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We describe the physics behind a peculiar feeding mechanism of a certain class of shorebirds, in which they
transport their prey in droplets from their beak tips mouthwards. The subtle interplay between the drop and
the beak's tweezering motion allows the birds to defy gravity through driving the drop upwards. This
mechanism provides a novel example of dynamic boundary-driven drop motion, and suggests how to design
tweezers for drops, able to trap and to move small amounts of liquid.
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1. The feeding technique of phalarope

Phalaropes are small birds that inhabit the American and Russian
coastlines of the Arctic Ocean [1]. Discovered by George Edwards in
the eighteenth century, they were later described and named by
Brisson «because their feet resembled those of a coot» — phalaris in
Greek, according to Buffon [2]. They were first known for their task
sharing: the larger females migrate southwards (toward the Sea of
Oman) soon after the egg-laying season, while the males hatch the
eggs before caring for the young. But their peculiar feeding technique,
first discovered by Rubega et al. in the nineties, is even more curious
[3,4]. The phalarope bill is short, 1–3cm in length [5]. Since it does not
dive, it is obliged to draw its sustenance from the immediate vicinity
of the surface. The solution to this problem is, literally, revolutionary:
the phalarope swims close to the shore in tight circles, at a speed of
order 50 cm/s, generating an upward flow leading to transport of
prey, crustaceans and plankton, from the bottom towards the surface
[6]. The bird then serves itself by rapidly striking its beak
(approximately twice per second) [2,5,7,8]. With each peck, it

captures a prey-laden water droplet (Fig. 1). Since the bill generally
points downwards, the drop moves upwards to the throat where the
phalarope pins the contained prey (typically one per drop) with its
tongue, then swallows it. The question naturally arises as to how the
liquid moves against gravity, and what are the characteristics of this
tweezer for droplets.

We recently published a first paper devoted to the description of
this device [9]. The aim here is to make clear a few new points. After
recalling themechanism of self-propulsion, wemodel the dynamics of
the drop when it wets the tweezer — a point that was not discussed
properly in [9]. Then we focus on the case of partial wetting, generally
relevant when the liquid is water. We quantity how a drop is
propelled by a tweezing action that exploits the drop asymmetry, by a
tweezing action resulting from the conjunction of pinning and
geometry. We specify in particular the typical displacement of the
drop per cycle, allowing us to define the efficiency of the tweezer, and
stress the effects of gravity, when it opposes the motion.

2. Self-propulsion

Beforewe take a closer look at the origin of themovement, we note
that the drop must form a bridge between the upper and the lower
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bills. This puts an upper bound on the opening angle because a drop
can only join two planes if the distance between them is nomore than
the width of the drop [10]. Otherwise, it breaks into two separate
drops, one on either plane. The drop size is typically the capillary
length ℓc=(γ/ρg)1/2, that is, a few millimeters. The gap between the
tips of a bill of length Lb opened by an angle α scales as αLb, so that the
stability condition can be roughly written α<αc~ℓc/Lb, which yields a
critical angle of only a few degrees. If it opens its bill too wide, a
clumsy phalarope may lose its meal, just like the greedy crow of the
fable.

The manner in which water drops can be propelled along a bird
beak is qualitatively different according to the wettability of the beak,
which can be modified by chemical contamination. For the case of
pure wetting, a molecular film of fluid spreads to wet the entire beak,
thus eliminating contact lines and the complications arising there-
from. We proceed in this section by describing the dynamics in this
case, but note that it is more of academic interest than directly
relevant to the shorebirds. Water partially wets keratin, the material
comprising bird beaks; consequently, a water drop inside the beak of
the phalarope is bound by contact lines, where the drop surface meets
the solid [2]. As we shall see in Section 3, the means of propulsion in
this case is entirely different.

Our experimental study enabled us to characterize the horizontal
motion of oil wetting drops along artificial beaks with shapes similar
to those of the phalarope [9]. A wetting drop placed at the end of the
artificial bill is sucked mouthward, as shown in Fig. 2 where we

display the distance D traveled by the drop as a function of time for
three different angles α. The geometry in the direction perpendicular
to the axis of the beak is simplified by the small size (2 mm) of its
width W: hence, the drop (of length L always larger than W) pins
along the lateral sharp edges, and the discussion reduces to the
description of the menisci directly visible in Fig. 2. The gap across the
bill decreases toward the mouth, so that a drop there assumes a fore-
aft asymmetric shape. The curvatures of the menisci bounding the
drop differ, generating a differential Laplace pressure along the length
of the drop that propels the drop towards the narrower end, hence
mouthward [9,11]. A reversed wettability would change the sign of
the Laplace pressure, and thus the direction of the motion.

