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We present the results of a combined experimental and theoretical investigation
of droplets falling onto a horizontal soap film. Both static and vertically vibrated
soap films are considered. In the static case, a variety of behaviours were observed,
including bouncing, crossing and partial coalescence. A quasi-static description of
the soap film shape yields a force–displacement relation that provides excellent
agreement with experiment, and allows us to model the film as a nonlinear spring.
This approach yields an accurate criterion for the transition between droplet bouncing
and crossing. Moreover, it allows us to rationalize the observed constancy of the
contact time and scaling for the coefficient of restitution in the bouncing states.
On the vibrating film, a variety of bouncing behaviours were observed, including
simple and complex periodic states, multi-periodicity and chaos. A simple theoretical
model is developed that captures the essential physics of the bouncing process,
reproducing all observed bouncing states. The model enables us to rationalize
the observed coexistence of multiple periodic bouncing states by considering the
dependence of the energy transferred to the droplet on the phase of impact.
Quantitative agreement between model and experiment is deduced for simple
periodic modes, and qualitative agreement for more complex periodic and chaotic
bouncing states. Analytical solutions are deduced in the limit of weak forcing and
dissipation, yielding insight into the contact time and periodicity of the bouncing
states.

1. Introduction
A remarkable series of experiments has recently been conducted by Couder and

co-workers. First, they demonstrated that a droplet is able to bounce indefinitely
without coalescing on the surface of a vertically vibrated liquid bath (Couder et al.
2005a). In certain regimes, a bouncing droplet moves laterally through its interaction
with its own wave field (Couder et al. 2005b; Protière et al. 2005; Protière, Boudaoud
& Couder 2006). As the droplet thus walks across the surface, its wave field probes
the surroundings, detecting solid obstacles that may be used to guide the droplets.
When many such walkers are present, they may interact to form stable orbits or
lattice structures (Lieber et al. 2007). More surprising yet, when a droplet passes
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through a slit formed by two submerged objects, it is deflected in such a way that
the distribution of deviation angles is analogous to Young’s fringes observed for
photons and electrons: the droplet and its wave are thus diffracted (Couder & Fort
2006). The bouncing droplet experiment is thus exceptionally rich, exhibiting features
of optics (diffraction), quantum systems (wave–particle duality), statistical physics
(phase transitions) and astronomy (complex orbital motions). We here explore a
simple variation on their system that exhibits all the features of low-dimensional
chaos.

When a droplet is placed on a quiescent fluid bath, it ultimately collapses into
the bath due to gravity; however, this merger is generally delayed because the air
layer between the droplet and the bath must first drain to a thickness at which
Van der Waals forces between droplet and bath become important, approximately
100 nm (Charles & Mason 1960a). The resulting coalescence may take a number
of distinct forms. Complete coalescence arises when the entirety of the drop
merges with the underlying reservoir. Partial coalescence arises when only some
fraction of the drop coalesces, leaving behind a smaller daughter droplet that is
ejected from the bath and bounces several times before itself undergoing a partial
coalescence (Mahajan 1930; Charles & Mason 1960b; Thoroddsen & Takehara
2000; Honey & Kavehpour 2006). This coalescence cascade continues until the
daughter droplet becomes sufficiently small that viscosity comes into play, and
complete coalescence occurs. Blanchette & Bigioni (2006) demonstrated that partial
coalescence is possible only when Oh = μ/

√
ρσR < 0.026, where μ is the dynamic

viscosity of the droplet, ρ its density, σ its surface tension and R its radius. The
influence of viscosity on partial coalescence has been further examined by Chen,
Mandre & Feng (2006) and Gilet et al. (2007a). A variety of novel partial coalescence
events will be reported in § 2 in our experimental study of droplets impinging on a
soap film.

The coalescence of droplets into an underlying fluid reservoir may be delayed by
a variety of methods (Neitzel & Dell’Aversana 2002). For example, Dell’Aversana,
Banavar & Koplik (1996) demonstrated that drop coalescence may be delayed by
a temperature gradient between drop and reservoir, since the resulting Marangoni
stresses may serve to resist the drainage of the intervening air layer. Couder et al.
(2005a) demonstrate that drop coalescence may be entirely eliminated by vertical
oscillations of the underlying bath; here, the intervening air layer is replenished by
the flow generated as the drop lifts from the surface. The lifetime of a bouncing droplet
on a vibrating reservoir may range from minutes to days (Terwagne, Vandewalle &
Dorbolo 2007).

Stable droplet bouncing requires that the vertical acceleration Γ of the bath be
higher than a threshold ΓC . For high-viscosity droplets (typically 500 cS), Couder et al.
(2005a) have shown that ΓC increases smoothly with increasing forcing frequency f .
Gilet et al. (2008) and Dorbolo et al. (2008) have demonstrated that relatively low
viscosity droplets (0.65–100 cS) may also bounce on a highly viscous bath. In this case,
ΓC decreases with increasing f , until reaching the resonant frequency of the droplet;
thereafter, it increases smoothly until diverging for a critical frequency (fc � 100 Hz).
The larger the droplet, the higher the threshold Γc. For Γ < Γc, large droplets partially
coalesce until they reach a size appropriate for stable bouncing (Gilet, Vandewalle &
Dorbolo 2007b).

Bouncing has been examined in a variety of geometries. Considerable effort has
been directed towards characterizing the bouncing of solid objects. For example,
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the bouncing of an inelastic ball on a solid substrate is a canonical model for the
onset of chaos (Mehta & Luck 1993). The bouncing of solid beads on an elastic
membrane was examined by Courbin et al. (2006), who showed that the time of
contact between the bead and membrane tends to a constant in the high-speed limit.
Bouncing droplets have been studied in various configurations. Legendre, Daniel
& Guiraud (2005) examined the impact of a droplet suspended in a surrounding
fluid. Criteria for bouncing versus coalescence for droplets striking the free surface
of a fluid bath have been considered by several investigators (e.g. Jayaratne &
Mason 1964), most recently by Pan & Law (2007). Richard, Clanet & Quéré (2002)
examined droplets bouncing on hydrophobic surfaces, and reported a constant contact
time for high-speed impacts. The constancy of the impact time for a droplet on
a soap film will be reported in § 2.2 and exploited in our subsequent theoretical
developments.

A trampoline imparts a vertical force owing to deflection of the elastic membrane
under a tension T . A characteristic bouncing frequency for an object of mass m on
such a membrane may be defined as

√
T/m (Graff 1975). For an elastic ball of radius

R, the characteristic bouncing frequency is given by
√

ER/m, where E is the ball’s
Young’s modulus (Graff 1975). The system considered here, specifically a droplet
on a soap film, has common features with both problems. In particular, the natural
frequencies of both the film and droplet scale as

√
σ/m, where m is the mass of the

droplet and σ is the surface tension. Periodic bouncing is achieved on a trampoline
by forcing the system at its natural frequency; likewise, we shall observe that drops
bounce on a soap film only when the forcing frequency is comparable to the natural
frequency of the film.

The impact of a droplet on a stationary soap film was first described by Courbin
& Stone (2006). For a droplet with radius R and incident speed U striking a soap
film with surface tension σ , the Weber number, We = ρU 2R/σ , prescribes the relative
magnitudes of the initial kinetic energy of the droplet and the interfacial energy of
the system. At low We, the drop was observed to bounce off the soap film, while for
high We, it passed through without breaking the film. In the latter circumstance, the
leading edge of the drop first coalesces with the film, so the drop is imbedded in the
film as it crosses; as it exits the film, its trailing edge emerges without breaking
the film, which is said to ‘self-heal’. LeGoff et al. (2008) examined a solid particle
falling through a series of films, and characterized the energy lost with each impact.
In § 2.2, we shall report a variety of partial coalescence events that arise in this same
system; moreover, we measure the critical We for the transition between bouncing
and crossing, a value that we rationalize in § 3.2.

The experimental configuration examined in our study is detailed in § 2. In our first
experiment, we examine a falling droplet striking a stationary horizontal soap film.
In the second, we examine the effects of vertical oscillations of the soap film on the
impacting droplet. Experimental observations are reported in § 2, where particular
attention is given to cataloguing the variety of partial coalescence events observed, to
refining the bouncing-to-crossing criterion of LeGoff et al. (2008) and to characterizing
the bouncing states observed on the vibrating film. In § 3, the film-induced force on
the droplet is characterized, revealing that the soap film may be simply modelled as
a nonlinear spring. In § 4, we exploit this inference in developing a theoretical model
for the drop trajectory that allows us to rationalize our observations of periodic and
chaotic bouncing on a soap film. The principal conclusions of our study are reviewed
in § 5.
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Figure 1. Experimental set-up. (a) Without vibration: a droplet strikes a horizontal soap film
fixed on a ring. (b) With vibration: the soap film is pinned at the end of the inner tube,
which is vertically vibrated by a speaker. The arrangement with the outer cylinder ensures a
downward curvature of the film, and so stabilizes the bouncing droplet on axis.

