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A novel wake structure, observed as penny-shaped air bubbles rise at moderate
Reynolds number through a thin layer of water bound between parallel glass plates
inclined at a shallow angle relative to the horizontal, is reported. The structure of
the wake is revealed through tracking particles suspended in the water. The wake
completely encircles the rising bubble, and is characterized by a reverse surface flow or
‘edge jet’ which transports fluid in a thin boundary layer along the bubble surface from
the tail to the nose at speeds which are typically an order of magnitude larger than the
bubble rise speed. A consistent physical explanation for the wake structure is proposed.
The wake is revealed to be a manifestation of the three-dimensionality of the flow
in the suspending fluid. The bubble surface advances through a rolling motion, thus
generating regions of surface divergence and convergence at, respectively, the leading
and trailing edges of the bubble. A nose-to-tail gradient in surfactant concentration is
thus established, and the associated surface tension gradient drives the edge jet. The
dependence of the wake structure on the suspending fluid is examined experimentally.

Surfactants play an anomalous role in the reported flow, serving to promote rather
than suppress surface motions. The wake structure is an example of a mechanically
forced Marangoni flow, and so represents a mechanical analogue of that accompa-
nying thermocapillary drop motion in microgravity. A theoretical model is developed
which reproduces the salient features of the flow, and on the basis of which an esti-
mate is made of the mechanically induced surface tension gradient along the bubble
surface.

1. Introduction
Surface-active agents, or surfactants, are molecules in solution that find it ener-

getically favourable to reside on liquid–gas or liquid–liquid interfaces. Once in place
on the surface, they serve to decrease the interfacial tension; consequently, surface
motions which generate gradients in surfactant material are resisted by an effective
surface elasticity. The ability of surfactants to influence the dynamics of drops and
bubbles has been known for some time (e.g. Levich 1962; Harper 1972). For both
high- and low-Reynolds-number bubble motions, advection causes surfactant to accu-
mulate at the rear stagnation point of the bubble, giving rise to a surfactant gradient
from nose to tail. The associated surface stress opposes the surface motion, thus
immobilizing or ‘rigidifying’ the bubble surface and giving rise to steady rise speeds
which are significantly less than those predicted theoretically. When the surfactant
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gradients are established in this manner, they must act to resist the surface flow
and cannot act to reverse its direction. In this paper, we present an example where
surfactant gradients established on the bubble surface do not play their usual role
in resisting the surface flow, but, conversely, drive vigorous motions in a direction
opposed to the free stream.

The problem of bubble motion in a Hele-Shaw cell, a thin gap in which fluid
motions are viscously dominated, has been considered in some detail (e.g. Maxworthy
1986), and the influence of surfactants on the bubble shapes and steady rise speeds has
been examined by Park, Maruvada & Yoon (1994). The influence of thermally induced
surface tension gradients on a drop in a Hele-Shaw cell has recently been considered
by Nadim, Borhan & Haj-Hariri (1996) and Boos & Thess (1997). The problem of
moderate-Reynolds-number bubble motion in a thin gap has received relatively little
attention. Siekmann, Eck & Johann (1974) performed an experimental study that
spanned a broad range of Reynolds numbers and observed a myriad of bubble forms,
but were concerned exclusively with the shapes and rise speeds of the bubbles and so
did not measure the form of the flow in the suspending fluid. In a recent experimental
study, Bush & Eames (1998) examined the fluid displacement associated with high-
Reynolds-number bubble motion in a thin gap by tracking neutrally buoyant particles
suspended in the fluid. The same experimental technique has been employed here in
order to examine this moderate-Reynolds-number phenomenon.

Consider a penny-shaped air bubble of characteristic radius a rising at a speed
U through water bound in a thin gap of thickness d with a characteristic Reynolds
number Re = Ua/ν. When the gap is inclined at a very shallow angle relative to
the horizontal so that 1 < Re(d/a)2 < 50 and d/a � 1, a peculiar wake structure
is observed to accompany the bubble. The wake structure, henceforth referred to as
‘anomalous’, is characterized by two salient features (refer to figure 1). First, the wake
completely encircles the bubble, so that the fluid within the bounding wake streamline,
or separatrix, is transported with the bubble. The leading edge of the encircling wake
will henceforth be referred to as an ‘upstream disturbance’. Second, there is an intense
boundary layer flow adjoining the bubble surface, henceforth referred to as the ‘edge
jet’, which transports fluid from the tail of the bubble to the nose at speeds exceeding
the bubble rise speed.

In §2, we present the results of an experimental study in which we detail the
variation of the wake structure with increasing Reynolds number and demonstrate
the sensitivity of the wake structure to the properties of the suspending fluid. In §3, we
propose a physical explanation for the observed flow structure which is consistent with
the experimental observations. In §4, we present the equations governing the dynamics
of the suspending fluid and the bubble surface. In §5, we present a theoretical model of
Marangoni bubble motion in a Hele-Shaw cell which reproduces the salient features
of the observed flow. The similarities between the reported flow and those arising in
a number of thermocapillary drop motions are discussed in §6.

2. Experimental observations
The anomalous flow structure was first observed in a simple device consisting of

a thin (∼ 2 mm) gap of water bound between two rectangular glass plates glued
together at their edges. Provided a volume of air is contained within the gap, and
Pearlescence (or Kalliroscope) is suspended in the water, one may readily observe
a variety of bubble shapes and flow forms characteristic of moderate- and high-
Reynolds-number bubble motion in two dimensions. Moreover, when the gap is
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Figure 1. The peculiar wake structure observed at moderate Reynolds number, as viewed in the
frame of reference translating uniformly with the bubble. Note the presence of four stagnation
points in the flow. The wake entirely encircles the bubble, and is characterized by an intense ‘edge
jet’ which transports fluid from the tail to the nose and may lead to a ‘reverse separation’ on the
bubble’s leading edge.

inclined at very shallow angles (1◦–2◦) relative to the horizontal, one may observe
the anomalous wake structure to be considered here. A number of such thin-gap
devices (with either glass or Plexiglas bounding plates) were used to make qualitative
observations; however, quantitative measurements required a series of experiments in
a more elaborate apparatus.