Using the definitions of Fig. 3, the Laplace depressions at the leading
and trailing edges of a wetting drop (θ1=θ2=0) scale in absolute
value as γ/αx and γ/α(x+L), where γ is the liquid surface tension.
Therefore, the pressure difference between leading and trailing edges
is γL/αx2, assuming that drops are small relative to the distance to the
mouth (L≪x). Integrating over the menisci surface areas αx (written
per unit width of the beak) yields a Laplace force γL/x that draws the
drop mouthwards, to the right in Figs. 2 and 3.

As the drop moves, this force is balanced by a viscous friction. Here
there are two possibilities, as always when dealing with moving
drops: the force is dominated by either contact line friction, or a bulk
(Poiseuille-type) friction on the surface L (per unit width) of the bill.
Denoting η as the viscosity of the liquid, we can evaluate and compare
these forces, written per unit width of the beak.

Fig. 1. Photographs of two phalaropes in action. (a) Red-neck phalarope extracts a prey-
bearing droplet from the free surface. (b) Wilson phalarope drives the droplet
mouthward, not by applying suction, but by opening and closing its beak in a
tweezering motion. (Photo Credit: Robert Lewis.)

Fig. 2. The time evolution of the position D of a drop of silicon oil (viscosity
η=20 mPa s, surface tension γ=20mN/m) in a horizontal artificial bill. The arrow
indicates the direction of motion, and the scale bar, 2mm. The graph shows that the
drop accelerates as it progresses towards the confined part of the bill. The angles α1, α2

and α3 are equal to 1.9°, 2.8° and 4.2°, respectively. At long time, the larger the angle,
the faster the motion: the corresponding terminal velocities are found to be 1.05±0.20,
1.60±0.10 and 2.60±0.30 cm/s [9].

Fig. 3. Drop of length L in a bill opened by an angle α, at a distance x from the mouth.
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For the line friction, we adopt a simple physical picture, though
recognize that many subtle features may complicate the discussion.
For a wetting liquid, the line friction along an advancing front is due to
the local divergence of the velocity gradient close to the moving front.
It is expected to scale as ηV/θ, where θ denotes the dynamic contact
angle at the leading edge [12,13]. This angle should obey Tanner's law,
θ~(ηV/γ)1/3, where we again neglect the numerical coefficients. There
thus arises a friction force F1~γ (ηV/γ)2/3. The Poiseuille resistance is
easier to evaluate: since the gap in the bill is αx, this viscous stress
scales as ηV/αx, which, once integrated along the drop length yields:
F2~ηLV/αx. When the velocity is small, and the drop far from the
mouth (i.e. x large and L small), we expect the line friction to be
dominant (F1≫F2). We find, after balancing it with the capillary
propulsive force in the L≪x limit:

V
e

γ= ηðL=xÞ3=2:

This law should describe the first regime (in time) in Fig. 2, when
the drop is far from themouth. Its structure implies that the velocity is
not expected to be constant, as observed in Fig. 2: as the liquid
advances, L increases and x decreases, leading to an acceleration of
the drop. In the experiment of Fig. 2, the visco-capillary speed γ/η
is 1 m/s (γ=20mN/m and η=20 mPa s) and the geometric factor
(L/x)3/2 is between 0.01 and 0.1, for millimetric drops and centimetric
bills. This gives initial velocities at the beginning of the motion of
approximately 1 cm/s, comparable to the 4 mm/s observed in this
regime.

As the drop approaches the mouth, the Poiseuille force becomes
dominant compared to the line friction (F2≫F1), and balancing the
corresponding formula with the capillary force leads to a remarkably
simple formula for the drop speed:

V
e

αγ = η:

This speed is constant despite the fact that the length L of the drop
increases with time as it proceeds into the gap. It is the product of the
opening angle α, a small number (of the order of 0.03 to 0.05 rad), by
the (large) visco-capillary velocity. The drop velocity V is thus
expected to be on the order of a few centimeters per second, in
qualitative agreement with observations reported in Fig. 2 where we
find V≈1 to 3 cm/s close to the mouth, i.e. at large distances D. In
addition, it is also clear in the same figure that this fast regime is a
function of the opening angle α, and roughly proportional to it:
multiplying the angle by a factor 2.2 (from 1.9 to 4.2°), the terminal
velocity passes from 1.05±0.20 cm/s to 2.6±0.3 cm/s. Further
experiments would be necessary to check quantitatively these
different laws.