2. Experiments
2.1. Experimental method

In the first series of experiments (figure 1a), a horizontal soap film is held fixed
on a thin ring of internal radius A= 0.8 cm as it is struck by a falling droplet.
A droplet of constant radius R =0.08 cm is released above the soap film from an
insulin syringe. The impact speed U is varied between 10 and 100 cm s−1 by changing
the release height. Experiments are recorded from the side with a high-speed video
camera (Redlake MASD PCI Motionscope) with acquisition rate 1000 fps and
resolution 256 × 256 pixel. For our typical field of view, the characteristic pixel
size is 50 μm. Measurements of drop position and film shape are made via image
processing.

In the second series of experiments (figure 1b), the soap film is vertically vibrated
so that periodic droplet bouncing may arise. A horizontal soap film is created at
the end of a plexiglas tube of radius A= 1.6 cm fixed on a subwoofer speaker (Sony
SA-W3800) that vibrates vertically in a sinusoidal fashion. The motion of the speaker
is recorded on an accelerometer: the frequency and amplitude of the oscillation are
measured from the output signal. The amplitude B of the vibration generates a
maximum acceleration between 0.15 and 3 g; the frequency f ranges between 20 and
80 Hz. A groove is made at the end of the tube in order to pin the soap film at a
fixed height. To avoid the practical difficulties of levelling the soap film, the tube is
put in a larger concentric tube (figure 1b) that is partially filled with water and fixed
to the speaker. The soap film is created on the inner tube while the tube is immersed
in the fluid reservoir, so that an air column is trapped between the soap film and
the liquid bath. The inner tube is then moved slightly upwards before fixing it to the
outer cylinder with screws. The resulting low pressure in the air column deflects the
soap film downwards at its centre; the resulting film curvature stabilizes the bouncing
droplet on axis.

The liquid used for both the droplet and the soap film was a mixture of water,
glycerol and commercial soap (Dove�). The concentration of soap is ∼ 1 % by
volume. The viscosity of the liquid is altered by varying the concentration of glycerol.
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Figure 2. Natural oscillations of a droplet in free fall. The time between successive images
is 1 ms. Framed images correspond to the transition from a prolate to an oblate shape, and
indicate a vibration period of 11 ms.

Most of the experiments were performed with a mixture of 80 % water and 20 %
glycerol, which corresponds to a viscosity ν = 2 cS and density ρ =1.05 g cm−3.

Surface tension measurements accurate to 0.5 % were taken with a Kruss K10
Tensiometer via the Wilhelmy plate method. A mean value of σ = 23.6±0.6 dyn cm−1

was found with values observed between 20 and 25 dyn cm−1. The surface tension was
also estimated from the natural oscillations of a droplet in free fall. Rayleigh (see
for example Landau & Lifchitz 1959) demonstrated that σ may be deduced from the
period T of an oscillating droplet according to

σ =
3πm

8T 2
, (2.1)

where m = 2.25 × 10−3 g is the mass of the droplet. As seen in figure 2, T � 11 ms,
which gives σ � 22 dyn cm−1, a value consistent with that measured directly.

The droplet impact experiment is characterized by 10 physical variables: the droplet
radius R, the film radius A and thickness δ, the density and the kinematic viscosity of
the liquid (ρ, ν) and air (ρa, νa), the surface tension σ , the gravitational acceleration
g and the vertical impact speed U . Two additional parameters are needed to describe
the vertically vibrated system, namely the frequency f and amplitude B of the
sinusoidal excitation. The range of experimental parameters considered in our study
is reported in table 1. For this system, nine independent dimensionless numbers can
be formed (table 2). For a given fluid and geometry (drop and frame size), six of these
dimensionless groups are fixed, while three are variables: We, Γ and ω.

2.2. Stationary film

In our study of impacting droplets, β = A
R

= 10 and Oh =0.015 were held fixed
(ν =2 cS) and We was varied from 1 to 30 by varying the release height. As previously
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Variable Name Range

R Droplet radius 0.08 cm
A Soap film radius 0.8–1.6 cm
δ Soap film thickness ∼1 μm
U Impact speed 17.5–166 cm s−1

ρ Liquid density 1.05 g cm−3

ν Liquid kinematic viscosity 0.89–17 cS
ρa Air density 0.00122 g cm−3

νa Air kinematic viscosity 15 cS
σ Surface tension 22 dyn cm−1

g Gravity acceleration 981 cm s−2

B Forcing amplitude 6 × 10−4 – 0.2 cm
f Forcing frequency 20–80 Hz

Table 1. Physical variables arising in our study.

Variable Name Definition Signification Range

m Drop mass 4πρR3/3 2.25 × 10−3 g
τc Capillary time

√
m/σ 0.01 s

We Weber ρRU 2/σ Inertia/surface tension 1–30
Bo Bond mg/σR Gravity/surface tension 1.25

Oh Ohnesorge ν
√

ρ/
√

σR Viscosity/surface tension 0.007–0.13
Viscosity ratio νa/ν 0.88–7.5
Density ratio ρa/ρ 0.0011

β Aspect ratio R/A 10 or 20
Aspect ratio δ/A 10−4

Ω Angular frequency 2πf τc 1.27–5
Γ Acceleration 4π2Bf 2/g Forcing acceleration/gravity 0.15–3

Table 2. Key dimensional quantities and dimensionless groups arising in our study.

4 mm

Figure 3. Droplet bouncing on a soap film at We = 8.8. Frames are taken every millisecond.

observed by Courbin & Stone (2006), the droplet bounces on the soap film for low We
(figure 3). At high We, the drop crosses the soap film without breaking it (figure 4).

During a bouncing event (figure 3), the kinetic energy of the falling droplet is
primarily converted into surface energy of the distorted soap film during impact;



The fluid trampoline: droplets bouncing on a soap film 173

4 mm

Figure 4. Droplet passing through a soap film at We =25. Frames are
taken every millisecond.

4 mm

t = –10 t = 10 t = 24 t = 25 t = 26 t = 27

t = 28 t = 29 t = 30 t = 31 t = 32 t = 33

Figure 5. Partial coalescence of a droplet on a soap film at We = 2.5. Time is indicated in
milliseconds. The daughter droplet is smaller than the incident droplet owing to the fluid
captured by the soap film.

thereafter, the bulk of this energy is restored to the droplet’s kinetic energy. To
avoid coalescence, the droplet must never touch the soap film: a thin intervening
air layer must persist. As this layer thins, the resulting lubrication pressure deforms
the underlying film. At impact, the droplet becomes oblate, but recovers a roughly
spherical shape when the soap film deflection is maximal. As the drop is ejected,
it again becomes oblate. For the sequence illustrated in figure 3, the contact time
tc, during which the droplet is in the immediate vicinity of the soap film, is 18 ms.
In a crossing event (figure 4), the soap film is not able to absorb the initial kinetic
energy of the droplet: as the droplet passes through, the film reforms. The analogous
self-healing of liquid sheets has been described by Taylor & Howarth (1959) and
Taylor & Michael (1973).

In addition to pure bouncing and crossing events, a variety of intermediate partial
coalescence events were observed, in which some fraction of the impinging droplet
remains trapped as a lens within the soap film. The result of this partial merger
is a smaller daughter droplet and possibly accompanying satellite droplets. Unlike
partial coalescence on a fluid bath (Charles & Mason 1960b; Blanchette & Bigioni
2006; Gilet et al. 2007a), the ratio between the radii of the daughter and parent
droplets is often larger than 0.5. The variety of observed partial coalescence events
are illustrated in figures 5–9. The parent droplet can emerge either above (figure 5)
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t = –4 t = 9 t = 21 t = 22 t = 23 t = 24

t = 25 t = 26 t = 27 t = 28 t = 29 t = 30

Figure 6. Partial coalescence of a droplet on a soap film at We = 10. Time is indicated in
milliseconds. Note the single satellite droplet formed at the tail of the daughter droplet.

t = –3 t = 9 t = 22 t = 24 t = 25 t = 26

t = 27 t = 28 t = 29 t = 30 t = 31 t = 32

t = 33 t = 34 t = 35 t = 36 t = 39 t = 73

4 mm

Figure 7. Partial coalescence of a droplet on a soap film at We = 14. Time is indicated in
milliseconds. Note that the satellite droplet is nearly as large as the daughter droplet.

or below (figure 8) the soap film. Figure 9 illustrates a sequence in which a
daughter drop is ejected upwards while the parent drop continues downwards. In
figure 10, the likelihood of bouncing and crossing is represented as a function of
We. While partial coalescence was observed for 2 < We < 16, the transition between
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t = –2 t = 8 t = 11 t = 12 t = 13 t = 14

t = 15 t = 16 t = 17 t = 18 t = 19 t = 20

t = 21 t = 22 t = 23 t = 24 t = 25 t = 28

4 mm

Figure 8. Partial coalescence of a droplet on a soap film at We = 15. Time is indicated in
milliseconds. A satellite droplet is formed.

t = –4 t = 8 t = 12 t = 14 t = 16 t = 17

t = 18 t = 19 t = 20 t = 25 t = 38 t = 43

4 mm

Figure 9. Partial coalescence of a droplet on a soap film at We = 16. Time is indicated in
milliseconds. While the daughter droplet passes through the film, a small satellite droplet
(indicated with an arrow) is ejected upwards.
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Figure 10. Transition from bouncing to crossing for impact on a stationary film. The
probability of different events is represented as a function of We. The number of events
in each class is reported in the middle of the columns. The transition between bouncing and
passing occurs for a critical Weber number We∗ � 16. Partial coalescence events take place
over the interval 2 < We∗ < 16.

bouncing and crossing regimes occurs at We∗ � 16, an observation to be rationalized
in § 3.2.