Two 12 mm thick glass plates, of dimension 46 cm by 86 cm, were clamped together
and separated by a margin of rubber spacer of thickness 2.5 mm. The system was
mounted on a frame, and inclined at a shallow angle α relative to the horizontal. The
thin gap was filled with the desired fluid, either an aqueous solution or a silicone
oil, along with white plyolite particles (of diameter 250 µm) which were clearly
visible against the lower plate of black glass. Air bubbles were introduced into the
suspending fluid through a syringe attached to a one-way valve inlet at the base of
the gap. The form of the flow induced in the suspending fluid could be deduced by
tracking the plyolite particles with the DigImage system (Dalziel 1992). On a number
of occasions, the motion of the bubble surface was visualized by injecting a fine
suspension of lycopodium powder with the bubble.

Figure 2 illustrates the particle paths observed around an air bubble rising through
saltwater, and indicates the two salient flow features highlighted in figure 1. Particles
are transported in the edge jet from the tail to the nose along the bubble surface,
ejected at the bubble nose, then swept back towards its rear, where they are re-
entrained into the edge jet. Particles are recycled within the separatrix which defines
the boundary of the wake, and so are transported bodily with the bubble. The
velocities of the particles in the edge jet are typically an order of magnitude larger
than the rise speed of the bubble. The thickness of the edge jet is comparable to the
gap thickness, and so is small relative to the bubble radius.

Figure 3 illustrates qualitatively the variation of the wake structure with increasing
Re(d/a)2, an evolution which is detailed by the data presented in figure 4. The
boundaries of the wake are defined by stagnation points at distances δ1 and δ2,
respectively up- and downstream of the bubble. For Re(d/a)2 < 5, the wake encircles
the bubble, and is roughly circular. As Re(d/a)2 increases beyond 20, the wake
becomes progressively less pronounced upstream of the bubble; moreover, it becomes
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Figure 2. Particle paths observed around an oblate air bubble of half-width 3.2 cm which rose
uniformly (with gap Reynolds number of 5) through a 2.5 mm gap of 3.2% saltwater solution bound
between glass plates inclined at 1.3◦ relative to the horizontal. The particle tracking was done in the
frame of reference of the bubble, so that particles upstream of (above) the bubble appear to stream
towards the bubble. Note the region of intense reverse flow (the edge jet) adjoining the bubble
surface which transports particles from the tail to the nose of the bubble.

oval, elongated in the direction of motion. The wake centre no longer coincides with
the bubble centre, but is shifted slightly downstream. This offset of the wake and
bubble centres and the wake elongation become more pronounced as the Reynolds
number increases, until finally the leading edge of the oval wake coincides with the
leading edge of the bubble. For Re(d/a)2 > 60, the wake is entirely confined to the
rear region of the bubble. Throughout this progression, the bubbles assume oblate
elliptical shapes whose height 2b to width 2a ratio decreases from 1 to 0.6.

In a number of experiments, a small amount of lycopodium powder was injected
with the air bubble. The powder quickly settled onto the bubble surface, and so
made it possible to observe the motions at the air–water boundary. The form of the
motion on the bubble surface is illustrated schematically in figure 5. Particles starting
at the front edge of the bubble are rolled onto the bounding walls where they remain
until the rear edge of the bubble reaches them. They are then rolled onto the rear
edge of the bubble, and swept at high speed along the side edge until they reach
the front of the bubble, where they are again rolled onto the surface. Note that the
lycopodium particles never leave the bubble surface, and so behave like surfactants.
Moreover, particles initially on the channel walls which are overrun by the bubble
become trapped on the bubble surface and are subsequently transported with the
bubble.

If the bubble surface behaves like a material surface, the areas being rolled onto
and off the channel walls at, respectively, the leading and trailing edges of the bubble
would be equal to the areal flux along the edge of the bubble:

2Ua ∼ πUjd (2.1)

where Uj is the characteristic edge jet speed, and we assume that the bubble edges are
semicircular in cross-section. Figure 6 indicates that the observed edge-jet speeds are
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Figure 3. A schematic illustration indicating the effect of increasing Reynolds number on the
anomalous wake structure. At the lowest Reynolds numbers observed (a), the wake is to a good
approximation fore-aft symmetric, and entirely encircles the bubble. As Re increases, the fore-aft
symmetry is broken (b), and the wake is swept to the rear of the bubble, eventually taking the form
typically expected at high Re (c).
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Figure 4. The observed dependence of wake shape on gap Reynolds number, Re(d/a)2, for air
bubbles rising through a 3.2% saltwater solution bound in a 2.5 mm gap inclined at 2◦ relative to
the horizontal. 2 and × denote the non-dimensional wake thicknesses at the leading and trailing
edges of the bubble, respectively, δ1/(ab)

1/2 and δ2/(ab)
1/2, where a and b denote the half-width and

half-height of the bubble.

roughly consistent with (2.1) and so with the physical picture of the bubble surface
behaving as a material surface: fluid elements initially on the bubble surface remain
there indefinitely.

Figure 7 summarizes the observations of the flows generated by bubble or rigid
particle motion in a thin gap; specifically, it indicates the conditions under which
upstream disturbances and edge jets were observed. The upstream disturbance accom-
panies bubbles rising through aqueous solutions as well as translating rigid particles
(in particular, a penny) sliding in contact with the channel walls. The upstream
disturbance was not evident in the silicone oils when the gap width was 2.5 mm.
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Figure 5. A schematic illustration of the surface velocity field observed on an air bubble rising
through a thin gap of water, revealed using a fine lycopodium powder which settled on the bubble
surface. The bubble surface moves through a rolling motion. The distance between the plates is
greatly exaggerated for the sake of clarity. The dashed line in the plan view corresponds to the
air–water–glass contact line. Note the stagnation points at the nose (N) and tail (T) of the bubble.
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Figure 6. The observed dependence of the maximum observed edge-jet speed on the bubble size
for bubbles rising along a 1.3◦ incline through a 3.2% saltwater solution. A representative error bar
is shown.

