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We examine several instabilities that may arise when 

a vertically descending fluid jet impacts a solid surface. Fluid 

is expelled radially in a thin sheet until either closing into a 

bell or breaking into droplets via the Rayleigh-Plateau 

instability
1-3

. In our study, glycerol-water solutions with 

viscosities of 1-60 cS were pumped at flow rates of 10-70 cc/s 

through source nozzles with radii of 1-4 mm. The fluid 

impacted the center of a circular steel plate with a diameter of 

11 mm. An adjustable lip surrounded the plate and controlled 

the takeoff angle. 

In Figure 1, we see the evolution of a water bell 

generated with a large takeoff angle. The bell’s volume 

decreases with time and thus positive perturbations in pressure 

are amplified. Clanet
4
 derived a critical angle above which this 

instability occurs, causing a periodic rupture and regeneration 

of the bell. In Figure 2, we observe a water bell that oscillates 

without breaking. Its volume decreases until a critical pressure 

is reached at which point the bell expands to compensate 

accordingly. Figures 3 and 4 indicate the transient behavior 

brought on by a sudden decrease in flux on a steady water bell. 

After the bell breaks, a smaller one is formed. As was reported 

by Hopwood
5
, a water bell may destabilize following a flux 

decrease and form a momentary cusp. In Figure 5, we see the 

influence of surfactant on the stability of a fluid sheet. The 

sheet first expands, and then closes into a bell. 

Our investigation revealed that a range of angles 

exists wherein a conical sheet will possess quasi-steady cusps 

along its upper edge (Fig. 6). At low viscosity, both cusps and 

capillary waves are present (Fig. 7). Such flows are generated 

with steady source conditions. 
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