The crossover between the two regimes of friction occurs when
ηLV/αx exceeds γ (ηV/γ)2/3, that is, for L>α2/3x, if we take αγ/η as a
characteristic drop speed. α2/3 is typically ¼, so the above inequality is
only satisfied for centimetric drops: at the beginning of the
movement, L is a few millimeters, and the dominant friction is indeed
the line friction. Subsequently, as the drop enters confined region, L
and x become comparable, and the speed becomes dictated by the
Stokes friction (V~αγ/η). L and x are related to each other by volume
conservation (Lx=Loxo), so that the condition for passing from one
regime of friction to the other one can be simply expressed in terms of
the distance x, which at the threshold is (Loxo)1/2/α1/3, i.e. 1 cm
typically.

3. Mandibular propulsion

It turns out that our phalarope seasons his meal with water, not oil,
so the physical picture changes dramatically. Water droplets in both
the real and artificial bird beaks are bound by contact lines, which
impede their progress. When a small droplet (~2 mm) is placed at the

tip of the horizontal artificial beak, it remains pinned in place at the
spot it was inserted, its progress halted by contact angle hysteresis.
Specifically, hydrophilic defects hold back the trailing edge of the drop
while its leading edge is impeded by their hydrophobic counterparts.
This phenomenon is familiar in that it prevents rain droplets from
sliding down windows, despite the force of gravity [14]. Indeed,
contact angle hysteresis is typically an impediment to drop motion,
which makes the phalarope's feeding mechanism all the more
remarkable.

The trick of the phalarope is its mandibular movement, alternately
squeezing and relaxing the drop [3,4]. The conjunction of a propulsive
force with a vibration of large enough amplitude can trigger drop
motion [9,15–18]. Such motion is easily recreated in an artificial bill,
where we observe that water progresses incrementally in a ratchet-
like fashion (Fig. 4). The angle α is now a function of time, starting
from a maximum αM and decreasing to a minimum αm before
increasing back to αM, and so on, at a rate f of 10 cycles per second.
This high frequency enables the liquid to move quickly, with an
average speed on the order of 10 cm/s. We now discuss why and how
this mandibular propulsion occurs, and evaluate its efficiency.

It is first instructive to describe what happens when a drop is
placed between two parallel plates that are successively closed and
opened in the absence of gravity. As long as the amplitude of the
oscillation is sufficiently small, the contact lines remain pinned on the
defects of the solid surfaces. Above a threshold in amplitude, the
liquid starts moving, alternately spreading and retracting without
displacing its center of mass [19]. When the plates approach, the
contact angles necessarily increase owing to volume conservation.

Fig. 4. Progression of a water drop in an artificial bill: the drop partially wets the solid
and only moves by virtue of the periodic closing and opening of the bill. The average
speed is prescribed by the extremal angles and frequency of themandibular movement.
Time is shown on the right, in seconds, and the scale bar on the lower left corner
indicates 2 mm.
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Depinning takes place when the contact angle exceeds its largest
tenable static value, the so-called advancing angle θa. Similarly, as the
plates separate, the contact angles decrease and lines retreat when the
angle becomes smaller than the minimum tenable static value, the
receding angle θr. If the plates are tilted to lie in the vertical, the force
balance of the drop of volume Ω (per unit width W) requires that:

ρΩg = 2γðcos θ1– cos θ2Þ;

which prescribes the maximum volume Ωc=2ℓc
2(cosθr−cosθa) that

may be supported between the plates, where ℓc is again the capillary
length. This balance, analogous to that describing the force balance of
a raindrop stuck on a window pane [14] yields a valuable relation
between θ1 and θ2; specifically, it makes clear that θ2>θ1. Thus, as the
gap is closed and the internal drop pressure increased, θ2 always
reaches θa before θ1; consequently, the lower edge of the drop
advances first. Conversely, the upper edge is always the first to retreat
when the beak is opened. In this vertical planar geometry, opening
and closing the gap leads to progressive downward motion: the
hydrostatic pressure gradient precludes droplet climbing.

We proceed by considering the beak geometry, in which the plate
orientation is characterized by the opening angle α (Fig. 3). The
amplitude of the beak motion during its tweezering action is
prescribed by the maximum and minimum opening angles, respec-
tively, αM and αm. The contact lines move only if the quantity αM−αm

is sufficiently large, but this motionmay now be accompanied by a net
displacement of the drop towards the corner (i.e. the mouth of the
phalarope) (Fig. 4). We consider in turn the beak geometry in the
absence and presence of gravity, in order to describe drop motion on
horizontal and vertical beaks.