We proceed by characterizing two important bouncing parameters: the contact
time and the energy dissipated during a single bounce. The contact time tc, defined
as the time during which the droplet is in apparent contact with the soap film (i.e.
the time between impact and take-off), was measured for various We. As seen in
figure 11(a),

tc � 1.86τc. (2.2)

The contact time tc is proportional to the capillary time τc =
√

m/σ and indepen-
dent of We. We note that these results have similarities with those reported by
Courbin et al. (2006) for beads bouncing on elastic membranes and by Richard
et al. (2002) for droplets bouncing on hydrophobic surfaces. In both cases, the
contact time also increases with the mass of the bouncing particle. We note that the
proportionality constant reported by Richard et al. (2002), 1.27, is significantly less
than that observed in our experiments, 1.86. The observed independence of τc on We
will be rationalized in § 4. The influence of film and drop viscosity on contact time is
reported in Appendix A.

During each bounce, a droplet loses a fraction of its initial mechanical (kinetic
plus gravitational) energy through viscous dissipation. In dimensionless terms, the
Weber number is decreased by an amount �We at each bounce owing to dissipation
within the droplet, soap film or intervening air layer. The coefficient of restitution,
specifically the ratio of take-off and landing speeds, is given by

γ =

√
1 − �We

We
. (2.3)
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Figure 11. (a) Contact time tc normalized by the capillary time τc =
√

m/σ , and (b) difference
in We before and after the bounce as a function of We, for Oh = 0.015. Dashed lines in (a)
and (b) represent fits tc = 1.86τc and �We = 0.087We3/2, respectively. Solid lines were deduced
by integrating (4.10) with D = 8 × 10−4 g cm−1(best fit). The vertical error bar in (a), due to
limitations in time resolution, is about ±5 %.

The dependence of �We on We at Oh = 0.015 is reported in figure 11(b). The
experimental data collapse onto a single curve corresponding to a power law close to

�We � 0.09We3/2. (2.4)

The dissipation is markedly different from that observed by Richard & Quéré (2000)
for droplets bouncing (at We < 1) on a hydrophobic surface, for which dissipation
increases with impact speed at low impact speeds, but is roughly constant for high
speeds. Energy dissipation will be discussed in § 4.1, where the observed scaling (2.4)
will be rationalized. The dependence of the constant of proportionality on the film
and drop viscosity is reported in Appendix A.

2.3. Vibrating film

On a stationary soap film, the We decreases at each bounce, until the droplet settles
onto and ultimately merges into the film. To counter dissipative losses, a vertical
vibration is applied to the frame of the soap film: energy is thus transferred from
the frame to the film to the droplet. Provided the mechanical energy so supplied
balances dissipative losses, the droplet is re-energized during impact and may bounce
indefinitely. In the vibrating film experiments, β =20 was held fixed.

The acceleration threshold ΓC is the minimal acceleration Γ =4π2Bf 2/g that can
sustain periodic droplet trajectories. This threshold is measured for various forcing
frequencies f and reported in figure 12. Results are markedly different from those
describing droplets bouncing on a bath (Gilet et al. 2008). For frequencies f < 55 Hz,
the threshold ΓC is roughly constant (about 0.15±0.04 g). When f > 55 Hz, bouncing
droplets cannot be sustained. We note that this critical frequency corresponds to a
period of 18 ms, a value roughly equal to the measured contact time. Our theoretical
developments of § 3 and 4 will demonstrate that droplet bouncing can arise only if
the system is forced at or below twice the natural frequency of the soap film.

A striking characteristic of droplet bouncing on soap films is the coexistence
of multiple periodic solutions for given forcing parameters, f and Γ , or, in the
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Figure 12. Threshold acceleration for bouncing, ΓC , as a function of the forcing frequency f .
Triangles (�) represent experimental data. For a given frequency, a droplet was released onto
a film vibrating at Γ > ΓC; subsequently, Γ was decreased until the droplet coalesced. The
experiment was repeated several times to capture both modes (1,1) and (2,1): the minimum
measured value of Γ corresponds to the threshold reported by triangles. When forcing
parameters (Γ, f ) are located inside the shaded area, no periodic bouncing is observed and
the droplet coalesces. Solid and dashed lines represent thresholds computed by solving (4.14)
numerically. The solid and dashed curves correspond to the thresholds of modes (2,1) and
(1,1), respectively. The lower threshold roughly corresponds to our experimental data.

parlance of dynamical systems theory, multi-periodicity. Figure 13 represents different
trajectories of droplets achieved with the same forcing. The image is made by
extracting a thin vertical slice along the droplet centreline from each frame of
the movie, then placing those slices side by side. Bouncing modes are denoted by
two integers (m, n) such that one period of the trajectory corresponds to m forcing
periods and n bounces of the droplet. For example, modes (1,1), (2,1) and (3,1) are
displayed in figure 13(a–c). All these solutions are observed to be stable, at least
during the 8 seconds of recording corresponding to 240 forcing periods. Depending
on initial conditions, specifically the impact speed and phase, the droplet locks onto
one particular mode (figure 13d ). Note that the amplitude of the jumps experienced
by modes (2,1) and (3,1) is much larger than the forcing amplitude. Weber numbers
at impact are about 0.06, 1.5 and 3.9 for modes (1,1), (2,1) and (3,1), respectively.
According to (2.4), with each bounce these modes lose kinetic energy such that �We
is approximately 10−3, 0.16 and 0.67, respectively. For periodic solutions, this energy
loss has to be perfectly balanced by the energy input from the forcing. In § 4.2, we
shall demonstrate that the same forcing can deliver three different amounts of energy
according to the impact phase of the droplet.

Finally, we observed more complex periodic bouncing states, where the periodicity
appears only after several jumps (n> 1). An example is provided in figure 14(a),
where a droplet bounces on a soap film vibrated at 33 Hz and 0.7 g. The mode
(3,3) is characterized by three successive jumps of different amplitude. At higher
accelerations, a period-doubling transition may occur spontaneously (at fixed forcing
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Figure 13. Multi-periodicity in the bouncing states: multiple solutions arise for the same
forcing (f =33Hz, Γ = 0.6). The vertical trajectory of the droplet is displayed as a function of
time. (a) Mode (1,1) at We � 0.06. (b) Mode (2,1) at We � 1.5. (c) Mode (3,1) at We � 3.9. The
dark low-amplitude oscillation at the top of those pictures represents the vertical motion of
the ring to which the soap film is pinned. (d ) A transient period arises before the drop locks
onto a particular solution, here the (1,1) mode.

0.1 s

(a)

(b)

(c)

1 mm
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0.1 s
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1 mm

Figure 14. Complex bouncing modes. The vertical trajectory of the droplet is displayed as
a function of time. (a) A periodic mode (3,3) consists of three successive jumps (f = 33 Hz,
Γ = 0.7). We = 0.015, 0.074 and 0.3 during the small, the medium and the large jumps,
respectively. (b) A period-doubling transition, from mode (1,1) to mode (2,2), observed at
f = 33 Hz, Γ = 1.2. (c) A chaotic bouncing trajectory observed at f = 33 Hz, Γ = 1.1.
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Figure 15. Hypothetical shape for the soap film: the region of curvature 2/R below the
droplet matches onto an exterior region of zero curvature at the point M corresponding to
an angle α. The soap film is pinned at (r, z) = (A, 0), while its point of maximum centreline
deflection is (0, −Z). The centre of mass of the droplet is at (0, x), and its vertical deflexion is
denoted by η.

parameters), transforming a mode (1,1) into a mode (2,2) as seen in figure 14(b).
Chaotic trajectories are also observed (figure 14c), with episodic periods of high-
amplitude bouncing. We note that the chaotic bouncing is usually unstable and the
air film ultimately breaks, typically after a particularly vigorous impact.

3. Modelling the soap film as a nonlinear spring
3.1. Soap film shape

We proceed by rationalizing the bouncing-to-crossing transition. We first model the
shape of the soap film, and so deduce a relation between the drop position and the
force generated by the soap film. We note that the soap film reacts to the external
forcing associated with the impacting droplet at a time scale determined by the speed
of capillary waves on the soap film, Vw ∼

√
σ/(ρδ) (LeGrand-Piteira et al. 2006).

For a film of thickness δ =1 μm, the wave speed, Vw ∼ 500 cm s−1, is approximately
10 times larger than the characteristic droplet impact speed. The soap film thus
adjusts rapidly to the applied forcing, the information being transmitted by capillary
waves (Boudaoud, Couder & Ben Amar 1999). For the relatively low impact speeds
considered in our study, the film shape may thus be described as quasi-static.

