic iterative maps [9].
We recall that for area-preserving two-dimension maps,
Tabor [10] deduces a universal constant of 8.7211. Our
two-dimensional non-area-preserving map evidently leads
to a suite 
i that converges to a value lying between those
two bounds.

In the bouncing regime, the soap film behaves as a linear
spring. The contact time is constant, independent of the
impact speed V, and the energy dissipated during impact
increases as V3. These observations guided us in develop-
ing a simple model of the bouncing droplet that is in good
agreement with experimental results, providing quantita-
tive agreement with the lower order periodic modes, and
qualitative agreement with more complex modes. Our

system shares many features with the elastic ball bouncing
on a vertically vibrated rigid substrate [11], including
multiperiodicity and period-doubling transitions to chaos.
However, qualitative differences exist between the two
systems owing to the differences in the collisional dynam-
ics. In the bouncing ball problem, the collision is instanta-
neous and characterized entirely by the coefficient of
restitution; in our system, the collision is of finite duration
and the coefficient of restitution depends on the impact
speed. Consequently, in our system there are no sticking
solutions as arise at weak forcing for the bouncing ball, and
the multiperiodicity is considerably enhanced. It is hoped
that our study will inform studies of droplets bouncing on a
fluid bath [1–3,12,13]. For example, for a droplet bouncing
on a soap film, the most unstable bouncing state may be
(2, 1) rather than the (1, 1) observed for the bouncing
elastic ball. Finally, we note that in terms of ease of both
experimental study and theoretical description, this system
is perhaps the simplest fluid chaotic oscillator yet explored.
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FIG. 6. (a) Bifurcation diagram for ! ¼ 1:1: impact speed V
as a function of the forcing acceleration �. Note that a mode (m,
n) necessarily has n branches. Chaotic solutions first appear at
� ¼ 1:67. (b) Period-doubling cascade of the (2, 1) branch. The
shaded region is expanded in the inset.
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