Changing the bounding plates from glass to Plexiglas had no appreciable impact on
the form of the flow. The anomalous wake structure was most pronounced when the
suspending fluid was saltwater, and the intensity of the edge jet appeared to increase
progressively with salt concentration over the range of concentrations considered.
The edge jet vanished in all of the silicone oils considered. When significant amounts
of either soap or wetting agent were added to the aqueous solution, the intensity of
the edge jet was diminished. When concentrated wetting agent, Ilfotol, was used as
the suspending fluid, the edge jet was completely suppressed.

Our experimental study was limited in that we were not able to readily resolve the
details of the flow in the immediate vicinity of the bounding plates. Nonetheless, it
was possible to observe whether or not the suspending fluid was wetting the bounding
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Figure 7. Table indicating when upstream disturbances and edge jets were observed in a number
of cases of bubble and particle motion in a thin gap. Si denotes silicone oil (a variety of which
were used, with viscosities ranging between 1 and 1000 cS). Ilfotol is a wetting agent. Changing the
bounding material from glass to Plexiglas did not have a significant impact on the wake structure.
The anomalous wake structure was most pronounced when the suspending fluid was saltwater.

channel: the channel walls were partially wet by the aqueous solutions considered, and
fully wet by the silicone oils. It was also impossible to identify the various surfactants
in our system, or to measure their concentrations. Finally, we were unable to see what
form the flow would take under ‘hyperclean’ conditions, as might arise if the bubble
were rising through triply distilled water bound between specially treated glass.

3. Physical explanation
Figure 8 is a sketch which describes qualitatively the fluid motion in a plane

perpendicular to the bounding plates and coincident with the centreline of the bubble.
It illustrates the flow accompanying bubble motion through water, which partially
wets the glass, so that a corner exists. In accordance with the observations reported
in figure 5, the bubble surface advances through a rolling motion. The fluid adjoining
the channel walls is dragged into the leading edge of the bubble, and so must be either
swept around the edge of the bubble or ejected radially. Similarly, at the trailing edge
of the bubble, fluid in the viscous boundary layer is drawn away from the corner by
the moving wall, and so must be replaced by fluid drawn in from the interior. The
flow structure in the neighbourhood of the corners may thus resemble that arising
when a meniscus between two viscous fluids advances along the length of a circular
capillary tube (Dussan V. 1977); however, the three-dimensionality of the flow and
the dynamic influence of fluid inertia introduce added complexity.

The presence of an upstream disturbance may thus be simply understood through
consideration of the interaction between the viscous boundary layers adjoining the
channel walls and the advancing bubble. The fact that it also accompanies a sliding
penny indicates that it is a generic feature of particle motion in a thin gap. The
extent of the upstream disturbance will generally depend on the wetting properties of
the fluid, and so on both the capillary number Ca = ρνU/σ based on the interfacial
tension σ, and the surfactant distribution (Ratulowski & Chang 1990). The upstream
disturbance is most pronounced when the suspending fluid is either non- or partially
wetting, in which case well-defined corners exist along the bubble margins and most
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Figure 8. A schematic illustration of the three-dimensional flow induced by an air bubble rising
through an aqueous solution bound between two plates, as viewed in the bubble frame of reference
in a plane coincident with the bubble’s centreline. The distance between the plates is greatly
exaggerated for clarity. The rolling bubble surface leads to an excess of surfactant at the trailing
edge, and a deficit at the leading edge. The associated azimuthal surface tension gradient drives the
edge jet illustrated in figure 1.

efficiently displace fluid from the channel walls. When the suspending fluid was
silicone oil or Ilfotol, no upstream disturbance was observed in our experiments
because the suspending fluid was not disturbed sufficiently by the advancing bubble.
It is worth noting that upstream disturbances have been observed to exist in silicone
oils in thinner gaps (T. Maxworthy, personal communication), which again suggests
that the upstream disturbance is a generic feature of bubble motion in a thin
gap.

In order to account for the vigorous edge-jet structure, we must consider the
influence of the redistribution of surfactant material by the surface velocity field
associated with the rolling bubble surface. While the surfactant concentrations were
not controlled or measured in our experiments, surfactants are generally present in
all but the cleanest aqueous solutions. At the leading edge of the bubble (consider,
for example, point N in figure 5), the emplacement of surface material onto the
channel walls leads to a region of surface divergence, where the concentration of
surfactant material must be decreased. At the trailing edge (for example, point T in
figure 5), surface material is rolled off the glass plates, giving rise to an area of surface
convergence and a local maximum in surfactant concentration on the trailing edge
of the bubble. Surfactants act to decrease the local surface tension (Levich 1962);
consequently, the surfactant concentration gradient along the edge of the bubble leads
to an azimuthal surface tension gradient, or surface traction, which drives the edge
jet.

We emphasize that the edge jet exists only by virtue of the three-dimensionality
of the surface motion. If the flow around the bubble were purely two-dimensional,
then (as in the analogous three-dimensional problem of flow past a spherical bubble)
the advective redistribution of surfactant could only act to resist the surface flow
and so to rigidify the bubble. The reversed surface flow observed in our thin-gap
geometry relies explicitly on the generation of areas of intense surface divergence and
convergence by the interaction of the bubble surface with the channel walls.

The physical picture presented here may be complicated by a number of effects
neglected in our description. In particular, the channel walls may be dirty, and so
may serve as a secondary source of surfactant material for the trailing edge. Such
an effect would serve to amplify the tail-to-nose gradient in surface tension, and
so too the associated edge jet. However, the radius of the wake separatrix did not
change appreciably as the bubble advanced along the channel; moreover, the form
of the flow accompanying successive bubbles released in turn (and so rising between
progressively cleaner walls) did not change. These observations both indicate that the
effect of surfactant material acquired from the channel walls was not dominant.
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4. Governing equations
Consider a fluid of uniform density ρ and kinematic viscosity ν confined within

a thin channel of thickness d. The bounding plates of the channel are inclined at
a shallow angle α relative to the horizontal. We introduce a Cartesian coordinate
system (x, y, z) such that x and y vary along, respectively, the width and the length of
the channel, and z = 0 and z = d define the upper and lower channel boundaries. A
bubble of volume V = πa2d and zero density is injected at the bottom of the channel
(z = 0), and subsequently rises in the y-direction under the influence of gravity g sinα.
The characteristic bubble size a is large relative to the gap width, a/d� 1.