The soap film deforms in response to the impinging droplet. We assume that the
droplet remains roughly spherical and that, near the droplet, the soap film is a
spherical cap lying tangent to the droplet with constant mean curvature 2/R. Beyond
the droplet, the soap film has zero curvature since the air pressure is atmospheric on
either side (figure 15). The only non-planar axisymmetric surface that has zero mean
curvature is the catenoid

z

r0

= −acosh

(
A

r0

)
± acosh

(
r

r0

)
, (3.1)

where r0 is the minimum radius of the catenoid. We must match this catenoid to
the spherical cap at a point prescribed by the angle α: r0/R = sin2 α. The maximum
vertical deformation Z of the soap film may be expressed as a function of α through

Z

R
= 1 − cosα + sin2 α

[
acosh

(
1

sin γ

)
− sign(cosα)acosh

(
1

sinα

)]
, (3.2)
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Figure 16. Variation of �S/(πR2), Z/R and F/(2πσR) with α, for β =A/R = 10. Insets
represent the shape of the film for different values of α.

where sin γ = r0/A= (sin2 α)/β . The anomalous surface generated by the film
deformation, �S, is given by

�S

πR2
= (1 − cos α)2(2 + cosα) − sin4 α

1 + cos γ

+ sin4 α

[
acosh

(
1

sin γ

)
− sign(cos α)acosh

(
1

sinα

)]
. (3.3)

The vertical force F required to produce a vertical displacement Z is given by

F

2σπR
=

∂α�S/(πR2)

∂αZ/R
= 2 sin2 α. (3.4)

Of course, this force is obtained more easily by integrating the vertical component
of the surface tension over the circle formed by revolving the point of matching M
about the vertical axis r = 0.

The dependence on α of �S/(πR2), Z/R and F/(2πσR) is illustrated in figure 16 for
β = 10. The anomalous surface �S reaches a maximum for a critical angle αm � 5π/8.
For α < αm, the system tends to the α =0 state (droplet above the soap film), while
for α >αm it tends to the α = π state (droplet fully enclosed by the soap film). The
maximum deflection Z/R � 4.4 is also reached for α = αm. The force F exerted by
the soap film on the droplet remains directed upwards, whatever the value of α.
The maximum force generated by the soap film, F = 4πσR, occurs when α = π/2. The
force is represented as a function of the maximum centreline deflection Z in figure 17a.
Four distinct regimes are apparent.
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Figure 17. (a) Theoretically predicted force–displacement curve for a spherical drop impinging
on a soap film. The solid line represents the variation of the force F/(2πσR) with respect
to the maximum film deflection Z/R for β = 10. The dashed line represents the linear spring
approximation (3.5). (b) The dependence of the spring constant k on β . Values appropriate for
our static (β = 10) and vibrating (β = 20) film experiments are indicated.

When 0 <Z < 3 (0 <α < 3π/8), the soap film reacts like a spring, exerting a force
that grows roughly linearly with the deformation:

F = kZ, (3.5)

where the spring constant k = (8π/7)σ . When 3 <Z < 4 (3π/8 <α < π/2), the spring
law becomes nonlinear as the force saturates. The stiffness vanishes when α → π/2.
When 4 <Z < 4.4 (π/2 <α <αm), the stiffness is negative: increasing the deformation
results in decreasing force. The stiffness diverges when α → αm and the system
switches equilibrium states. When α >αm, Z decreases towards 2 and the stiffness
is again positive. Here, the system tends towards the α = π configuration, where the
droplet is wrapped by the film. We note that for α >αm, the film shape is poorly
described by the model: the last three frames of figure 4 clearly indicate that the
film does not wrap the drop as it passes through. Nevertheless, as we shall see, the
quasi-static film model provides an excellent description of the bouncing states, for
which α <αm.

It is important to note that the spring constant k depends on the impact geometry,
specifically on β = A/R. The dependence of k/σ on β is illustrated in figure 17b. As
β increases from 10 to 20, the values appropriate for our static and vibrating film
experiments, respectively, k decreases from 8π/7 to 24π/25.

3.2. Comparison with experiments

In figure 18, the shape of the soap film is measured experimentally and compared
to the model shape of catenoid plus spherical cap. The agreement is excellent,
particularly for the catenoidal portion. We note that the modelling of the film
below the droplet might be slightly improved by considering a spheroidal instead
of a spherical cap. However, calculations become much more complicated, and do
not yield further insight into the film dynamics. The relation (3.2) between the
angle of matching α and the maximum deformation Z is examined in figure 19(a).
Experimental data are gathered from a full cycle of a droplet in a bouncing state.
The hysteresis is very weak: the deformation is roughly the same whether the drop is
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Figure 18. Observed shape of the soap film (dots) caused by impact at We= 9.7. The thick
solid curves represent the ‘sphere plus catenoid’ model: the film has curvature 2/R beneath
the drop and zero beyond.
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Figure 19. Impact at We= 9.7 (a) Maximum vertical deflection of the film as a function of α,
the slope at the matching point. (b) Trajectory of the droplet’s centre of mass, x. The solid line
represents the trajectory reconstructed from the model (3.6), in which gravity and the force
exerted by the soap film are taken into account.

rising or falling, which lends added credibility to our quasi-static description of the
soap film.

We next check the force predicted by (3.4). Experimentally, we measure the trajectory
of the droplet’s centre of mass during one bounce. Assuming that the air layer
intervening film and drop serves only to communicate to the droplet the force exerted
by the soap film, the height x of the droplet’s centre of mass must evolve according to

mẍ = −mg + F, (3.6)

where m is the mass of the droplet, and F is the force exerted by the film as deduced
from (3.4). The radial position and slope of the interface at the matching point are
measured through R and α (figure 15) from each recorded frame. The concomitant
film-induced force F is integrated twice, and the drop trajectory reconstructed. The
trajectory so deduced compares favourably with that measured (figure 19b).



184 T. Gilet and J. W. M. Bush

100 101 102 103 104
0

5

10

15

20

25

30

35

Bouncing

Crossing

β

W
e∗

Figure 20. Critical Weber number We∗ for the bouncing-to-crossing transition, as a fun-
ction of the ratio β = A/R between the soap film and the droplet radii. The solid line corres-
ponds to (3.8), and the dashed line to the asymptotic behaviour We∗ ∼ 4.5+3 ln(2β) relevant for
β � 1.

For Z < 3, the force exerted by the film is linear in Z, as in (3.5). The film thus
behaves like a linear spring with spring constant k = (8π/7)σ , and natural frequency

f =
1

2π

√
k

m
= 0.3/τc � 30 Hz. (3.7)

One expects the contact time to be approximately half a period of oscillation of the
soap film, i.e. tc = 1.66τc, which is in good agreement with the experimental results
reported in figure 11(a) and Appendix A. The agreement between the experiments
and model predictions for the bouncing case suggests that, to leading order, the action
of the film is well described by the force–displacement relation defined in figure 17a.

Finally, we apply this quasi-static model for the film shape to estimate the minimum
Weber number, We∗, required for a droplet to pass through the soap film. Supposing
that the whole initial kinetic energy is converted into surface energy of the film, the
energy balance is written (2π/3)ρR3U 2 = 2σ max(�S), so

We∗ = 3
max(�S)

πR2
. (3.8)

Figure 20 illustrates the dependence of this critical Weber number We∗ on the film size
β = A/R. According to (3.3), we expect We∗ to tend asymptotically to 4.5 + 3 ln(2β)
in the large film limit, β → ∞; however, we note that this limit is likely to be poorly
described by our quasi-static model, as the influence of the finite wave speed will
ultimately become important on sufficiently large films. In our experiments, the soap
film has a radius of A= 0.8 cm and corresponding β = 10; we thus anticipate a critical
We∗ = 16. This value is in good agreement with the experiments reported in figure 10.
We note that the prediction (3.8) neglects energy dissipated during impact as well as
the droplet deformation. Nevertheless, it does provide a good leading-order criterion
for droplet breakthrough. We further note that the relative increase in the soap
film surface area is less than 6 % when We =We∗ = 16, and the mean film thickness
necessarily decreases proportionally.
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Figure 21. Dependence on We of the maximum force FM applied by the soap film on the
droplet, for Oh = 0.015, β =10. The maximum deflection Z is measured experimentally, and
FM is computed according to (3.2) and (3.4). The solid line corresponds to FM/(σR) = 1.11We.

4. Theoretical model
We proceed by developing a simple theoretical model to describe bouncing on a

soap film. Our model has similar features to those developed by Okumura et al.
(2003), Legendre et al. (2005), Biance et al. (2006) and Gilet et al. (2008) to describe
droplet bouncing in various scenarios. The centre of mass of the droplet x evolves
according to

mẍ = F (Z) + mg[Γ cos(2πf t + φ) − 1], (4.1)

where F (Z) is the force exerted by the soap film with centreline deflection Z. Since
Newton’s law is expressed in a frame moving with the vibrating film, a fictitious
inertial force mgΓ cos(2πf t + φ) is included. If η denotes the vertical deformation
of the droplet (figure 15), we can write x = −Z + R + η. Equation (4.1) can then be
recast in terms of energy as

d

dt

[
mẋ2

2
+ mgx + E(Z)

]
= F (Z)η̇ + mgΓ ẋ cos(2πf t + φ), (4.2)

where E(Z) is the surface energy stored in the soap film, so that dE(Z)/dZ = F (Z).

4.1. Stationary film

We first consider the case of a stationary film (Γ = 0). The only remaining non-
conservative term in (4.2) is F (Z)η̇, the work done by the soap film in deforming
the droplet. This term describes the transfer of energy between the translational and
vibrational motions of the droplet. The total energy removed in this fashion during
impact necessarily scales as F η̇tc. We proceed by rationalizing the scaling observed in
figure 11(b), then exploiting it in simplifying our model.