In the absence of gravity, the pressure inside the static drop is
uniform; therefore, the radii of curvature on the drop edges are equal,
a geometric condition that requires:

cosðθ2 + α= 2Þ = ð1 + L = xÞ cosðθ1 � α= 2Þ;

This yields a relationship between the contact angles θ1 and θ2. In
the limit L≪x, it assumes the simple form θ1=θ2+α: geometry
requires that θ1 always exceed θ2. When the bill is closed, the
advancing angle θa will first be achieved by θ1. The front of the drop
will thus advance, while its trailing edge remains pinned (Fig. 5). If the
bird closes its bill too far, the contact angle θ2 will also reach θa so that
the trailing edge also moves, but in the opposite direction. When the
bill opens, the motions are reversed: the trailing edge moves first,
receding mouthward when θ2 reaches θr. In the opening phase, the
leading edge will also recede if θ1 reaches θr. Hence, there is an
incremental motion of the drop for each half-cycle, provided the
amplitude of the mandibular motion is neither too small (in which
case both contact lines remain pinned) nor too large (in which case
both lines move). Note that the conjunction of asymmetry and
vibration was shown to lead to a movement in a different system,
namely partially wetting drops on inclines, which, when vibrated, can
lead to uphill motions [20].

Besides providing an explanation for the drop motion, our
discussion makes clear that the propulsion can be optimized. If the
phalarope finely tunes the extrema angles αM and αm, it can advance
only the leading edge during its closing phase (leaving the trailing
edge pinned), and the trailing edge during its opening phase (leaving
the leading edge pinned). This progression is depicted in the first
three steps of Fig. 5, and results in a purelymouthward dropmotion. It
was shown on artificial, horizontal bills that there is indeed a narrow
window of opening and closing angles that minimizes the number of
cycles required for moving a drop along a prescribed length [9].

Phalaropes typically feed themselves with their beaks pointing
down towards the water, and so necessarily draw the drops upwards.
Consequently, the mouthward motion of drops induced by their

mandibular cycles will be opposed by gravity. We proceed by
demonstrating how vertical motion may be attained and gravity
overcome in the bird beak geometry. We assume that gravity is
important in establishing a vertical hydrostatic pressure along the
length of the drop, but that the upper and lower drop surfaces are still
circular arcs to leading order, an assumption valid provided the local
gap width αx is smaller than ℓc. For a vertical beak, the curvature
force must now support the weight of the drop:

cosðθ2 +α = 2Þ = ð1+ L = xÞ cosðθ1 �α= 2Þ � ðx + LÞL tanðα= 2Þ=ℓ2
c :

This equation defines the maximum drop volume ΩM (per unit
width W) that can be sustained within the bill. In the limit of L≪x,
this assumes the simple form:

ΩM = 2ℓ2
c ðcosðθr−α= 2Þ− cosðθa + α = 2ÞÞ:

Moreover, it yields a relation between θ1 and θ2 fromwhichwe see
that θ1 may be either greater or less than θ2, depending on the Bond
number Bo=Ω/ℓc

2. In the small Bond number limit, this relation may
be expressed as:

θ1 = θ2 + α−Ω= ð2ℓ2
c sinððθ1 + θ2Þ= 2ÞÞ

Accordingly, the mandibular motion will cause the drop either to
rise or fall depending on the magnitude of the Bond number,
specifically on the sign of the quantity α−Bo/(2sin((θ1+θ2)/2)).
We see in particular that a critical Bond number Boc of the order α
must not be exceeded if the drop is to be drawn mouthward along
vertical bills. Combining this dynamic condition, Bo<α, with that
required to avoid drop cleavage, αc<ℓc/Lb, indicates that the vertical
ratcheting mechanism can only operate if the drop volumeΩ per unit

Fig. 5. (a) In a situation of partial wetting, drops may be pinned in the bill, owing to the
anchoring of the contact lines on the substrate defects. (b) When the phalarope closes
its bill, both angles increase, but the front angle θ1 is the first to reach the advancing
angle θa above which motion takes place; thus, only the leading edge starts progressing
(c). (d) If the phalarope further closes its bill, θ2 can also reach θa, which induces a
motion of the trailing edge in the opposite direction.
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width is smaller than ℓc
3/Lb, a quantity of the order of 1 mm2