Non-dimensionalizing the Navier–Stokes equations on the basis of a convective
timescale a/U, velocity scale U, horizontal lengthscale a, cross-gap lengthscale d, and
dynamic pressure scale P0 yields the equations governing the motion in the suspending
fluid:

Du

Dt
= − P0

ρU2
∇pd +

ν

Ua

a2

d2

(
∂2u

∂z2
+
d2

a2

(
∂2u

∂x2
+
∂2u

∂y2

))
, ∇ · u = 0, (4.1)

where pd = (p − ρgz sinθ)/P0 is the non-dimensional dynamic pressure. When the
gap is thin, (d/a)2 � 1, the relative magnitude of the inertial and viscous forces is
given by the gap Reynolds number, Re(d/a)2. When Re(d/a)2 � 1, the inertial forces
may be neglected and the flow is governed by Stokes equations. When Re(d/a)2 � 1,
viscous effects are confined to thin boundary layers adjoining the channel walls and
bubble surface. The anomalous wake structure was observed for 1 < Re(d/a)2 < 50;
consequently, both inertial and viscous forces will be significant (Riegels 1938).

The stress balance at the bubble surface assumes the form

(n · τ − n · τ̂ ) = σn∇s · n− ∇sσ
where n is the unit vector normal to the bubble surface, and ∇s = (I − nn) · ∇ is
the surface gradient operator. The external and internal stress tensors are defined,
respectively, through

τ = −(pd + ρgx) I + 2ρν E , τ̂ = −p̂I .
where E is the rate-of-strain tensor. The bubble shape is described by a balance
between the normal stress jump across the bubble surface and the curvature force
associated with the surface tension:

n · (n · τ − n · τ̂ ) = σ∇s · n. (4.2)

The tangential stress balance takes the explicit form

t · (n · τ − n · τ̂ ) = −t · ∇sσ (4.3)

where t is the unit vector tangent to the bubble surface, and t·∇sσ represents tangential
gradients in surface tension associated with gradients in surfactant concentration.

The surfactant concentration Γ on a bubble surface generally evolves according to

∂Γ

∂t
+ ∇s · (Γus) + Γ (∇s · n) (u · n) = J(Γ ,Cs) + Ds∇2

sΓ (4.4)

where us = (I − nn) · u is the surface velocity field, and Ds the surface diffusivity
of surfactant material (e.g. Stone 1990). J(Γ ,Cs) represents a surfactant source term
associated with adsorption onto or desorption from the bubble surface whose magni-
tude depends on the concentration of surfactant in the bulk, Cs, as well as the local
surface concentration. Since the bubble is not changing shape to leading order, the
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third term, which represents the change in surfactant concentration due to bubble
expansion, may be neglected. The effects of surface diffusivity are typically negligible.
Moreover, if we assume that the surfactant is insoluble, we can neglect the transport
of surfactant to and from the bulk so that J = 0. Thus (4.4) indicates that a steady-
state surfactant concentration may be maintained by a surface velocity field which
satisfies

Γ (∇s · us) + us · ∇sΓ = 0. (4.5)

Inhomogeneities in surfactant concentration may thus be generated by regions of
non-zero surface divergence on the bubble surface, such as those at the leading and
trailing edges of the rolling bubble.

5. Theoretical model
A complete theoretical treatment of the problem would require coupling the surfac-

tant transport equation to the dynamics of the external flow. In particular, it would
be necessary to deduce a surface tension distribution which is consistent with both
the external flow and the surfactant distribution on the bubble surface. While it is
possible to develop a simple model of surfactant transport along the bubble surface
on the basis of (4.5), it is not possible to link the surfactant distribution to the surface
tension distribution without knowledge of the functional form of σ(Γ ). In the absence
of this functional form, we consider the relatively simple kinematic problem of the
motion of a bubble with a prescribed non-uniform surface tension distribution.

We have seen that the three-dimensionality of the surface flow plays a vital role
in driving the anomalous wake structure; in particular, it is responsible for the
redistribution of surfactants and so for establishing the tail-to-nose surface tension
gradient. In developing theoretical models, we assume that the net effect of the
three-dimensionality of the flow is to generate a two-dimensional nose-to-tail surface
tension gradient along the bubble surface, and that the resulting flow is confined
to lie in horizontal planes. We note that this assumption of two-dimensionality in
the suspending fluid is expected to break down in the vicinity of the bubble, where
three-dimensional corner flows (of the form responsible for the upstream disturbance
arising in the absence of surfactants) are expected to arise. Finally, we have seen that
the anomalous wake structure arises in the moderate-Reynolds-number regime, which
does not lend itself to straightforward analysis. In Appendices A and B, we consider
two highly idealized models of Marangoni bubble motion, respectively high- and
low-Re flow past a two-dimensional circular bubble with an applied surface stress. In
what follows, we develop a model which incorporates the relevant bounding geometry
and allows a three-dimensional flow structure. We assume for the sake of simplicity
that the gap Reynolds number is small, in which case (4.1) indicates that the fluid
motion is governed by the Stokes equations, so that the thin gap corresponds to a
Hele-Shaw cell (Riegels 1938).

We consider the uniform translation of a buoyant bubble corresponding to a flat
circular cylinder of radius a and thickness d with a prescribed non-uniform surface
tension. We adopt cylindrical polar coordinates, (r, θ, z), where r = 0 defines the
bubble’s centre, and the bounding walls again correspond to z = 0 and = d. We
assume that the surface tension distribution takes the form

σ(θ) = σ0 + aγ cosθ, (5.1)

where θ = 0 corresponds to the nose of the bubble, and γ denotes the magnitude of
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the gradient in surface tension, or equivalently the applied surface stress. While other
possibilities exist for σ(θ), the chosen cosinusoidal dependence is consistent with the
proposed physical picture, since one expects the surface divergence associated with
the rolling bubble to vary as ŷ · r̂ along the bubble surface.

