

FIG 6

Water Bell and Sheet Instabilities

Jeffrey M. Aristoff, Chad Lieberman, Erica Chan, and John W. M. Bush.

Massachusetts Institute of Technology, Cambridge, MA 02139

We examine several instabilities that may arise when a vertically descending fluid jet impacts a solid surface. Fluid is expelled radially in a thin sheet until either closing into a bell or breaking into droplets via the Rayleigh-Plateau instability¹⁻³. In our study, glycerol-water solutions with viscosities of 1-60 cS were pumped at flow rates of 10-70 cc/s through source nozzles with radii of 1-4 mm. The fluid impacted the center of a circular steel plate with a diameter of 11 mm. An adjustable lip surrounded the plate and controlled the takeoff angle.

In Figure 1, we see the evolution of a water bell generated with a large takeoff angle. The bell's volume decreases with time and thus positive perturbations in pressure are amplified. Clanet⁴ derived a critical angle above which this instability occurs, causing a periodic rupture and regeneration of the bell. In Figure 2, we observe a water bell that oscillates without breaking. Its volume decreases until a critical pressure

FIG 7

is reached at which point the bell expands to compensate accordingly. Figures 3 and 4 indicate the transient behavior brought on by a sudden decrease in flux on a steady water bell. After the bell breaks, a smaller one is formed. As was reported by Hopwood⁵, a water bell may destabilize following a flux decrease and form a momentary cusp. In Figure 5, we see the influence of surfactant on the stability of a fluid sheet. The sheet first expands, and then closes into a bell.

Our investigation revealed that a range of angles exists wherein a conical sheet will possess quasi-steady cusps along its upper edge (Fig. 6). At low viscosity, both cusps and capillary waves are present (Fig. 7). Such flows are generated with steady source conditions.

¹Taylor, G. I. "The dynamics of thin sheets of fluid. I Water bells." *Proc. R. Soc. Lond. A* **253**, 289-295 (1959a).

- ²Taylor, G. I. "The dynamics of thin sheets of fluid. II Waves on fluid sheets." *Proc. R. Soc. Lond. A* 253, 296-312 (1959b).
- ³Taylor, G. I. 1959c. "The dynamics of thin sheets of fluid. III Disintegration of fluid sheets." *Proc. R. Soc. Lond. A* **253**, 313-321 (1959c).
- ⁴Clanet C., "Dynamics and stability of water bells." *J. Fluid Mech.* **430**, 111-147 (2001).
- ⁵Hopwood, F.L., "Water Bells." *Proc. Phys. Soc. B*, **65**, 2 (1952).