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a b s t r a c t

Many organisms reproduce by releasing gametes into the surrounding fluid. For some such broadcast

spawners, gametes are positively or negatively buoyant, and, as a result, fertilization occurs on a two-

dimensional surface rather than in the bulk of the air or water. We here rationalize this behaviour by

considering the encounter rates of gametes on the surface and in the fluid bulk. The advantage of

surfacing is quantified by considering an infinitely wide body of water of constant depth. Differential

loss rates at the surface and in the bulk are considered and their influence on the robustness of surface

search assessed. For small and moderate differential loss rates, the advantage of surfacing is very robust

and significant; only for large loss rate differences can the advantage of surfacing be nullified.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Sexual reproduction in both plants and animals often involves
broadcasting gametes into a fluid environment, either air or
water. In some such broadcast spawners (notably, red algae,
terrestrial plants, and a wide sampling of marine invertebrates)
male propagules (either pollen or sperm) are released into the
fluid and make their way to the eggs retained by females. More
commonly, both sperm and eggs are released, and fertilization
occurs in the fluid. Unlike animals that copulate – for whom the
motility of the adult is used to ensure that sperm meets egg – few
reproductive propagules of broadcast spawners are sufficiently
motile to control their position in the environment. Instead, they
move at the whim of wind or currents. The resulting random
transport can be advantageous – it allows for mating among
widely dispersed or sedentary individuals – but it also poses a
serious challenge. Because random mixing causes dilution of
propagules, through time the likelihood decreases that sperm
and egg will meet (Denny, 1988; Denny and Shibata, 1989). Even
in still water, the effective rotational diffusion of small motile
gametes causes them to move randomly (Berg, 1993).

At least two obvious strategies are available to broadcast
spawners to maximize their probability of fertilization in the
presence of random mixing. First, species that release both male

and female propagules should spawn synchronously in response
to either chemical or environmental cues, thereby increasing the
initial concentration of gametes. This strategy is commonplace
among marine invertebrates and seaweeds (e.g. Pearse et al.,
1988; Levitan and Petersen, 1995; Togashi and Cox, 2001;
Santelices, 2002). Second, organisms should minimize the spatial
domain in which gametes move, thereby increasing their encoun-
ter rates. For example, some seaweeds living in tide pools release
gametes only at low tide when the pool is isolated from the sea
(Pearson and Brawley, 1996). Other broadcast spawners take
advantage of the coherent structures in the turbulent field, which
confine their gametes to relatively thin filament sheets (Crimaldi
and Browning, 2004). A more general implementation of this
second strategy (‘‘surfacing’’) constrains propagules to a surface
rather than allowing them to mix through a volume. Gametes in
water could be positively buoyant, for example, leading to
confinement at the water’s surface. Alternatively, negative buoy-
ancy in water leads to confinement near the seafloor or lake bed.
In air, the negative buoyancy of pollen grains tends to concentrate
them near the ground (Denny, 1994).

While it would seem intuitively obvious that confining the
search for a mate to a plane provides an advantage, there are
several complications to consider. First, the risk of death might be
higher near the surface than in the fluid bulk. The seafloor, for
example, is densely covered with a variety of suspension feeders
all too willing to consume reproductive propagules, and rainfall
and the resulting decrease in sea-surface salinity can kill buoyant
gametes of corals (Harrison et al., 1984). Moreover, the delay and
perils associated with traveling to a surface might conceivably
make it faster and safer to remain in the bulk fluid. Under what
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circumstances is surfacing a viable reproductive strategy? We
here provide a quantitative comparison between encounter rates
at surfaces and in the bulk, and so rationalize and quantify the
evolutionary advantage of surfacing.

The results are applicable to numerous scenarios covering a
wide range of scales, including biofilms, puddles, ponds, lakes,
oceans, and the atmosphere. Examples abound. A thin liquid film
is required for sexual reproduction of liverworts, hornworts,
mosses and ferns, in order for the antherozoids (the equivalent
of sperm) to be able to reach neighbouring egg cells. In eelgrass
(genus Vallisneria), male flowers detach from the plant and float
up to the surface while the female flowers rise to the surface by
straightening their coiled stalks. After successful pollination, the
stalks coil down again and the fruit develops underwater. Aquatic
plants of genera Lepilaena, Ruppia, Halodule and others (Cox and
Knox, 1988) live in coastal waters or brackish lakes and release
flowers that float to the water surface, where they rupture and
expel pollen which then floats on the surface until colliding with a
stigma. Several species of corals on the Great Barrier Reef release
buoyant gamete bundles that float to the surface and then break
apart, releasing eggs and sperm (Harrison et al., 1984).