The boundary conditions assume the explicit form

ur = 0 at r = a (5.2)

u→ −Uŷ as r →∞, (5.3)

and the tangential stress balance (4.3) takes the form

µ
∂

∂r

(uθ
r

)
= γ sinθ. (5.4)

In treating problems involving drop and bubble motion in a Hele-Shaw cell, it is
common to assume that the velocity field has a separable form:

u(r, θ, z) = v(r, θ)
6(zd− z2)

d2
, (5.5)

where v(r, θ) represents a depth-averaged velocity within the gap, and the cross-gap
z-dependence corresponds to that of Poiseuille flow. Substituting (5.5) into Stokes
equations yields Brinkmann’s equations which describe the two-dimensional velocity
field

∇p = µ

(
∇2 − k2

a2

)
v, ∇ · v = 0, (5.6)

where k2 = 12a2/d2 indicates the aspect ratio of the bubble, and ∇ now corresponds
to the horizontal gradient operator. The Darcy flow equation, which is typically used
to describe bubble motion in a Hele-Shaw cell, is recovered from (5.6) by omitting
the ∇2v term; however, this term must be retained here in order to account for the
influence of the applied surface stress (Boos & Thess 1997).

We must solve (5.6) for the depth-averaged velocity v subject to boundary conditions
(5.2)–(5.4). We express the velocity field in terms of a streamfunction Ψ :

v = ∇ ∧ (Ψ ẑ) =

(
1

r

∂Ψ

∂θ
,−∂Ψ

∂r

)
. (5.7)

According to (5.6), Ψ must satisfy

∇2

(
∇2 − k2

a2

)
Ψ = 0. (5.8)

Since Brinkmann’s equations are linear, we may deduce the desired solution by
decomposing the problem into two simpler component parts. Specifically, we solve
for the flow associated with a bubble rising in a thin gap, which satisfies boundary
conditions (5.2)–(5.3) but not (5.4), and superpose the solution for the flow driven by
a surface traction on a stationary bubble. We thus write Ψ = Ψs + Ψm, where Ψs is
the streamfunction associated with the bubble’s uniform translation, and Ψm is the
Marangoni component associated with the applied surface traction.

The solution for the streamfunction Ψs may be deduced by noting that the solution
for Darcy flow around a two-dimensional circle is also a solution of (5.8). Conse-
quently, Ψs simply corresponds to the streamfunction describing inviscid flow past
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a rising circle, or, equivalently, that around a translating dipole of dipole moment
M = Ua2:

Ψs = Ua

(
1

r′
− r′

)
sinθ, (5.9)

where r′ = r/a. This flow makes a contribution −2 (µU/a) sinθ to the tangential stress
at the bubble surface. Consequently, we must seek a solution Ψm corresponding to
the flow around a stationary bubble with a prescribed surface stress

τrθ =

(
γ + 2

µU

a

)
sinθ. (5.10)

The problem of the Marangoni flow induced by a bubble of arbitrary shape and
fixed in a Hele-Shaw cell in the presence of a horizontal temperature gradient has
been treated by Boos & Thess (1997), whose solution for a circular bubble may be
readily adapted to our problem. Solving (5.8) subject to boundary conditions (5.2),
(5.10) and v → 0 as r → ∞ yields a streamfunction which can be expressed in terms
of the modified Bessel functions of the first and second kind, In and Kn, through

Ψm = Ua (T + 2) sinθ
I2(k)K1(k)

k2K1(k) + 2kI2(k)K0(k)

(
K1(kr

′)

K1(k)
− 1

r′

)
, (5.11)

where T prescribes the relative magnitudes of the applied surface stress and the
characteristic viscous stress in the problem,

T =
γ

µU/a
=

surface stress

viscous stress
, (5.12)

and so corresponds to the inverse of a dynamic capillary number. In the limit of a
very flat bubble, k →∞, (5.11) reduces to the form

Ψm = Ua (T + 2)
1

k2

(
1

r′
− exp(k(1− r′))

)
sinθ. (5.13)

The full solution for the streamfunction Ψ = Ψs + Ψm is deduced by superposing
(5.9) and (5.13). The associated velocity field, calculated from (5.7), is given by

vr

Ucosθ
= −1 +

a2

r2
+
T + 2

k2

a2

r2
− T + 2

k2

1

r′
exp(k(1− r′)), (5.14)

vθ

Usinθ
= 1︸︷︷︸ +

a2

r2︸︷︷︸ +
T + 2

k2

a2

r2︸ ︷︷ ︸ − T + 2

k2
k exp(k(1− r′))︸ ︷︷ ︸ . (5.15)

free dipole anomalous boundary
stream dipole layer

The flow is characterized by two distinct regions: a boundary layer adjoining the
bubble surface and a potential flow exterior. The boundary layer is required in order
to satisfy the tangential stress condition at the bubble surface, and has a thickness
of O(a/k) comparable to the gap width. The azimuthal boundary-layer velocity is
large, O(k), relative to the translation speed, and the associated boundary-layer flux,
obtained by integrating the final term in (5.15) from r = a to ∞, is given by

Fθ(θ) = −U a2 T + 2

k2
sinθ. (5.16)
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In our problem, the surface tension is highest at the leading edge (T > 0); conse-
quently, the boundary-layer flux is always towards the nose of the bubble, and so
opposes the free stream.

The surface velocity field takes the form

vθ(a, θ) =

(
2− (T + 2)

k − 1

k2

)
sinθ. (5.17)

The applied surface stress clearly serves to reduce the surface velocity. Moreover, in
the large-k limit under consideration, the surface velocity will reverse when T > 2k:
the thinner the gap, the greater the surface stress required to reverse the surface flow.
Surface flow reversal thus requires that, in dimensional terms,

γ >
√

12
µU

d
, (5.18)

so that the applied surface stress exceeds the viscous stress resisting flow in the thin
gap.

