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We present the results of a combined theoretical and experimental investigation of the
influence of surface tension σ on the laminar circular hydraulic jump. An expression
is deduced for the magnitude of the radial curvature force per unit length along a
circular jump, Fc = −σ (s − �R)/Rj , where Rj is the jump radius, and s and �R are,
respectively, the arclength along the jump surface and radial distance between the
nearest points at the nose and tail of the jump at which the surface is horizontal. This
curvature force is dynamically significant when 2σ/(ρgRj�H ) becomes appreciable,
where �H is the jump height, ρ the fluid density and g the acceleration due to
gravity. The theory of viscous hydraulic jumps (Watson 1964) is extended through
inclusion of the curvature force, and yields a new prediction for the radius of circular
hydraulic jumps. Our experimental investigation demonstrates that the surface tension
correction is generally small in laboratory settings, but appreciable for jumps of small
radius and height.

1. Introduction
Circular hydraulic jumps may arise when a descending vertical fluid jet impacts

a rigid horizontal boundary; two such jumps are presented in figure 1. The first
theoretical investigation of hydraulic jumps was undertaken by Rayleigh (1914), who
developed the theory appropriate for inviscid jumps by application of continuity and
momentum principles. The inviscid theory for the circular hydraulic jump resulting
from the impact of a vertical jet on a horizontal plate is detailed in Birkhoff &
Zarantonello (1957). The inviscid theory is known to be inadequate in predicting the
radius of laboratory-scale circular jumps: the layer thickness preceeding the jump
is typically sufficiently thin that diffusion of vorticity from the lower boundary is
dynamically significant.

Watson (1964) considered the influence of fluid viscosity on the circular hydraulic
jump, and described the flow in terms of a Blasius sublayer developing near the point
of impact and a far-field similarity solution. Application of the momentum theorem
at the jump yielded predictions for the jump radius for both laminar and turbulent
flows. Watson’s theory has been tested in a number of experimental investigations,
including those of Watson himself, Olson & Turkdogan (1966), Ishigai et al. (1977),
Nakoryakov et al. (1978), Bouhadepf (1978), Craik et al. (1981), Errico (1986) and
Vasista (1989). The agreement has ranged from good to poor, being generally good
when the jump radius is more than ten times the depth beyond the jump and poor
in the opposite limit of small jump radii. In their experimental study of water jumps,
Liu & Lienhard (1993) observe that Watson’s predictions are least satisfactory in the
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(a) (b)

Figure 1. Circular hydraulic jumps arising from the impact of a vertical fluid jet on
a horizontal boundary. (a) Nozzle radius 0.5 cm. (b) Nozzle radius 0.2 cm.

Figure 2. A schematic illustration of the two principal types of steady laminar hydraulic
jumps. The progression from Type I to II arises as the outer layer depth is increased.

limit of relatively weak jumps, specifically when the ratio of the layer depths after
and before the jump is small. The general consensus is thus that Watson’s (1964)
theoretical predictions are least satisfactory for jumps of small radius and height.
Craik et al. (1981) focused on this small jump regime; their data for the jump radius
thus underscored the shortcomings of Watson’s theory.

In his theoretical developments, Watson (1964) neglected the influence of surface
tension, and assumed that the flow beyond the jump was unidirectional. Subsequent
theoretical studies have focused on the shortcomings of the latter assumption. The
separation of the flow and the associated recirculation eddy beyond the jump was
identified by Tani (1949), and has subsequently been highlighted in the experimental
studies of Ishigai et al. (1977), Nakoryakov, Pokusaev & Troyan (1978), Craik et al.
(1981), Liu & Lienhard (1993) and Ellegaard et al. (1996). Figure 2 is a schematic
illustration of the two distinct types of laminar circular jumps that arise in water:
Type I, marked by unidirectional surface flow, but boundary layer separation beyond
the jump; Type II, marked by reversed surface flow adjoining the jump. The transition
from Type I to II arises as the outer depth is increased. As a result of the pronounced
boundary layer separation prevalent in the Type II jumps, the flow need not decelerate
significantly as it passes through the jump: the discontinuity in radial speed assumed
in the theoretical developments of Watson (1964) need not arise. Nevertheless, the
numerous experimental investigations have considered Type I, II, and unsteady jumps,
and generally indicate that Watson’s (1964) prediction for the jump radius provides an
adequate leading-order description. Craik et al. (1981) point out that in Type I jumps,
Watson’s assumption is expected to be adequate. In order to highlight the dynamic
influence of the previously neglected curvature force, we focus our experimental
investigation on the steady Type I jumps.