The maximum centreline deflection of the soap film, Z, was measured for various
We. If Z < 4 (i.e. α < π/2), the maximum force FM exerted by the soap film occurs
at the point of maximum deflection and can be calculated from (3.2) and (3.4). As
shown in figure 21,

FM

σR
� 1.11We. (4.3)
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The maximum force is linearly proportional to We, a result that may be understood
by considering that the incoming kinetic energy mU 2/2 is eventually converted into
surface energy ∼ FMR. The influence of droplet and film viscosity on the peak force
FM is reported in Appendix A.

The droplet deformation rate during impact η̇ scales as ηM/τc, where ηM is the
maximum droplet deformation. As seen in figure 3, the droplet reacts rapidly to the
impact: it is already highly compressed by the time the soap film begins to deform.
Indeed, the natural frequency of the soap film is given by (3.7), while according to
Landau & Lifchitz (1959) the natural frequency of the mode 2 droplet oscillation is

fd =
1

2π

√
32πσ

3m
=

0.92

τc

� 90 Hz, (4.4)

so the droplet reacts three times faster than the soap film. For an experiment at We � 9
corresponding to a kinetic energy K � 2.60 erg, the maximum drop deformation is
estimated to be ηM � 0.033 cm, so that ηM/R ∼ 0.41. The corresponding energy in the
mode 2 drop vibration is calculated in Appendix B and found to be

Ed � 8πση2
M/5 � 0.13 erg, (4.5)

which represents a fraction Λ � 5 % of the initial kinetic energy K =(1/2)mU 2. This
lost energy at impact cannot account for the characteristic value �We/We ∼ 0.25
observed in figure 11(b), from which we infer that some additional energy is transferred
after impact. Substituting Ed = ΛK into (4.5) yields a scaling for ηM(

ηM

R

)2

� 5

8πσR2
ΛK =

5

12
ΛWe. (4.6)

We note that this scaling is similar to that observed by Clanet et al. (2004) for
droplets striking a hydrophobic surface. Indeed, they reported that a/R ∼ We1/4,
where a is the maximum horizontal radius of the spheroidal droplet, so that 1 + ηM/

R ∼ We1/2.
Equations (2.2), (4.3) and (4.6) together yield

�We =
3

2πσR2
�K =

3

2πσR2

∫ tc

0

F η̇ dt

∼ 3(1.11σRWe)(
√

5ΛWe/12 R/τc)(1.86τc)

2πσR2
= 0.63Λ1/2We3/2. (4.7)

For Λ =5 %, we thus obtain

�We ≈ 0.14We3/2, (4.8)

which is close to the observed scaling (2.4). While the coefficient deduced (0.14) is
50 % higher than that observed (0.087), this estimate has not taken into account the
variations of the sign of F η̇ over the integration period. Nevertheless, since tc/τc

is independent of We, it is reasonable to suppose that the time correlation of F

and η̇ remains unchanged with increasing We, which lends further credibility to this
scaling.

Equation (4.2) cannot be solved unless an evolution equation for the drop
deformation η is written. Instead, for the sake of mathematical simplicity, we model
the dissipation term F (Z)η̇ as a function of Ż, specifically −DH (Z)|Ż|3, where H (Z)
is the Heavyside function, and D is a constant. The dissipation is zero when Z < 0,
but is negative definite and scales as We3/2 when Z > 0. Note that since FM grows
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Figure 22. Observed (dots) and simulated (solid line) trajectories of a droplet released
at We = 15.24 and bouncing on a stationary soap film (β =10). Model parameters are
m= 2.25 × 10−3 g, k = (8π/7)σ = 77 dyn cm−1 and D = 8 × 10−4 g cm−1(best fit value inferred
from figure 11). Experimental data could only be obtained in the apparent field of view, that
was partially obscured by the frame of the soap film and also limited from above.

as We ∼ U 2, we expect the work rate to scale as U 3 ∼ |Ż|3. We further simplify the
system by assuming that |η| � |Z|: the droplet deformation is much smaller than the
amplitude of vertical motion, so that x � R − Z. Finally, consistent with (3.5), we
assume that the soap film has a linear force–displacement law F (Z) = H (Z)kZ, where
k = (8π/7)σ on our stationary film (β = 10), and k =(24π/25)σ on our vibrating film
(β = 20). In the absence of forcing, Γ =0, we thus obtain

d

dt

[
mŻ2

2
− mgZ + H (Z)

kZ2

2

]
= −DH (Z)|Ż|3, (4.9)

so

mZ̈ = mg − kZH (Z) − DH (Z)Ż|Ż| . (4.10)

The constant D = 8 × 10−4 g cm−1 is determined by fitting the solutions of (4.10) to
the experimental data in figure 11(b). We note that the results from (4.10) with the D

value so deduced represent an improvement over the scaling law (2.4). The predicted
contact time tc/τc is also in good agreement with experimental data reported in
figure 11(a). As seen in figure 22, the model produces a remarkably accurate picture
of the damped bouncing on a stationary film. The various sources of dissipation in
the film–air-drop system are considered in Appendix C.

4.2. Forced film

By adding the forcing term to (4.9) and (4.10), we can model the dynamics of a
droplet on a vibrating film in terms of a single second-order ordinary differential
equation,

mZ̈ = mg − kZH (Z) − DH (Z)Ż|Ż| − mgΓ cos(2πf t + φ). (4.11)

Defining non-dimensional variables

y =
−kZ

mg
; τ =

√
k

m
t; V 2 =

kU 2

mg2
; Ψ =

Dg

k
; ω = Ω

√
σ

k
= 2πf

√
m

k
(4.12)
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yields

ÿ + H (−y)y + 1 = −H (−y)Ψ |ẏ|ẏ + Γ cos(ωτ + φ), (4.13)

which may be solved subject to initial conditions y(0) = 0 and ẏ(0) = −V at impact.
This second-order non-autonomous equation may be written as a system of three
first-order autonomous equations by defining θ(τ ) = mod(ωτ + φ, 2π) as a third
variable:

dy

dτ
= ẏ,

dẏ

dτ
= −1 − H (−y)[y + Ψ |ẏ|ẏ] + Γ cos θ,

dθ

dτ
= ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

We note that the system (4.14) is similar to that arising from the Duffing equation,
that describes the inelastic bouncing ball (Kowalik, Franaszek & Pieranski 1988;
Mehta & Luck 1990) and the vertically oscillated pendulum (McLaughlin 1981). We
thus anticipate that it may support chaotic solutions.

The system of (4.14) was integrated from a variety of initial conditions
(y, ẏ, θ) = (0, −V, φ). In our experiments (figure 13a–c), multi-periodicity is observed:
different periodic solutions arise (figure 23) for a single pair of forcing parameters
(Γ, ω), each solution corresponding to a different limit cycle in the (y, ẏ, θ) space.
Take-off and landing phases are measured in the experiments, and superposed on
the model solutions in figure 23(b–d ). The phases of take-off and landing are in
good agreement. Note that in figure 23(a), the droplet in the high-energy mode (3,1)
lands before that in low-energy mode (1,1), thereby increasing the amount of energy
extracted during impact.

The model also reproduces complex modes such as those reported in figure 14.
In figure 24, measured phases of landing and take-off are compared to the model
solution. Although the agreement is good, these complex modes are not observed
at precisely the same forcing parameters as in the experiments. For example, modes
(3,3) and (2,2) are observed, respectively, at Γ = 0.85 and Γ = 1.5 in the model and
at Γ =0.7 and Γ = 1.2 in the experiments.

Many other complex periodic solutions are generated by the model for different
forcing parameters (Γ, ω) and initial conditions (V, φ). Some of these modes arising at
a forcing frequency ω = 1.21 are illustrated in figure 25. In figure 25(a), the solution is
displayed for Γ = 0.05 <ΓC . Below the acceleration threshold ΓC , periodic bouncing
cannot be sustained: the intervening air layer thins and the droplet eventually
coalesces. Two distinct complex periodic modes may arise at Γ = 0.65 (figure 25b–c),
and chaotic motion emerges at Γ =1.82 (figure 25d ).

In figure 26, a periodic solution (2, 1) arising at ω =1.21, Γ = 1 is compared to
a chaotic solution arising at ω = 1.21, Γ = 1.82. Specifically, we plot phase-plane
trajectories (y, ẏ), power spectra of the trajectory y(t) and Lyapunov exponents
deduced by calculating the rate of exponential divergence of two initially adjacent
points in phase space. For Γ = 1, the phase plane reveals a stable limit cycle: the
power spectrum is discrete and the Lyapunov exponent is negative. For Γ = 1.82, the
phase plane reveals a chaotic attractor: the power spectrum is full and the Lyapunov
exponent positive. The latter indicates the sensitivity on initial conditions that is the
hallmark of chaos (Lorenz 1963).
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Figure 23. Multi-periodicity of bouncing modes at f = 33 Hz (ω =1.21) and Γ = 0.6,
corresponding to the forcing parameters of the trajectories reported in figure 13. Solid lines
correspond to trajectories y(t) computed from (4.14); dashed lines correspond to the film
motion; vertical dash–dotted lines represent the landing (L) and take-off (T) phases measured
experimentally (figure 13). (a) Modes (1,1), (2,1) and (3,1). (b) Mode (1,1). (c) Mode (2,1). (d )
Mode (3,1). Note that the free-fall portion of the trajectory is not a parabola since y(t) is the
position of the droplet in a frame that moves with the vibrating soap film.