We will model the movement of all such gametes as a random
walk (Cox, 1983). By that we specifically mean movement con-
sisting of discrete steps of constant length d in a random direction
happening over a constant timescale t, resulting in an effective
diffusivity D� d2=t. This provides a good model of particle motion
in many biological settings. Small passive particles, like the
gametes of red algae in calm water, may be moved about by the
random motion of surrounding molecules and the resulting
Brownian motion is a quintessential example of a random walk.
Motile small cells, i.e. flagellated sperm or their equivalent, can be
separated into two types according to their mode of propulsion.
Cells of the first type ‘‘run and tumble’’, abruptly changing
direction after some approximately constant time interval within
which they swim along straight lines, hence the relevance of the
random walk model. Cells of the second type do not run and
tumble, but the direction of their movement changes frequently
due to random impacts with surrounding molecules. The impact
rate gives us the typical timescale over which the direction of
movement is constant, beyond which velocities are uncorrelated.
The random walk also provides a simple model for particles being
advected and dispersed by ambient turbulence. The characteristic
time and lengthscales T and L are prescribed by those of the
turbulent vortices, and the effective turbulent diffusivity is given
by D� L2=T. The rate at which the gametes are dispersed at the
surface and in the fluid bulk may also vary due to anisotropic
turbulence; for example, turbulence in the near surface region
may be marked by larger horizontal than vertical turbulent
eddies. We thus extend our model to include the possibility of
an anisotropic random walk. Regardless of their mode of trans-
port, gametes senesce, die, and may be consumed by predators,
and our model includes the effects of the rate at which gametes
are lost from the system.

Motivated by an interest in intercellular molecular transport
and olfactory sensing in insects, Adam and Delbrück (1968)
compared the relative efficiency of two-dimensional and three-
dimensional diffusive searches, assuming uniform initial distribu-
tion of particles and convenient circular boundaries. In contrast to
their approach, we use encounter probabilities instead of mean
diffusion times to compare the two scenarios, which enables us to
consider the influence of gamete mortality, planar boundaries and
point-like initial gamete distribution.

In Section 2, we present the idealized model for the surface and
bulk search scenarios. We then present a means of comparing the
two scenarios quantitatively using encounter probabilites and derive
exact formulae for these probabilites using a simple model of

random walk and gamete mortality. In Section 3, we compare
the encounter probabilities in the two scenarios. We first consider
the case in which the environmental conditions are the same on the
surface and in the bulk, and then the more general case, in which
there may be a larger loss rate or more vigorous turbulent mixing
near the surface. We deduce the critical water depth at which the
surface search become advantageous relative to the bulk search.
Furthermore, we consider the influence of anisotropic diffusion on
the advantage gained by surfacing. Finally, in Section 4 we apply the
results to three typical real-world scenarios, and discuss the
implications of our results and the limitations of our approach.

2. The model

Consider an organism living in a body of water of constant
finite depth H and infinite horizontal extent. We suppose that its
sexual reproduction involves encounters between male gametes
and female gametes, where at least one of the gametes is moving,
either passively or actively. If the sum of typical radii of the male
and female gametes is rT, we can model the male gametes as point
particles while the female gametes can be represented by a
sphere (or, in 2D, a circle) of radius rT. Henceforth, we shall refer
to the male gametes as ‘‘particles’’ and the female gametes as
‘‘targets’’. Successful encounter occurs when the particle touches
the surface of the target. We assume that the organisms are
distributed uniformly across the bottom surface of the water body
and that each organism releases the same number of targets
(female gametes). The number of particles (male gametes)
released by each organism does not impact the differential
encounter probability of surface and bulk searches; therefore
we consider the encounter probability of a single particle. Note
that our model is not restricted to the case of a female gamete
being much larger than the male, as rT represents the sum of the
gamete radii and so applies equally well to the case of isogamy.

To model the loss of viable gametes due to predation, energy
depletion, senility or other causes, we introduce the loss rate l.
We assume that l is constant, that is, the probability of a given
gamete dying during a small time interval dt is ldt. Such an
approximation is appropriate when predation is the primary
cause of gamete mortality, and adopted here in general for the
sake of mathematical simplicity. Since the gametes are generally
different in size and motility, we expect the loss rates to be
different for different sexes. Therefore we denote by l1 and l2 the
target and particle loss rates, respectively. As we shall demon-
strate below in Section 2.1, only the total loss rate l¼ l1þl2 will
enter into our calculations. We assume the gametes are released
simultaneously from multiple points distributed uniformly long
the water’s lower or upper surface. This corresponds to the
simultaneous gamete release by bottom-dwelling or surface-
dwelling organisms, respectively.