For T < 2k, the flow past the bubble is weakly disturbed by the applied surface
stress. No surface velocity reversal occurs, and no bounding streamline exists. For
T > 2k, however, surface reversal occurs and (5.14) indicates that the radial velocity
vanishes not only on the bubble surface, r = a, but also on a separatrix of radius

R = a

(
1 +

T + 2

k2

)1/2

. (5.19)

The flow outside the boundary layer corresponds to the potential flow associated
with a dipole with moment of magnitude M = UR2 translating with speed U. The
anomalous dipole moment Ua2(T + 2)/k2 = U(R2 − a2) identified in (5.14)–(5.15) is
supported by the boundary-layer transport (5.16) associated with the applied surface
stress. Increasing the aspect ratio k of the bubble serves to reduce the radius of
the encircling wake; conversely, increasing T serves to increase the boundary-layer
transport, and so too the anomalous dipole moment of the bubble.

Figure 9 illustrates the fluid streamlines for the case T > 2k, and clearly illustrates
the presence of an encircling wake and an intense boundary layer flow, or ‘edge
jet’ adjoining the bubble surface. This theoretically predicted flow bears a striking
resemblance to that observed in the laboratory and illustrated in figures 1 and 2.

On the basis of this model, we may deduce the rise speed of a bubble through
an inclined Hele-Shaw cell in the presence of an applied surface stress. The local
dissipation rate per unit area for Poiseuille flow is

Φ =
12µ(v2

r + v2
θ)

d
. (5.20)

Consequently, the total dissipation rate ΦT may be obtained by substituting the
velocity field (5.14)–(5.15) (less the free stream) into (5.20), and integrating over the
entirety of the suspending fluid:

ΦT = 2

∫ π

0

∫ ∞
a

Φr dr dθ. (5.21)

It can be shown via (5.14)–(5.15) that the viscous dissipation associated with the
boundary-layer flow is small, O(k−3), relative to that associated with the potential
flow when R > a. To leading order, the total dissipation rate is thus that associated
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a

R

Figure 9. The theoretically predicted streamlines, in the bubble frame of reference, indicating the
flow around a bubble rising in a Hele-Shaw cell subject to a surface traction, with k = 10, T = 200.
Note the separatrix of radius R = 1.74a, and the intense boundary-layer motions adjoining the
bubble surface and characterized by a reversed surface flow.

with the dipolar potential flow, which is given by

ΦT = 12πµU2R2 1

d
, (5.22)

and so is identical to that associated with a circular bubble of radius R translating at
speed U. Equating the total viscous dissipation in the system with the rate of work
done by buoyancy,

12πµU2R2 1

d
= πa2dUρg sinα, (5.23)

yields a steady rise speed

U = U0

a2

R2
, where U0 =

g d2

12 ν
sinα (5.24)

is the rise speed of a bubble in a Hele-Shaw cell deduced by neglecting the tangential
stress condition on the bubble surface (Maxworthy 1986). The effect of the surface
forcing enters uniquely through the dependence on the radius of the encircling wake.
As the applied surface stress increases, so too does the anomalous dipole moment,
and the viscous dissipation in the system. Consequently, as the radius of the encircling
wake increases, the bubble rise speed decreases.

Finally, when T = 0, (5.24) and (5.19) yield the rise speed of a flat (k � 1) circular
bubble in a Hele-Shaw cell in the absence of an applied surface stress:

U = U0

(
1− 2

k2

)
. (5.25)
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Nadim et al. (1996) computed the leading order, O(k−1), correction to the rise speed
of a circular drop in a Hele-Shaw cell required by application of the tangential stress
boundary conditions at the drop surface, and found that this correction vanishes
in the limit of zero drop viscosity. Consequently, (5.25) represents the leading-order
correction to the rise speed of a flat circular bubble in a Hele-Shaw cell associated with
application of the zero tangential stress boundary condition at the bubble surface.

6. Discussion
Our theoretical model of Marangoni bubble motion in a Hele-Shaw cell predicts

a flow whose form is strikingly similar to that observed in the laboratory. While the
Hele-Shaw description is not directly relevant to the observed moderate-Reynolds-
number flow, it is interesting to see what inferences can be made from the model
concerning the magnitude of the surface tension gradient generated on the bubble
surface in the laboratory.

In our experimental study, at the lowest observed gap Reynolds number, Re(d/a)2 ∼
1, the wake was circular, with a radius R/a ∼ 1.3. The bubble aspect ratio was typically

k =
√

12 a/d ∼ 50, and the rise speed U ∼ 0.5 cm s−1. According to our result (5.19)
for the radius of the separatrix, this implies a nose-to-tail change in surface tension
in our experiments of order

∆σ

σ
∼ k2

(
R2

a2
− 1

)
µU

1

σ
∼ 20% , (6.1)

which is a change characteristic of those induced by surfactants in air–water systems.
Substituting the bubble rise speed (5.24) into the criterion (5.18) for surface flow
reversal indicates that an encircling wake will exist only when

γ >
2

k
ρga sinα, (6.2)

and so is dependent on the gravitational pressure change across the bubble being
sufficiently small. Indeed, we were able to observe this anomalous wake structure in
the laboratory only because the tilted channel represents an experimental analogue
of a reduced-gravity environment (Eck & Siekmann 1978).

Surface tension gradients associated with the mechanical redistribution of surfactant
material are important in a number of problems, for example in the forced wetting of
fibres (Quéré, de Ryck & Ramdane 1997) and in the motion of gas bubbles in capillary
tubes (Ratulowski & Chang 1990). In our experiments, the gradient in surface tension
at the bubble surface is generated mechanically by the surface motions associated
with the bubble advancing in the thin-gap geometry. There are also a number of
physical situations where analogous (nose-to-tail) surface tension gradients may be
produced by an external forcing, in particular by a gradient in either temperature or
surfactant concentration in the suspending fluid. Since surface tension decreases with
both temperature and surfactant concentration, nose-to-tail surface tension gradients
will accompany bubbles rising along an adverse temperature or surfactant gradient.