We proceed by solving (4.14) with ω =1.21 fixed for various accelerations Γ ∈ [0, 2]
to develop a bifurcation diagram of our system. For each Γ , simulations are run with
different initial conditions (V, φ). The transient is removed from the results, and the
impact speed measured at each bounce. Recall that a mode (m, n) is represented by n

different branches corresponding to n different bounces. For practical purposes, only
the principal bouncing modes are presented in figure 27. Several complex bifurcation
events appear on the bifurcation diagram, analysis of which is beyond the scope of
this paper. Nevertheless, we note some important features. For Γ < 0.18, no periodic
bouncing is possible. Γ

(2,1)
C =0.18 corresponds to the lower bouncing threshold, at

which mode (2, 1) appears. At the upper bouncing threshold, Γ
(1,1)
C = 0.47, the static

solution completely disappears and transforms into a periodic bouncing mode (1, 1).
Both thresholds are computed for various forcing frequencies ω (figure 12), the lower
of which is in good agreement with experiments. In particular, the threshold remains
roughly constant and less than 0.2 until f = 55 Hz; thereafter, it increases drastically,
consistent with the observed absence of bouncing for f � 55 Hz (ω � 2). We note that
the minimum in the upper threshold curve corresponds to the resonant frequency of
the soap film, 30 Hz in our experiments, as defined in (3.7).
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Figure 24. (a) Mode (3,3) observed at (Γ,ω) = (0.8545, 1.21) and (b) mode (2,2) observed at
(Γ,ω) = (1.5, 1.21). In both cases, solid lines correspond to trajectories y(t) in the frame of the
film, dashed lines correspond to the film motion and dash–dotted lines represent the landing (L)
and take-off (T) phases measured experimentally at (Γ,ω) = (0.7, 1.21) and (Γ,ω) = (1.2, 1.21),
respectively.
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Figure 25. Other modes produced by integrating (4.14) for ω = 1.21. (a) No bouncing at
Γ = 0.05. (b) Mode (3,2) at Γ = 0.65. (c) Mode (9,6) at Γ = 0.65. (d) Chaotic motion at
Γ = 1.82. The transition to chaos occurs via a cascade of period-doubling events, each of
which transforms a mode (m, n) into a mode (2m, 2n). The solid line corresponds to the
trajectory y(t) in the frame of the ring, and the dashed line to the ring motion.
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Figure 26. Periodic and chaotic solutions for ω = 1.21. (a) Limit cycle corresponding to
mode (2, 1) at Γ = 1. (b) Chaotic attractor at Γ = 1.82. (c) Sparse power spectrum of the
limit cycle (a). (d ) Full power spectrum of the chaotic attractor (b). Note the peaks at
N =ωT/(2π) = 1, corresponding to the forcing frequency. (e) Distance between points in
phase space decreases exponentially for the limit cycle (a), indicating a Lyapunov exponent
λ� −0.063. All trajectories collapse onto the limit cycle. (f ) For the chaotic attractor (b), the
Lyapunov exponent λ� 0.4 . Initially neighbouring trajectories diverge exponentially, indicating
sensitivity to initial conditions.

As Γ is increased, an increasing number of periodic solutions emerge. At Γ =1.2,
multi-periodicity arises, with modes (1,1), (2,1), (3,1) and (4,1) all coexisting. Further
increasing Γ introduces a number of complex periodic modes, for example (3,3).
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Figure 27. Bifurcation diagram for ω = 1.21. Dimensionless impact speed V as a function of
the dimensionless acceleration Γ , as deduced by integrating (4.14). No bouncing is observed
below Γ = 0.18. Then, several discrete values of the impact velocity become possible, indicating
multi-periodicity at moderate Γ . Finally, for Γ > 1.76 (shaded area), a few periodic states
persist, but chaos prevails.

Finally, the principal modes (m, 1) branch to (2m, 2) states through period-doubling
events; solutions then bounce between two branches on a vertical line in figure 27.
The transition to chaos occurs via a number of such branching events, known as a
period-doubling cascade. We note that modes (2, 1) and (3, 1) give rise to cascades
that stop at roughly the same point Γ � 1.76. The detailed cascade from (2, 1) to
(64, 32) is represented in figure 28, and the accompanying power spectra clearly
indicate period doubling. Within the predominantly chaotic regime (Γ > 1.76), some
stable limit cycles still exist at least until Γ = 1.9. Further discussion of the bifurcation
diagram is presented in Gilet & Bush (2008).

We note that in our experiments, both the appearance of complex modes and
chaos occur for lower accelerations than in our model solutions. In particular, chaotic
bouncing was observed at Γ = 1.1 in experiments (figure 14), instead of Γ = 1.76
in our simulations. This discrepancy is presumably due to the shortcomings of our
simple model for the dissipation in the system; in particular, details of the droplet
deformation are not modelled in (4.14).

Solutions of (4.14) can be displayed on a Poincaré section made at impact, i.e.
(y, ẏ, θ) = (0, −V, φ). Equations (4.14) are integrated numerically from one impact to
the next, for various initial conditions (V, φ). A two-dimensional iterative map may
thus be defined as

Vi+1 = f (Vi, φi),

φi+1 = g(Vi, φi).

}
(4.15)

The net energy �E gained by the drop during the ith bounce is computed as the
difference of kinetic energy between two successive impacts �E = (V 2

i+1 − V 2
i )/2.
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Figure 28. (a) Period-doubling cascade from mode (2, 1) to mode (64, 32) at ω = 1.1.
Dimensionless impact speed V as a function of the dimensionless acceleration Γ , as deduced
by integrating (4.14). (b) Magnification of the shaded region in (a). (c) Power spectra of mode
(2, 1) at Γ = 1.33, mode (4, 2) at Γ = 1.5 and mode (8, 4) at Γ = 1.75.

Results are presented in figure 29(a–d ) for ω = 1.21 and Γ ∈ [0.6, 0.85, 1.3, 1.6]. All
the observed modes are represented in these iterative maps. Contours are iso-values of
�E. For impact in the grey and white regions, the drop experiences a net energy gain
and loss, respectively, during impact. On the intervening curve, the energy transferred
to the drop precisely balances that dissipated, �E = 0. Modes (m, 1) are stationary
states in this iterative map represented by single points that necessarily fall on this
zero contour. We note that two or more equilibrium points may be found for each
mode (m, 1) on either side of the shaded area; however, numerical integration of
(4.14) indicates that only points on the right-hand side of the shaded area are stable.
We note that the shaded area is bounded above by a maximum-impact velocity, which
explains, for example, why mode (4, 1) is impossible to observe at Γ � 1.085. Modes
(m, 1) observed experimentally at Γ = 0.6 are displayed in figure 29(a) for the sake of
comparison. While the quantitative agreement is not exact, it is clear that our simple
model captures the essential features of our experiments.

Complex modes n> 1 may also be rationalized with these iterative maps. Periodic
modes are represented by closed circuits. The net energy extracted during all of the
impacts along these circuits necessarily sums to zero. In modes (m, 2), bouncing occurs
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Figure 29. Net energy transferred to the drop during impact as a function of the impact
speed V and phase φ. Poincaré sections at impact for several periodic states are superposed.
The forcing frequency is ω = 1.21, while the forcing acceleration is (a) Γ = 0.6, (b) Γ = 0.8545,
(c) Γ = 1.3 and (d ) Γ = 1.6, respectively. (�) Modes (m, 1); (�) modes (m, 2); (�) modes
(m, n) with n> 2. In the shaded area, computed numerically by integrating (4.14), the droplet
gains more energy during impact than it loses to dissipation; in the white area, the opposite
occurs. Energy contour curves are spaced by �E = 2 in (a,b) and �E =4 in (c,d ). Stationary
periodic states (m, 1) are presented along with closed orbits corresponding to complex
periodic states. Crosses in (a) correspond to experimental data for modes (m, 1) illustrated in
figure 13.

alternately in- and outside the shaded area. For the (2,2) mode, evident in figure 29(d ),
the first bounce inside the shaded area transfers energy to the droplet, increasing the
velocity at the second impact. The second bounce occurs outside the shaded area, so
energy is lost. Energy, velocity and phase are thus decreased in order to restore the
initial conditions to those of the first bounce. In mode (9, 3), two bounces increase
the energy, the velocity and the phase until the droplet leaves the shaded region.
The third bounce dissipates energy, thereby restoring the initial conditions of the first
bounce. A Poincaré section of the chaotic attractor emerging at (ω, Γ ) = (1.21, 1.82)
is presented in figure 30. The structure of the chaotic attractor is represented in polar
coordinates in figure 30(b).