The modelling of the boundary layer separation beyond the jump has been the
subject of a number of theoretical and numerical investigations (Bohr, Dimon &
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Figure 3. A schematic illustration of the hydraulic jump. A fluid jet of radius a and speed U
impacts a horizontal fluid reservior of outer depth H .

Putkaradze 1993; Bohr, Putkaradze & Watanabe 1997; Higuera 1997; Yokoi &
Xiao 2000, 2002). Bowles & Smith (1992) and Higuera (1994) examine the flow in
the neighbourhood of a planar jump via a boundary layer analysis. Both studies
highlight the dominant influence of dynamic pressure and surface tension in the
neighbourhood of the jump; moreover, they yield predictions for the jump profiles
that are in good agreement with the observations of Craik et al. (1981). Yokoi &
Xiao (2000, 2002) present numerical simulations of the flow in the circular hydraulic
jump that similarly indicate the importance of surface tension and dynamic pressure
in the vicinity of the radial hydraulic jump. While these studies have highlighted
the subtle dynamical balance that exists in the neighbourhood of the jump, and
so the deficiencies of Watson’s (1964) assumption concerning the uniformity of the
downstream flow, they have not led to a revised estimate of the jump radius. We thus
focus our experimental investigation on the parameter regime where the influence
of boundary layer separation is least pronounced and that of surface tension most
pronounced, namely on Type I jumps of small radius and height. We emphasize that
this small jump regime is the most poorly described by Watson’s (1964) theory.

While both Craik et al. (1981) and Liu & Lienhard (1993) suggested the importance
of surface tension on the size and frontal stability of the circular hydraulic jump, a
theoretical investigation of the influence of surface tension on the form of a circular
hydraulic jump has yet to be undertaken. In a companion paper (Bush, Hosoi &
Aristoff 2003), we elucidate the role of surface tension in breaking the axial symmetry
of the jump, while in the present study we examine its influence on the jump radius.
In § 2, a simple expression is deduced for the radial force per unit length associated
with the curvature of a circular hydraulic jump, and the predictions of Watson
(1964) for the jump radius are appropriately revised. The results of an accompanying
experimental study are presented in § 3.

2. Theory
We consider a descending vertical fluid jet of radius a and speed U transporting

a flux Q = πUa2 and impacting a horizontal plane covered by a fluid of depth H

(figure 3). The depth of the fluid just upstream of the jump is denoted by h. The
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momentum theorem requires that the difference in pressure force across the jump
balance the difference in radial momentum flux, and is typically expressed as∫ H

0

ρgz dz −
∫ h

0

ρgz dz =

∫ h

0

ρu2(z) dz −
∫ H

0

ρu2(z) dz. (2.1)

While this statement is sufficient for the case of a planar jump, it is incomplete for
a circular jump in that it neglects the radial component of the surface tension force
associated with the azimuthal curvature of the jump. The resulting radial curvature
force may be expressed as

Fc =

∫
S

σ (∇ · n)(n · r̂) dS. (2.2)

Defining the jump surface J (r, z) = z −h(r) = 0 indicates that its unit outward normal

n =
∇J (r, z)

|∇J (r, z)| =
ẑ − hr r̂(

1 + h2
r

)1/2
. (2.3)

Substituting

∇ · n = −1

r

∂

∂r

rhr(
1 + h2

r

)1/2
, n · r̂ = − hr(

1 + h2
r

)1/2
, (2.4)

and dS = r dθ dr(1 + h2
r )

1/2 into (2.2) thus yields

Fc = 2πσ

∫ R2

R1

hr

∂

∂r

rhr(
1 + h2

r

)1/2
dr, (2.5)

where R1 and R2 represent the inner and outer bounds on the jump, defined as the
nearest points up- and downstream of the jump at which the slope hr vanishes (see
figure 3). Integrating twice by parts and noting that hr = 0 at radii R1 and R2 yields

Fc = −2πσ

[
r
(
1 + h2

r

)1/2∣∣R2

R1
−

∫ R2

R1

(
1 + h2

r

)1/2
dr

]
. (2.6)

Recognizing the last term as the arclength, s, of the jump surface between R1 and
R2 = R1 + �R yields the simple result

Fc = −2πσ (s − �R). (2.7)

We note that in the limit of no jump, s = �R, the surface tension force vanishes
identically. In the limit of an abrupt jump, �R → 0, the arclength s approaches the
jump height �H , so that one obtains the curvature force on a cylindrical section of
radius Rj and height �H :

Fc = −2πσ�H. (2.8)

Inclusion of the surface tension force per unit length (2.8) along the jump thus
converts (2.1) to the form