There are two reproductive strategies available to the organ-
isms: either they can release their gametes onto a surface (the
water surface or the bottom) or into the water bulk. We will
compare the two reproductive strategies using the gamete
encounter probability. The encounter probability PS will be the
probability that a particle (male gamete) introduced randomly
onto a plane uniformly filled with points simultaneously releasing
N targets (female gametes) each, will be successful in encounter-
ing at least one target before it dies. Similarly, PB will be the
encounter probability for a particle introduced into the water
bulk of constant depth H, whose bottom surface is again uni-
formly filled with target-releasing points. If the average density of
the organisms per unit area is r0 and each organism releases N

targets, then if the targets are released onto the surface, their
surface density will be rS ¼Nr0.
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2.1. Encounter probability

It is our aim to determine the encounter probabilities PS and PB

of a single particle with targets released from uniform planar
distribution of points, on the surface and in the bulk, respectively.
A good starting point is to consider a simpler scenario – the case
of one particle and one target, in an infinite d-dimensional space
(so that no boundaries need to be considered). Suppose that
the target has size rT and is originally a distance R from the
particle. Then the encounter probability Pd will be a function of rT,
the loss rates l1, l2 and distance R only. For d¼2,3, that is for
search on a surface or in an infinite fluid bulk, we can find Pd

exactly. In Appendix A we derive the following formulae:

P2ðR,rT ,kSÞ ¼
K0ðR=kSÞ

K0ðrT=kSÞ
, ð1Þ

P3ðR,rT ,kBÞ ¼
rT exp frT=kBg

R exp fR=kBg
, ð2Þ

where K0ðsÞ is the modified Bessel function of the second kind of

order 0, kS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DS=lS

p
and kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DB=lB

p
. Here lS, lB and DS, DB are

the total loss rates and diffusivities on the surface and in the bulk,
respectively. kS and kB can be interpreted as the typical distances a
gamete travels before dying, on the surface and in the bulk,
respectively, and will be henceforth referred to as the gamete’s

range. In each region the total loss rate l¼ l1þl2 and the diffusivity

D¼ ðd2
1þd

2
2Þ=ð2dtÞ is a constant associated with the gamete random

walk with steplengths d1, d2 for each gamete and common time-

step t. By definition, P2 and P3 are equal to 1 for R¼ rT , and then
rapidly decrease. For large R they decrease roughly exponentially.

Fig. 2 illustrates the dependence of P2 and P3 on the nondimen-
sional distance R=k for two values of rT=k, when kS ¼ kB ¼ k.

We observe that P24P3 for R4rT , P3 decreases faster than P2

with the initial gamete distance R=k, and the difference between the
two probabilities increases with decreasing rT=k, so smaller target
size makes surface search more advantageous compared to fluid
bulk search.

Since in our 3D scenario we work with a body of finite depth
only, we now consider the case of one particle and one target
originally a distance R apart on the bottom surface, in a body of
water of constant depth H (see Fig. 1 with h¼0). Denote the
encounter probability in this scenario by P3F . In Appendix B we
derive the formula

P3F ðR,rT ,kB,HÞ ¼
AðR=kB,H=kBÞ

AðrT=kB,H=kBÞ
, ð3Þ

where

Aðx,yÞ ¼
X

nAZ

expf�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ4n2y2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ4n2y2
p :

Now that we know P2 and P3F – the single-particle, single-
target encounter rates – it is straightforward to derive PS and PB,
the single-particle, multiple-target encounter rates, since we

know the original target density rS and hence also the probabilility
of finding a target release point at a distance R (Table 1). Integrating
over all possible distances R we obtain (see Appendix C)

PSðrS,rT ,kSÞ ¼ 1�exp �rS

Z 1
rT

2pRP2ðRÞ dR

� �
, ð4Þ

PBðrB,rT ,kBÞ ¼ 1�exp �rS

Z 1
rT

2pRP3F ðRÞ dR

� �
, ð5Þ

where P2 and P3F are defined by Eqs. (1) and (3), respectively.
Evaluating the integrals in Eqs. (4) and (5) yields