(corresponding to 2 mm3 for a width of 2 mm).
In the optimized situation, we can evaluate the drop progression

generated by a mandibular cycle and so deduce the delivery time of
the phalarope's meal. For the sake of simplicity, we again consider
compact drops (L≪x). For small bill angles, we also assume αx<<L.
This allows us to neglect the contribution of the menisci to the drop
volume Ω≈1/2α(x22−x1

2), where Ω≈αLx is written per unit width of
the bill, and x1 and x2 denote the positions of the leading and trailing
drop edges, respectively. In this limit, volume conservation requires
that: x2=(x12+2Ω/α)1/2. Since the position x1 of the leading edge
remains fixed in the optimized cycle, we deduce that the progression
Δx2 of the trailing edge resulting from a mandibular opening Δα can
be written: Δx2≈ΩΔα/(α2x). A similar expression is obtained for the
advancement Δx1 of the leading edge when the bill is closed by the
same angleΔα. We thus deduce the total progressionΔx of the drop in
one cycle:

Δx≈2ΩΔα= ðα2xÞ≈2LΔα=α:

In the limit considered here, L is of the order of the capillary length
(3 mm), which, for Δα/α=1/2, yields a progression Δx of 3 mm. In
our model, the bird needs 3 to 9 mandibular cycles to drive the drop
along the bill, whose length Lb is approximately 1 to 3 cm, consistent
with data on phalaropes [8]. The corresponding velocity V is 2LfΔα/α,
where f is the number of cycles per second. Themandibular frequency
f is typically 10 Hz, which means that less than 1s is needed for the
drop transport, a time comparable to the period between two bird's
pecks. The progression is not constant: since L increases as the drop
approaches the mouth, so do Δx and V.

In the opposite limit of flattened drops, for which L≫x, the drop
volume can bewrittenΩ≈αL2/2. Conservation of volume implies that
the change in length ΔL of the drop arising from an angle variation Δα
satisfies the relation: 2ΔL/L≈Δα/α. This yields a drop progression per
cycle Δx≈2ΔL that follows the same scaling law as previously:
Δx≈LΔα/α. Since L is centimetric in this flattened-drop limit, very
few cycles (of order 1 to 3, typically, depending on Δα/α) are
necessary to drive the drop to the mouth, consistent with experi-
mental and field observations [2,9]. The corresponding (average)
velocity LfΔα/α is high, typically 10 cm/s or more, depending on the
chosen frequency f.

4. Conclusion

We have considered how drop propulsion occurs in wedge-like
geometries. The first case applies for situations in which the fluid
completely wets the substrate. Here, differential curvatures associated
with the beak geometry result in a pressure gradient capable of
driving the drop to the tip of the wedge. We have demonstrated that
such motion is generally opposed by resistance associated with
viscous dissipation in the bulk of the drop and line friction near its
advancing edges. Balancing the propulsive force γL/x with the weight
of the drop suggests that such capillary propulsion would drive drops
upwards in a vertical beak provided Bo=ρgΩ/γ<L/x, which repre-
sents a strong constraint (often impossible to satisfy) in the limit
L≪x where this condition can be also written αx2<ℓc

2.

In the case of partial wetting, we emphasized the necessity of
imposing tweezering effect to overcome pinning of the contact line.
While one would expect contact angle hysteresis to resist drop
propulsion, it couples in this case to the wedge-like geometry to drive
the drop towards the corner, mouthwards in the case of shorebirds, in
a stepwise ratcheting fashion. Ideally, the minimum and maximum
opening angles are such that only one contact line moves per opening
or closing event, in which case the efficiency of the motion can be
deduced from volume conservation. On a vertical beak, the drop's
ascent is resisted by gravity: only drops such that Bo<ℓc/Lb should be
capable of climbing. This implies that the quantity of water extracted
by the phalaropes must be carefully selected, which remains to be
proven. We also note that this constraint is comparable to that which
applies to curvature-driven drop motion on a wetting beak. However,
the ratchet mechanism has the distinct advantage of setting the drop
speed by the frequency of the mandibular cycle, and so may be
increased arbitrarily.

Our study also highlights the extreme sensitivity of the phalarope
to pollution. In the presence of oil or detergents, water can wet the
bill. Then, hysteresis is eliminated, gravity makes the drop flow
downwards, and the phalarope's meal can no longer be raised to its
mouth. Despite being large relative to the capillary length, the
phalarope has a feedingmechanism that relies critically on the surface
tension of water, making it particularly fragile in the presence of
contaminants [3,21]. More generally, the physical mechanism
elucidated herein provides all the ingredients of a fluid tweezer: it
retains drops, and allows them to be manipulated and driven in a
given direction.
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