Young, Goldstein & Block (1959) examined low-Re bubbles rising in a temperature
gradient and predicted that at a critical temperature gradient, the buoyancy-driven
motion will halt. Their accompanying experimental study verified this prediction,
and demonstrated that for temperature gradients in excess of a critical value, the
bubbles migrate downwards towards the heat source. While the possibility of an
encircling wake or separatrix accompanying thermocapillary bubble motion was not
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identified by Young et al. (1959), it has been clearly illustrated by Merrit, Morton
& Subramanian (1993). Finally, Rednikov, Ryazantsev & Velarde (1994) considered
the steady low-Re translation of a droplet through a surfactant-rich suspending
fluid, and examined the effects of a chemical reaction on the drop surface which
decreases the local surfactant concentration. A reversed surface flow and heightened
drag associated with a fore-aft-symmetric recirculating wake were predicted to exist
in certain parameter regimes. It is worth noting that much of the analysis developed
for describing thermocapillary drop motion in microgravity may be readily applied
in describing various aspects of the flow reported here.

Stebe, Lin & Maldarelli (1990) considered the motion of air slugs along a cylindrical
capillary tube, and demonstrated that the ability of surfactants to generate surface
stresses and so to resist surface flow vanishes when the concentration of surfactant
in the suspending fluid is sufficiently high. In this case, the diffusion of the surfactant
material from the suspending fluid can occur sufficiently rapidly to suppress surface
gradients in surfactant concentration and so act to remobilize the surface. This
physical effect accounts for our observation that the addition of soap or surfactant
to the suspending fluid may serve to reduce the vigour of the reversed flow. When
the suspending fluid is concentrated surfactant, it is impossible to establish surface
gradients in surfactant concentration, and the edge jet is completely suppressed.

The edge jet was also observed to vanish when the suspending fluid was silicone
oil since surfactants are generally inactive in silicone–air systems (Park et al. 1994).
Finally, the anomalous wake structure (specifically, the edge jet) was most pronounced
when the suspending fluid was saltwater. This observation is in accordance with those
of Scott (1975), who demonstrated that small air bubbles are less likely to coalesce
in saltwater than in pure water, and ascribed this effect to the increased elasticity
imparted to the bubble surfaces by the heightened influence of surfactants in the
saltwater solutions.

7. Conclusions
We have reported a novel flow structure observed to accompany bubbles rising

through a thin gap of liquid, which represents an example of a mechanically forced
Marangoni flow. The flow is characterized by an intense reversed surface flow and an
encircling wake defined by a bounding streamline. Details of the flow structure, and
the form of its evolution with increasing Reynolds number have been outlined through
a series of experiments. The vigour of the anomalous wake structure was observed
to depend critically on the suspending fluid, with the edge jet being entirely absent
in silicone oil and Ilfotol, present in all aqueous solutions, and most pronounced in
saltwater solutions. These observations may be accounted for by the relative impact
of surfactants in each case.

The anomalous wake structure may be understood by noting that the surfactants
serve to impart an effective elasticity to the bubble surface. The form of the observed
surface flow may thus be understood by imagining the motion of an elastic balloon
rolling upwards between two plates if one assumes that the balloon surface must
adhere to the bounding plates as it advances. In this case, the surface tension of the
balloon will be large along its leading edge as the balloon material is rolled onto
the bounding plates. Conversely, the trailing edge will go slack due to the material
being rolled off the bounding walls. In reality, the balloon may burst due to the
large tensions generated at its leading edge; however, if it were sufficiently elastic
and its surface sufficiently mobile, one could imagine a surface motion similar to that
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illustrated in figure 5. In particular, one would expect the gradient in surface tension
along the balloon’s edge to draw surface material from the rear to the nose of the
balloon.

Surfactants thus play an anomalous role in the flow reported here. While their
usual role in the dynamics of bubbles is to immobilize surfaces and so to reduce
the magnitude of the surface velocity, they here serve to generate vigorous reversed
flow on the bubble surface. The vertical momentum associated with the reversed
surface motions contributes significantly to the hydrodynamic drag on the bubble.
Moreover, through generating a circular wake with a bounding separatrix, surfactants
significantly alter the transport properties of the rising bubble.

A theoretical model of Marangoni bubble motion in a Hele-Shaw cell was developed
which reproduced the salient features of the observed wake structure. It is worth noting
that the analysis presented in §5, while developed in order to describe the mechanically
forced Marangoni flow reported here, applies equally well in describing Marangoni
bubble motion in a Hele-Shaw cell in the presence of an externally imposed gradient
in either temperature or surfactant.

The author gratefully acknowledges financial support through an NSERC of
Canada Postdoctoral Fellowship. The author thanks Oliver Jensen, John Lister,
Howard Stone and Tony Maxworthy for many valuable discussions and for their
comments on the manuscript, Stuart Dalziel for a number of helpful suggestions
concerning the experiments and for his assistance with the particle-tracking, Ian
Eames, John Harper and Manuel Velarde for a number of useful discussions, and
Paul Linden for generously granting him access to the DAMTP laboratory facilities.

Appendix A. High-Re flow past a circular bubble with an applied surface
stress

We consider the case of high-Re flow past a circular bubble with a prescribed
surface stress of the form (5.1) by adapting Moore’s (1965) analysis of high-Re flow
past a spherical bubble. Our problem differs from that of Moore in that we consider
a two-dimensional geometry, and the flow must satisfy a non-zero tangential stress
condition at the bubble surface associated with the applied stress. We express the
flow as a superposition of inviscid flow past a circle, ū(x), and a perturbation flow
u′(x) required to satisfy the tangential stress boundary condition (5.4) on the bubble
surface:

u(x) = ū(x) + u′(x). (A 1)

We substitute the flow field (A 1) into the Navier–Stokes equations in two-dimensional
polar coordinates in order to obtain the relevant boundary-layer equations. We drop
the primes on the boundary-layer flow components and so obtain

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
= 0, (A 2)
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∂uθ

∂r
+
ūθ
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(A 4)
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where the barred quantities are the solutions for inviscid flow past a circle:

ūr = U

(
a2

r2
− 1

)
cosθ, ūθ = U

(
a2

r2
+ 1

)
sinθ. (A 5)

The boundary-layer variables must satisfy the boundary conditions

ur = 0 on r = a, and ur → 0 as r →∞, (A 6)

uθ = 0 at θ = 0, and uθ → 0 as r →∞, (A 7)

and the tangential stress balance at the bubble surface takes the form

∂uθ

∂r
=

(
4U

a
+

2γ

µ

)
sinθ. (A 8)

We assume that the second term on the right-hand side does not exceed the third, in
which case the boundary-layer variables remain small relative to the barred quantities.
In this case, the analysis of Moore (1965) may be followed.