PSðrS,rT ,kSÞ ¼ 1�expf�rSk
2
S I1ðrT=kSÞg, ð6Þ

PBðrS,H,rT ,kBÞ ¼ 1�expf�rSk
2
BI2ðrT=kB,H=kBÞg, ð7Þ

where I1ðsÞ ¼ 2p=K0ðsÞ
R1

s xK0ðxÞ dx, and I2ðs,tÞ ¼ 2p=Aðs,tÞ
R1

s xA

ðx,tÞ dx. The encounter probabilities PS, PB are proportional to target
density rS when rS is small. With increasing target density they
converge exponentially to 1. PB is proportional to rT for small target
size rT, whereas PS is proportional to 1=lnð1=rT Þ, so target size plays a
smaller role in the surface than the bulk searches.

3. Comparison of surface and bulk encounter probabilities

We proceed by comparing encounter probabilities on the
surface and in the bulk. In Section 3.1, we consider the case in
which the conditions on the surface and in the bulk are equally
favourable, that is, the loss rates and gamete motilities are equal.
In Section 3.2, we consider the more general case of unequal loss
rates and motilities, and derive an expression for the critical
water depth at which the surface and fluid bulk searches are

Fig. 1. Idealized model of a gamete searching for a mate on a water surface (left)

and in the fluid bulk (right). The female gamete is represented by a circular or

spherical target of radius rT, while the male gamete is modelled as a point particle.

The body of water has a constant depth H in the 3D scenario.

Fig. 2. Graphs of the encounter probabilites P2ðR,rT ,kÞ and P 3ðR,rT ,kÞ as functions of

the relative distance R=k, on a semi-logarithmic scale, for (a) rT=k¼ 0:01 and

(b) rT=k¼ 0:001. R is the initial distance between gametes and k¼
ffiffiffiffiffiffiffiffiffi
D=l

p
the gamete

range, where l is the loss rate and D the diffusivity. Both P 2 and P3 decrease

exponentially with R=k for large R=k, with P 3 decreasing at a faster rate. By definition

of the encounter distance rT, we must have P 2ðrT Þ ¼ P 3ðrT Þ ¼ 1. Comparing the two

graphs indicates that having a smaller target size rT increases the difference between

the two probabilities, and so increases the advantage of surface search.

Table 1
List of the symbols used in this paper. Subscripts S and B denote values on the

surface and in the bulk, respectively.

Symbol Definition Symbol Definition

D, DS, DB Gamete diffusivity l, lS , lB Gamete loss rate

PS, PB Gamete encounter

probability

k, kS , kB Gamete range

rT Target size r Relative target size

H Water depth H Relative water depth

rS Target density r Nondim. target density

m¼ kS=kB Relative bulk hostility
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equally advantageous. Finally, in Section 3.3, we consider the case
of anisotropic diffusion and show that it can be included in our
model by suitable rescaling of parameters.

3.1. Equal loss rates and motilities at the surface and in the bulk

Suppose that both the loss rate and the gamete motility are

the same on the surface and in the bulk. Then kS ¼
ffiffiffiffiffiffiffiffiffi
D=l

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd2
1þd

2
2Þ=4lt

q
while kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2

1þd
2
2Þ=6lt

q
¼

ffiffiffiffiffiffiffiffiffi
4=6

p
kS, from the defi-

nition of diffusivity D (see Appendix A), where d1, d2 are the length
scales associated with the random walk of each type of gamete, and t
is the associated time-step. Let us write k¼ kS, so kB ¼ k=

ffiffiffiffiffiffiffi
1:5
p

.

Writing r ¼ rSk2, r¼ rT=k and H ¼H=k for the nondimensional

target density, target size and water depth, respectively, Eqs. (6) and
(7) transform to

PSðr,rÞ ¼ 1�expf�rI1ðrÞg, ð8Þ

PBðr,r,HÞ ¼ 1�exp �
r

1:5
I2

ffiffiffiffiffiffiffi
1:5
p

r,
ffiffiffiffiffiffiffi
1:5
p

H
� �� �

: ð9Þ

Since r¼ rT=k is the ratio of target radius to the gamete’s
range, we expect this to be a small parameter, r51. When the
loss rate and gamete motility are the same for the surface and
bulk searches, the only reason that PS and PB differ is that the bulk
provides a larger region for the gametes; equivalently, the
average spacing between male and female gametes is less at the
surface. Therefore we must have PS4PB for all H40.