1
2
g(H 2 − h2) + σ

�H

Rj

=

∫ h

0

ρu2(z) dz −
∫ H

0

ρu2(z) dz, (2.9)

where we adopt the abrupt jump result (2.8) for the sake of simplicity.
Figure 4 indicates the relevant physical picture for the case of laminar viscous

flow, as presented originally by Watson (1964). Viscosity results in the diffusion of
vorticity across the radially spreading fluid layer on a timescale τ ∼ h2/ν. In that time,
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Figure 4. A schematic illustration of the boundary layer structure established within the
circular hydraulic jump (Watson 1964). The viscous boundary layer grows until reaching the
surface at a radial distance rv = 0.315aRe1/3 from the point of impact.

the flow travels a radial distance rv ∼ Uτ ∼ Ua4/(4νr2
v ). This scaling anticipates that

the boundary layer will span the entire layer depth at a radius rv ∼ aRe1/3, where
Re = Qa/ν is the jet Reynolds number. Watson employed the Kármán–Polhausen
integral method and matched the near-source Blasius sublayer onto a far-field
similarity solution in order to obtain the appropriate coefficient, rv = 0.315aRe1/3;
Bowles & Smith (1992) deduced a similar result by way of an exact numerical
solution. The flow necessarily changes form at r = rv . For r < rv , the surface speed
is that of the incoming jet U , a Blasius sublayer develops from the lower boundary
(figure 4), and the jump radius is defined by

RjgH 2a2

Q2

(
1 +

2

Bo

)
+

a2

2π2RjH
= 0.10132 − 0.1297

(
Rj

a

)3/2

Re−1/2, (2.10)

where Bo = ρgRj�H/σ is the jump Bond number. For r > rv , the surface speed is
diminished relative to the incoming jet speed, and the jump radius is given by

RjgH 2a2

Q2

(
1 +

2

Bo

)
+

a2

2π2RjH
= 0.01676

[(
Rj

a

)3

Re−1 + 0.1826

]−1

. (2.11)

We emphasize that the curvature force is dynamically significant when it is
comparable to the hydrostatic pressure force, specifically when 2/Bo is appreciable.
Equations (2.10) and (2.11) differ from those of Watson (1964) only through inclusion
of the O(B−1

o ) surface tension correction on the left-hand side. They rest on the
same assumptions concerning the flow profiles, specifically that H/h � 1, the radial
flow speed is constant beyond the jump, and that radial gradients in the hydrostatic
pressure prior to the jump are negligible relative to viscous stresses. The latter
assumption is valid in the parameter regime examined in our experimental study,
which is marked by jumps of small radial extent and relatively viscous fluids. We note
that the inviscid prediction for the jump radius is obtained from (2.10) in the limit of
Re → ∞. We proceed by testing the range of validity and utility of the relations (2.10)
and (2.11) for the jump radius.

3. Experimental study
Glycerol–water solutions were pumped through a flow meter and source nozzle,

then impacted the centre of a circular glass target plate of diameter 36 cm that formed
the base of a reservoir. The fluid then proceeded through the jump, over the edges
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of the reservoir, and into the surrounding tank, from which it was recycled through
the pump. The nozzle height was variable, and the reservoir depth controlled by the
outer wall, which was threaded so that its vertical position could be adjusted by a
twisting motion. The system was levelled to 1 part in 24 000 by adjusting its three
support legs and measuring the deflection from horizontal of the impact plate and
reservoir rim with a Sterret level. The depth H of the reservoir was measured with a
micrometer point gauge accurate to 100 µm, and the radial position of the jump from
radial gradations on the target plate surface. Five source nozzles (with exit radii 0.15,
0.2, 0.25, 0.38 and 0.5 cm) were fashioned from stainless steel pipe. The nozzles were
smoothed and tapered near their exits in order to suppress turbulence and ensure
laminar outflow in the parameter regime of interest (McCarthy & Malloy 1974).

The variable flow pump (Cole Parmer, Model 75225-00) was capable of fluxes
in the range of 0–100 ml s−1 for the fluids examined in our study. The flow rate
was measured with an AW Company Model JFC-01 digital flowmeter, that gave
an accuracy of 0.1% over the range considered. Viscosity measurements accurate
to 0.14% were made with Cannon-Fenske Routine tube viscometers. Fluid density
was measured with an Anton-Parr 35N densitometer accurate to 0.01%. Surface
tension measurements accurate to 0.1 dyn cm−1 were made with a Kruss K10 surface
tensiometer. The glycerol–water solutions examined had viscosities in the range 1–
30 cS, densities 1.0–1.2 g cm−3 and surface tensions between 65 and 70 cS. Outer layer
depths were varied from 2 mm to 1 cm.