In the limit of weak forcing and dissipation, Γ � 1 and Ψ � 1, (4.14) reduces to

ÿ0 = −1 − y0H (−y0), (4.16)
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Figure 30. Poincaré section at impact of the chaotic attractor at (Γ,ω) = (1.82, 1.21).
(a) Cartesian representation of the (V, φ) plane, with �E contours superposed (spaced by 5).
The shaded area corresponds to a net gain of energy per bounce. (b) Polar representation of
the (V, φ) plane, in which the detailed structure of the attractor is more clear.

which can be solved analytically subject to initial conditions (y0, ẏ0) = (0, −V ) at
impact τ = 0, yielding

y0 = H (−y0)[cos τ − 1 − V sin τ ] + H (y0)

[
V (τ − τ1) − (τ − τ1)

2

2

]
, (4.17)

where the dimensionless contact time τ1 = tc
√

k/m is given by

τ1 = 2π − 2 arctanV = 2π − 2 arctan

[
1

ρgR2

√
3σkWe

4π

]
. (4.18)

We note that this prediction for the contact time is in excellent agreement with both
our experimental observations (figure 11a) and numerical solution of (4.14).

The total period of a jump is given by the sum of the contact time and time in
flight: τ2 = τ1 + 2V . For a periodic mode (m, 1), the bouncing period must precisely
match the forcing period, so that ωτ2 = 2πm. We thus deduce a criterion for periodic
bouncing modes (m, 1)

Vm − arctan Vm = π

(
m

ω
− 1

)
, (4.19)

that prescribes the impact speed Vm required for each value of m to arise at a given
forcing frequency ω. Note that V − arctanV increases monotonically with V > 0;
therefore, m > 1 when ω > 1. Consequently, this simple leading-order approach is not
able to describe the mode (1,1), since it implicitly assumes that the forcing is weak.
For mode (1,1), the amplitude of the forcing motion Γ/ω2 has the same order of
magnitude as the amplitude of the droplet motion y(t).

For each value of the impact speed V and phase φ, the energy difference
�E =ESupplied − EDissipated may be computed for this reduced model via

EDissipated = Ψ

∫ τ1

0

|ẏ0|3 dτ

=
4Ψ

3

[
(V 2 + 1)3/2 +

3

2
V 2 + 1

]
(4.20)
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Figure 31. Net energy transferred to the drop during impact as a function of the impact
velocity V and phase φ. The forcing parameters are (Γ,ω) = (0.6, 1.21). In the shaded area,
computed numerically by integrating (4.14), the droplet gains energy during impact. The thick
line is the leading-order approximation of the shaded area, corresponding to (4.20) and (4.21)
deduced for a conservative, unforced system. Dashed lines correspond to velocities prescribed
by the compatibility equation (4.19). Modes (m, 1) predicted by numerical simulation are
represented by dots and predictions based on the leading-order approach (4.20–4.21) are
represented by crosses.

and

ESupplied = Γ

∫ τ2

0

ẏ0 cos(ωτ + φ) dτ

=
2Γ

ω2(ω2 − 1)

{
ω2 sin

(
ωτ2

2

)[
sin

(
ωτ2

2
+ φ

)
− ωV cos

(
ωτ2

2
+ φ

)]

+ sin

(
ω(τ1 + τ2)

2
+ φ

)
[ωV cos(ωV ) − sin(ωV )]

}
. (4.21)

The resulting curve on which �E = ESupplied − EDissipated = 0 for (Γ, ω) = (0.6, 1.21) is
displayed in figure 31. The analogous curve generated from the numerical solution
of the full model system is included for the sake of comparison. While the results are
qualitatively similar, the quantitative agreement is unsatisfactory. In particular, for
low impact speeds, the solution of the unforced, conservative system yields a poor
approximation for the neutral curve �E = 0. Nevertheless, we can rationalize the
absence of the (4,1) mode: according to the compatibility equation (4.19), V4 � 8.7,
which is beyond the shaded area for these low Γ values.

5. Discussion
We have presented a combined experimental and theoretical investigation of

droplets bouncing on a soap film. We first considered droplet impact on a static
film. Over the range of impact speeds considered, the film reacts rapidly to the
external forces applied by the impacting drop. The film shape may thus be described
as quasi-static, a spherical cap beneath the drop and a catenoid beyond it. This feature
allows for the deduction of a simple force–displacement relation for the impacting
drop that provides a good description of the drop trajectory. Moreover, it yields
a criterion for droplet bouncing We∗ < 16 that is consistent with our experimental
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observations. Provided the droplet bounces, the film behaves like a linear spring with
spring constant k =(8π/7)σ . Consequently, the contact time τc ∼

√
m/k is independent

of impact speed. Finally, the droplet loses a certain percentage of its translational
energy at each bounce, specifically �We = 0.087We3/2: a fraction of the work done by
the soap film is transferred into the vibrational energy of the droplet and subsequently
lost through dissipation. These observations and deductions concerning the interaction
of a droplet and a static film allowed us to make significant theoretical headway in
characterizing the dynamics of droplets bouncing on a vibrating film.

The theoretical description of the bouncing dynamics is much simpler on a soap
film than a liquid bath. In the configuration considered by Couder et al. (2005a), it
is relatively difficult to characterize the precise shape of the fluid interface; moreover,
describing the drop dynamics requires consideration of the motions within both
the underlying fluid and the intervening air layer. Conversely, in our system, the
intervening air layer serves only to communicate the curvature pressure from the
film to the droplet; its dynamics may thus be neglected. When a droplet strikes a
vertically vibrating reservoir, inertia determines the characteristic response time of
the underlying fluid. On a vibrating soap film, the response of the interface to the
droplet is effectively instantaneous; as a result, the contact time depends on neither
the forcing frequency nor the impact speed.

On a vibrating film, the dissipative losses of a bouncing droplet may be balanced by
the input of vibrational energy, so that periodic bouncing states can emerge. Simple
and complex periodic bouncing states as well as multi-periodicity were observed.
A simple theoretical model of the bouncing states was developed, and the essential
physics of the process were captured. To describe the motion of the droplet’s centre
of mass, we deduced a single second-order nonlinear non-autonomous ordinary
differential equation that reproduces all the bouncing states observed experimentally.
Quantitative agreement was obtained between theory and experiment for the low-
order periodic states, and qualitative agreement for the more complex periodic and
chaotic states. More sophisticated modelling would incorporate the drop dynamics,
treating explicitly the evolution of the droplet deformation.

The multiplicity of periodic bouncing solutions was rationalized by considering the
energetics of the system. Since the contact time is independent of impact speed, the
energy imparted to a droplet impacting a vibrating film is uniquely prescribed by
the impact phase. Our model demonstrates that the different periodic modes arising
at the same forcing parameters correspond to different impact phases. More complex
modes were seen to correspond to closed orbits in the (V, φ) phase space (figure 29).
Finally, we derived bifurcation diagrams to describe the dependence of the system
behaviour on the forcing. As the applied acceleration Γ was increased progressively,
the drop went through transitions from static, to simple periodic bouncing, to complex
periodic bouncing states; ultimately, a number of period-doubling transitions lead to
a chaos. The presence of chaos in our model system was confirmed by examining
phase plots, power spectra and Lyapunov exponents.

The simplest fluid mechanical system that exhibits the features of low-dimensional
chaos is the dripping faucet (Shaw 1984), whose dynamics have been investigated
extensively (Ambravaneswaran et al. 2004; Coullet, Mahadevan & Riera 2005). The
Howard–Malkus waterwheel (Strogatz 1994) is a fluid-driven mechanical device, the
dynamics of which may be described in terms of the Lorenz equations (Sparrow
1982). The fluid trampoline, which we have shown to be analogous to a fluid mass
on a fluid spring, may be numbered in this small group of simple fluid mechanical
chaotic oscillators.
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a = tc/τc Ohsf � 0.015 Ohsf = 0.13

Ohd � 0.015 1.86 1.38
Ohd = 0.13 1.98 1.72

b = �We/We3/2

Ohd � 0.015 0.087 0.12
Ohd = 0.13 0.082 0.097

c = FM/(σR)We−1

Ohd � 0.015 1.11 0.57
Ohd = 0.13 0.84 0.74

Table 3. Variation of (a) the contact time tc , (b) the dissipated energy �We and (c) the
maximal force FM with the viscosity of the droplet and the soap film as characterized by
Ohd = νdρd/

√
σdR and Ohsf = νsf ρsf /

√
σsf R, respectively.

Finally, the manipulation of individual droplets is becoming progressively
more important in microfluidics, and represents an attractive alternative to fluid
displacement in microchannels (Stone, Stroock & Ajdari 2004; Squires & Quake
2005). Controlled droplet bouncing may be a promising way to manipulate fluids for
microfluidic operations. We have seen that the bouncing of droplets on a soap film is
markedly different from that on a bath, and much simpler to describe theoretically. It is
hoped that our study will inform ongoing experimental and theoretical investigations
of bouncing droplets.

T. Gilet thanks FRIA/FNRS and Belgian Government for financial support. We
gratefully acknowledge Aslan Kasimov, Jeff Aristoff, Pedro Reis, Laurent Courbin,
J-C Nave, Sunny Jung and Matt Hancock for fruitful discussions.

Appendix A. The role of viscosity
To assess the influence of viscosity on the system, the viscosity of both the droplet

and soap film was varied. The resulting modifications to the contact time, energy
dissipated and maximum force generated are reported in table 3. The constant
of proportionality between the contact time tc and the capillary time τc slightly
increases with the droplet viscosity νd , and significantly decreases with increasing
soap film viscosity νsf . The kinetic energy lost, �We, increases with increasing soap
film viscosity, and decreases with increasing droplet viscosity. The maximum force
decreases with increasing drop and film viscosity.