Since continuity requires that ūθ = O(1) and ūr = O(Re−1/2) in the boundary layer,
equations (A 2)–(A 4) and (A 8) suggest the following scalings for the boundary layer
variables:

uθ = O(Re−1/2), ur = O(Re−1), p = O(Re−1). (A 9)

Consequently, the leading order, O(Re−1/2), terms in (A 4) are

ūr
∂uθ

∂r
+
ūθ

r

∂uθ

∂θ
+
uθ

r

∂ūθ

∂θ
=
∂2uθ

∂r2
. (A 10)

We introduce a non-dimensional azimuthal velocity u = (uθ/U) Re1/2 and a stretched
boundary-layer coordinate y = Re1/2(r/a− 1). Substituting into (A10) thus yields an
equation for u(y) of the form

2
∂

∂θ
(u sinθ)− 2y cosθ

∂u

∂y
=
∂2u

∂y2
(A 11)

which must be solved subject to the non-dimensionalised boundary conditions:

u = 0 at θ = 0, u→ 0 as r →∞, (A 12)

∂u

∂y
= (4 + T ) sinθ at y = 0, (A 13)

where T is the surface stress parameter defined in (5.12). We seek a solution of the
form

u = sinθ X1/2(θ) f(t) (A 14)

where t = y/(2X1/2), so that X1/2(θ) is an equivalent boundary-layer thickness. This
solution form yields solutions provided X(θ) takes the form

X(θ) = 1
2

cosec4θ
(

2
3
− cosθ + 1

3
cos3θ

)
, (A 15)

in which case (A 11) reduces to the form

d2f

dt2
+ 2t

df

dt
− 2f = 0. (A 16)

By inspection, one solution is f(t) = 2t. The other linearly independent solution may
be obtained by reduction of order, and is given by

f(t) = π−1/2 e−t
2 − t erfc(t) (A 17)
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where erfc(t) is the complementary error function. The general solution for the per-
turbation to the azimuthal component of the flow required by the applied tangential
stress at the bubble surface is thus given by

u′θ(r, θ) = −2 Re−1/2 U(4 + T ) sinθ X1/2(θ) f(t). (A 18)

The flow is thus uniquely prescribed by two non-dimensional groups, namely Re and
T .

The surface velocity takes the form

uθ(a, θ) = 2U sinθ
(
1− Re−1/2(4 + T )X(θ)

)
(A 19)

The boundary-layer disturbance is by assumption small in our analysis; consequently,
it is not possible to examine the large-T regime in which the surface flow reverses.
Nonetheless, (A 19) clearly indicates that the presence of the surface stress will
retard the surface velocity, and suggests that surface velocity reversal will arise when
T ∼ Re1/2.

Appendix B. Stokes flow past a buoyant circular bubble with an applied
surface stress

We here consider a buoyant circular bubble with a surface tension distribution (5.1)
rising through a high-viscosity fluid. We solve the Stokes equations

− ∇pd = µ∇2u, ∇ · u = 0 (B 1)

in two dimensions, subject to boundary conditions (5.2)–(5.4). The solution may be
found by standard methods and assumes the form

ur(r, θ)

U
=
G

4
cosθ

(
(S − 1) ln r′ + S(1− r′−2)

)
, (B 2)

uθ(r, θ)

U
=
G

4
sinθ

(
(1− S)(1 + lnr′)− S(1 + r′−2)

)
, (B 3)

where

G =
ρga

µU/a
=

gravitational pressure

viscous stress
,

S =
γ

ρga
=

surface traction

gravitational pressure
,

and r′ = r/a. As in the case of Stokes flow past a rigid cylinder, a logarithmic term
arises, making it impossible to satisfy the far-field boundary condition (5.3), and so
to deduce the rise speed of the cylinder. Nonetheless, the solution is valid in the
near-field region (r < a/Re), beyond which it must be fitted to Oseen’s solution.

We are concerned with the flow in the vicinity of the circular bubble, and specifically
with the possibility of an encircling wake. Equation (B 2) indicates that ur = 0 at
r = a and at a second radius R defined by

S =
R2 ln(R/a)

R2 − a2 + R2 ln(R/a)
. (B 4)

Real roots R > a exist for 1/3 < S < 1. According to (B 3), the surface velocity takes
the explicit form

uθ(a, θ)

U
=
G

4
sinθ(1− 3S).
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Figure 10. The predicted non-dimensional radius R/a of the wake encircling a two-dimensional
bubble with an applied surface traction γ, and rising due to gravity through a high-viscosity fluid.

For S < 1/3, the surface traction acts to retard the surface flow, but is not of
sufficient magnitude to reverse it. At the critical value S = 1/3, the surface flow
vanishes identically, and for S > 1/3 a reversed surface flow must obtain. As indicated
in figure 10, the radius of the encircling wake increases monotonically with S . At
S = 1, the net force on the bubble is zero: the buoyancy force causing motion is
precisely balanced by the downward reaction force associated with the surface traction
imparting vertical momentum to the suspending fluid.

While this two-dimensional Stokes flow model is admittedly a very crude description
of the observed three-dimensional moderate-Reynolds-number flow phenomenon, it
does reproduce its most salient features, namely a bounding streamline encircling the
bubble and a reversed surface flow.
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