The jet speed U and radius a at the point of impact, z = 0, may be related to those
at the source (z = Z), U0 and RN (see figure 3). Application of Bernoulli’s equation
and continuity, Q = πR2

NU0 = πa2U , yields

U

Uo

=

[
1 +

2gZ

U 2
0

+
2σ

ρU 2
0

(
1

RN

− 1

a

)]1/2

,
a

RN

=

[
1 +

2gZ

U 2
0

+
2σ

ρU 2
0

(
1

RN

− 1

a

)]−1/4

.

(3.1)

The jet radii near the point of impact were measured with calipers, and found to
agree with (3.1) to within measurement error.

A preliminary experiment was performed in order to clearly demonstrate the
significance of surface tension on the circular hydraulic jump. Flow conditions were
set to establish a laminar circular jump of radius 3 cm; subsequently, a small volume
(1–2 drops) of surfactant (either a commercial detergent or superwetting agent) was
added to the test fluid. The jump responded to the resulting decrease in surface
tension by expanding smoothly to a new radius that was approximately 20% larger.
The shape of the jump changed substantially, becoming less abrupt once the surfactant
was added. The surfactant thus diminishes the radial curvature force (2.7) through
simultaneously reducing the surface tension σ and the geometric factor (s − �R).
This qualitative experiment makes clear the significance of the previously neglected
curvature force, and motivates the more comprehensive experimental investigation
that follows.

For each of the five nozzles used and each test fluid, the dependence of jump
radius on Q and H was determined. Figure 5 indicates the observed dependence of
the jump radius. In order to facilitate comparison with our theoretical predictions
(2.10) and (2.11), we plot the dependence of their left-hand sides on (Rj/a)3Re−1.
In figure 5(a), the data are plotted with Watson’s (1964) original theoretical curve,
specifically (2.10) and (2.11) without the surface tension corrections (Bo → ∞). The
data are seen to be adequately described by Watson’s (1964) predictions for large
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Figure 5. The observed dependence of the jump radius Rj on the system parameters. (a) The
solid line represents the theoretical prediction of Watson (1964). (b) The solid line represents
the theoretical predictions (2.10) and (2.11). The insets represent the equivalent log-log
representations, and the dotted lines the predictions of inviscid theory. ∗, RN = 0.15 cm,
ν = 21 cS; �, RN = 0.2 cm, ν = 21 cS; +, RN = 0.25 cm, ν = 21 cS; �, RN = 0.38 cm, ν =21 cS; �,
RN =0.5 cm, ν = 21 cS; �, RN = 0.2 cm, ν = 10 cS; �, RN =0.25 cm, ν = 10 cS; ×, RN = 0.38 cm,
ν = 10 cS; �, RN = 0.5 cm, ν = 10 cS; �, RN = 0.5 cm, ν = 1 cS. Characteristic error bars are
shown.

jumps ((Rj/a)3Re−1 > 1), but less so for smaller jumps. The surface tension correction
is included in figure 5(b), and improves the agreement between theory and experiment.
Specifically, the standard error is reduced from 15% to 10% over the entire data set.
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The influence of surface tension is most significant for jumps of small radius and
small height, and serves to decrease the jump radius by as much as 30% for the
smallest jumps examined.

While a wealth of data has been presented in the literature on the radius of the
circular hydraulic jump, it is not generally presented in such a way as to be readily
incorporated into our study. Moreover, many of the experiments were performed on a
flat impact plate with no outer wall; thus the outer depth H was neither controlled nor
reported (Tani 1949; Olson & Turkdogan 1966; Bohr et al. 1993). We note however
that the data of both Watson (1964) and Errico (1986) are similar to ours, yielding
good agreement with Watson’s (1964) theory for large jumps (large (Rj/a)3Re−1),
but overpredicting the jump radii of the smallest jumps by as much as 50%. We
thus expect that their data would be similarly improved by our surface tension
correction.

Craik et al. (1981) examined circular water jumps, and focused on the small jump
regime in order to highlight the shortcomings of Watson’s (1964) theory. Their raw
data were examined, and are also better described by our theoretical curve than that
of Watson (1964); however, their parameter regime was marked by unsteady irregular
flows. This variance from the steady laminar flow assumed in the theory is presumably
responsible for the considerable scatter in their data. All of the data presented in
our experimental study correspond to steady laminar Type I jumps, where Watson’s
(1964) model for the flow is expected to be most relevant.