We proceed by rationalizing the observed variation of dissipation with viscosity
reported in table 3. When the drop viscosity increases, the drop becomes progressively
more resistant to deformation (Clanet et al. 2004). Consequently, it becomes easier to
deform the soap film than the drop, and the fraction of energy absorbed by droplet
deformation Λ decreases. Since the dissipation coefficient (4.7) is proportional to
Λ1/2, it also decreases slightly. When the viscosity inside the film is increased, the
contact time tc/τc decreases, giving more importance to the phase where F η̇ < 0, thus
increasing the energy transferred from translation to vibration. Dissipation is thus
more efficient in the droplet, and the coefficient Λ increases.
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Appendix B. Mode 2 droplet deformation
The theory of droplet oscillations was developed by Rayleigh (e.g. Landau &

Lifchitz 1959). We present here some analytical results for the natural mode 2
deformation.

The potential velocity field is given in spherical coordinates by

vr = C cos(2πf t)r(3 cos2 θ − 1),

vθ = −3Ccos(2πf t)r cos θ sin θ.

}
(B 1)

On the surface of the droplet, r = R(θ), and

vr = Ṙ = C cos(2πf t)R(3 cos2 θ − 1),

vθ = Rθ̇ = −3C cos(2πf t)r cos θ sin θ.

}
(B 2)

The latter equation is directly integrated to give

tan θ

tan θ0

= e− 3C
2πf

sin(2πf t). (B 3)

This result is substituted into (B 1) to find

R

R0

=
e

C
πf

sin(2πf t)√
cos2 θ + e

3C
πf

sin(2πf t) sin2 θ

. (B 4)

This equation corresponds to a spheroid with vertical axis c = R0e
C

πf
sin(2πf t) and

equatorial radius a =R0e
− C

2πf
sin(2πf t). We note that the volume of the spheroid is

proportional to ca2 = R3
0 which does not depend on t: the volume of the droplet is

conserved during its oscillation.
The surface area of the spheroid is given by

S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2πa2 +
2πac2

√
c2 − a2

arcsin

(√
c2 − a2

c

)
, if c > a,

π√
a2 − c2

[
2a2

√
a2 − c2 + ac2 ln

(
a +

√
a2 − c2

a −
√

a2 − c2

)]
, if c < a.

(B 5)

If we consider small deformations c = R0 + η, η � R0, the surface area becomes

S � 4πR2
0 +

16π

5

η2

2
+ ϑ(η3). (B 6)

The additional surface energy is thus given by

Ed � 8π

5
ση2. (B 7)

The kinetic energy of internal motions may be estimated from

K =

∫
V

ρ
(
v2

r + v2
θ

)
2

dV � πρ

∫ π

0

sin θ dθ

∫ R0

0

(
v2

r + v2
θ

)
r2 dr =

4π

5
ρR5

0C
2 cos2(2πf t).

(B 8)

Since η = R0 − R0e
C

πf t
sin(2πf t),

η̇2 = 4C2R2
0 cos2(2πf t)e

2C
πf

sin(2πf t) � 4C2R2
0 cos2(2πf t) if C � 2πf, (B 9)
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so

K � πρR3
0

5
η̇2 =

3m

10

η̇2

2
. (B 10)

Conservation of energy yields

d

dt
(K + Ed) = 0 → 3m

10
η̈ +

16πσ

5
η = 0. (B 11)

This harmonic oscillator has a frequency of f =
√

8σ/3πm, which is the exact
expression obtained by Rayleigh from the dispersion relation of infinitesimal capillary
waves.

Appendix C. Sources of dissipation
Some energy is inevitably dissipated in the air layer and the soap film. Both film and

droplet are coated by a commercial surfactant whose precise surface properties are not
easily quantified. The extent to which a surfactant-laden surface is rigidified depends
on both the type and concentration of surfactant. In general, soap films lie between the
‘rigid’ and ‘free’ limits, in which the internal flows correspond, respectively, to Poiseuille
and plug flows. The Poiseuille regime is more dissipative since velocity gradients arise
across the thickness of the film. Conversely, in plug flow, transverse velocity gradients
are negligible, and the dissipation results from velocity gradients in directions parallel
to the film, which are necessarily much smaller. Therefore, for the sake of bounding
the dissipation in the soap film, only the Poiseuille case is considered here.

Lubrication theory describes flows in a fluid domain that is very thin in one
direction. The pressure gradients ∇p and the flow rate Q are effectively parallel to
the film. Conservation of mass and momentum requires that

∂h

∂t
+ ∇ · Q = 0, (C 1)

Q +
h3

12μ
∇p = 0. (C 2)

The energy dissipation �K in the whole film (surface S) during tc is given by

�K = −
∫ tc

0

∫
S

Q · ∇p dS dt. (C 3)

Equations (C 1) to (C 3) are scaled to yield

h

tc
∼ Q

R

Q ∼ h�p

12μR

⎫⎪⎪⎬
⎪⎪⎭ ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q2 ∼ 12μR4

t3
c �p

h2 ∼ 12μR2

tc�p
,

(C 4)

while the dissipation scales as

�K ∼ tc(2πR2)
�p

R
Q ∼ 4π

√
3μR6�p

1.86τc

, (C 5)
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where �p is the anomalous air pressure in the air layer beneath the drop’s centre. We
thus deduce

�We ∼ 3�K

2πR2σ
∼ 6

√
3μR2�p

1.86τcσ 2
. (C 6)

The overpressure �p should scale as FM/(πR2) ∼ 0.35σ/RWe, which gives a scaling
for the dissipated energy,

�We ∼ 3Oh1/2We1/2. (C 7)

Assuming that the constant of proportionality is relevant, the range of energy

loss due to dissipation in a soap film with Oh = 0.015 is �We ∈ [0.37, 1.5], while
the observed range of dissipation is �We ∈ [0.2, 5]. So, for We � 1, we expect the
resulting dissipation in the soap film to be relevant for the case of rigid films. This
additional source of dissipation might explain the fact that the observed dissipation is
systematically higher than the scaling law (2.4) for We ∼ 1. Nevertheless, the scaling
�We ∼ We1/2 is not observed experimentally for We � 1.

The Ohnesorge Oha based on the air viscosity is approximately 100 times less than
Oh; therefore, the dissipation in air is negligible. The typical thickness reached by the
air layer during impact is inferred from (C 4)(

h

R

)2

∼ 12μa

tc�p
∼ 9

Oha

We
, (C 8)

which yields h ∈ [7, 28] μm for We in the range [1, 16]. Note that if the film is free,
the air layer drains more easily and thins more rapidly.
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Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting
drop. J. Fluid Mech. 517, 199.

Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale.
Phys. Rev. Lett. 97, 154101.

Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005a From bouncing to floating:
noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.

Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005b Walking and orbiting bouncing droplets.
Nature 437, 208.

Coullet, P., Mahadevan, L. & Riera, C. S. 2005 Hydrodynamical models for the chaotic dripping
faucet. J. Fluid Mech. 526, 1.

Courbin, L., Marchand, A., Vaziri, A., Ajdari, A. & Stone, H. 2006 Impact dynamics for elastic
membranes. Phys. Rev. Lett. 97, 244301.



202 T. Gilet and J. W. M. Bush

Courbin, L. & Stone, H. 2006 Impact, puncturing and the self-healing of soap films. Phys. Fluids
18, 091105.

Dell’Aversana, P., Banavar, J. R. & Koplik, J. 1996 Suppression of coalescence by shear and
temperature gradients. Phys. Fluids 8, 15.

Dorbolo, S., Terwagne, D., Vandewalle, N. & Gilet, T. 2008 Resonant and rolling droplets. New
J. Phys. 10, 113021.

Gilet, T. & Bush, J. W. M. Chaotic bouncing of a droplet on a soap film. Phys. Rev. Lett. 102,
014501.

Gilet, T., Mulleners, K., Lecomte, J.-P., Vandewalle, N. & Dorbolo, S. 2007a Critical parameters
for the partial coalescence of a droplet. Phys. Review E 75, 036303.

Gilet, T., Terwagne, D., Vandewalle, N. & Dorbolo, S. 2008 Dynamics of a bouncing droplet
onto a vertically vibrated interface. Phys. Rev. Lett. 100, 167802.

Gilet, T., Vandewalle, N. & Dorbolo, S. 2007b Controlling the partial coalescence of a droplet
on a vertically vibrated bath. Phys. Rev. E 76, 035302.

Graff, K. F. 1975 Wave Motion in Elastic Solids . Oxford University Press.

Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface.
Phys. Rev. E 73, 027301.

Jayaratne, O. W. & Mason, B. J. 1964 The coalescence and bouncing of water drops at an air–water
interface. Proc. R. Soc. London, Ser. A 280, 545.

Kowalik, Z. J., Franaszek, M. & Pieranski, P. 1988 Self-reanimating chaos in the bouncing-ball
system. Phys. Rev. A 37 (10).

Landau, L. & Lifchitz, E. 1959 Fluid mechanics. In Course on Theoretical Physics , vol. 6. Addison
Wesley.

Legendre, D., Daniel, C. & Guiraud, P. 2005 Experimental study of a drop bouncing on a wall
in a liquid. Phys. Fluids 17, 097105.

LeGoff, A., Courbin, L., Stone, H. A. & Quéré, D. 2008 Energy absorption in a bamboo foam.
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