The principal measurement errors in our experimental study were those in the jet
radius (100 µm), outer fluid depth (100 µm) and jump radius (1 mm). We note that
the outer fluid depth was not strictly constant, but rather varied by approximately
200 µm over its radial extent. Relatively small (approximately 5%) variations in
surface tension were observed to arise from day to day owing to some combination of
evaporation of water from the solution, uptake of atmospheric water, and diffusion
of soluble surfactant from the bulk to the surface. The resulting errors were obviated
by frequent surface tension measurements.

4. Discussion
The dynamic significance of surface tension on the circular hydraulic jump was

clearly demonstrated by the substantial (20%) jump expansion prompted by the
addition of surfactant. However, these experiments were not pursued owing to the
complications that accompany the introduction of surface tension gradients. For
example, one expects Marangoni stresses to influence both the incident jet (Hancock
& Bush 2002) and flow regimes marked by pronounced surface divergence, such as
the Type II jumps (figure 2). The influence of surface tension gradients on the circular
hydraulic jump is left as a subject for future consideration.

While previous experimental studies have indicated the potential significance of
surface tension on circular hydraulic jumps of limited radial extent, its influence had
not previously been characterized. We have deduced in (2.7) a new expression for the
radial curvature force per unit length along a circular hydraulic jump, and in (2.10)
and (2.11) the associated correction required to the theoretical expression of Watson
(1964) for the jump radius. Our study demonstrates that surface tension becomes
dynamically significant when the radial curvature force becomes comparable with
the hydrostatic pressure forces, that is, when 2/Bo becomes appreciable. While the
influence of surface tension is generally weak in terrestrial experiments, it becomes
appreciable for jumps of small radius and height. Moreover, its influence will be
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heightened dramatically in a microgravity setting, or when internal jumps arise
between immiscible fluids of comparable density.

The surface-tension correction to the predicted jump radius in equations (2.10) and
(2.11) has improved the agreement between experiment and theory, particularly in
the weak-jump regime. The persistent discrepancy between experiment and theory is
presumably due to shortcomings in the approximations inherent in Watson’s (1964)
theoretical description of the flow. One potential source of error is the neglect of the
details of the flow in the vicinity of the jet impact (r < a) (Schlichting 1960), a region
whose influence is expected to be greatest in the small-jump regime examined here.
The trend apparent in figure 5, that the jumps produced by the nozzles with largest
exit radii produce the most satisfactory agreement between theory and experiment,
suggests another potential source of error: the influence of nozzle source conditions
on the impinging jet. While an attempt was made to reduce this influence by
smoothing and tapering the exit nozzle (McCarthy & Malloy 1974), such an influence
cannot be eliminated entirely without meticulous attention to detail in nozzle design
(Bergthorsson et al. (2003)).

Another potential source of discrepancy between theory and experiments is the
dynamic influence of the flow beyond the jump (Craik et al. 1981; Liu & Lienhard
1993; Higuera 1994). Bowles & Smith (1992) point out that the influence of the
curvature force will be partially offset by the dynamic pressure associated with
streamline curvature in the wake of the jump. Specifically, one expects a relatively
low dynamic pressure to arise beyond the jump, and so increase its radius. While we
focused our attention on the laminar Type I regime in order to minimize such an
influence, it may not have been entirely negligible. Finally, in the absence of measured
jump profiles, we applied the surface tension correction (2.8) appropriate for sudden
jumps. For a jump shape corresponding to a quarter-circle with radius �H , the
curvature force should be reduced by a factor of (π/2 − 1) ≈ 0.57; for a semicircular
jump with diameter �H , it should be increased by a factor of π/2. We note that, as
in the experiments with water reported by Craik et al. (1981), the abruptness of the
jump generally increased with increasing outer depth and decreasing jump radius.

The great majority of previous experimental studies were undertaken with water;
consequently, the jumps were relatively unstable. In particular, the small-jump regime
of interest here, where the curvature force is most pronounced, is typically marked by
unsteady irregular water jumps (Craik et al. 1981; Liu & Lienhard 1993). Through
increasing the viscosity of the test fluid, we were able to focus on the parameter regime
characterized by small steady laminar jumps where Watson’s dynamical description
is most likely to be relevant, and where the surface tension correction (2.7) is most
significant. We note that the curvature force (2.7) is still relevant for the case of
unsteady or turbulent jumps (where time-averaged values will apply for unsteady
jumps) and so may be encorporated in a similar fashion.

Finally, while our study indicates that the influence of surface tension on the radius
of the hydraulic jump is generally small in laboratory settings, we demonstrate in a
companion paper (Bush et al. 2003) that it plays a critical role in the jump stability,
specifically in prompting the axisymmetry-breaking instabilities responsible for the
polygonal jumps reported by Ellegaard et al. (1998).
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