Now we can visualize the advantage of the surface search by
plotting the ratio of PS=PB as a function of r for various values of r

and H . The results are shown in Fig. 3. For large target densities, the
ratio PS=PB tends to 1, since with increasing target density, both PS

and PB must tend to 1 separately: the particle is bound to encounter
a target for sufficiently high target density. We also observe that the
convergence of PS=PB to 1 happens for increasingly large target
densities r as we increase the relative depth H , because a larger
total number of targets is required to fill a larger volume with
sufficiently high density. Conversely, for small target densities r, the
ratio PS=PB is independent of target density and proportional to H .

3.2. Unequal loss rates and motilities at the surface and in the bulk

We now determine the conditions under which PS4PB.
Combining Eqs. (6) and (7), we see that PS4PB requires that

rSk
2
S I1ðrT=kSÞ4rSk

2
BI2ðrT=kB,H=kBÞ3

k2
S

k2
B

4
I2ðrT=kB,H=kBÞ

I1ðrT=kSÞ
: ð10Þ

We now nondimensionalize as in the previous case, setting
r¼ rT=kS, H ¼H=kS and m¼ kS=kB. Thus m is the ratio of the
gamete ranges on the surface and in the bulk, and hence indicates
how favourable the conditions are for random walk encounters on
the surface relative to the bulk. As we might expect the conditions
to be more favourable in the bulk due to lower predation, one
might expect kB4kS, so m¼ kS=kBo1. The criterion (10) then
transforms to

PS4PB3I1ðrÞm24 I2ðmr,mHÞ ð11Þ

with I1ðrÞ ¼ 2p=K0ðrÞ
R1

r xK0ðxÞ dx and I2ðr,sÞ ¼ 2p=Aðr,sÞ
R1

r

xAðx,sÞ dx.
The curves of PS¼PB are shown graphically in Fig. 4 for three

typical values of r and a range of m and H . We observe that for
smaller relative target size r the surface search becomes more
advantageous. For small values of H , the critical value of m, for
which PS¼PB, is close to 1, whereas for large H the critical value of
m converges to a constant that decreases linearly with r.

3.3. Anisotropic diffusion

So far, we have compared the cases of search in the fluid bulk
and on the surface. However, in many cases the particles are not
strictly constrained to the surface but rather to a region just
beneath it. This is the case, for example, for light-sensitive motile
gametes or for buoyant particles in turbulent waters. Since we
have shown that PB � PS when H-rT , if the depth of this region is

Fig. 3. The dependence of the ratio of surface and bulk encounter probabilities, PS=PB , on the nondimensional target density, r, for relative target size (a) r¼ 10�3 and

(b) r¼ 10�4, and various relative water depths H . Here r¼ rT=k, H ¼H=k and r ¼ k2rS, where rT, H, rS are the target size, water depth and target density, and k¼
ffiffiffiffiffiffiffiffiffi
D=l

p
is

the gamete range, where l is the loss rate and D is the gamete diffusivity. The ratio PS=PB approaches 1 for high target density r , but the typical density at which this

happens increases with the water depth H . For small target density, the ratio PS=PB is independent of the density.

Fig. 4. Log–log graph of the critical relative water depth H ¼H=kS at which

surface and bulk searches are equally advantageous (PS¼PB) as a function of

m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlB=lSÞðDS=DBÞ

p
, for different values of r¼ rT=kS . Here, H is the water depth, rT

the target size and kS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DS=lS

p
, with lS, lB and DS, DB being the loss rates and

diffusivities on the surface and in the bulk, respectively. Only when loss rates are

greatly enhanced at the surface (small m), and for shallow domains (small H), is

bulk search advantageous.

J. Moláček et al. / Journal of Theoretical Biology 294 (2012) 40–47 43



Author's personal copy

comparable to the target size, or if the depth of this region is
much smaller than the total water depth, we can treat this case
just like the surface search. When the depth H2 of the region in
which the gametes move cannot be considered much smaller
than the total depth H, we have to compare PBðrS,H,rT ,kBÞ and
PBðrS,H2,rT ,kBÞ. We expect the same qualitative features to apply
here as in the previous cases, though we expect the magnitude of
the differences between the two scenarios (near-surface and fluid
bulk) to be smaller.

So far, we have assumed that the diffusion of the particles
happens isotropically. However, this is not always the case.
For example, turbulent mixing near the surface is typically
anisotropic, with different magnitudes in the horizontal and
vertical directions. Typically, convective currents in the bulk
enhance the vertical component of turbulent mixing, while the
presence of a free surface decreases it. Similarly, we expect
phototactic gametes to move preferentially in the horizontal
plane rather than the vertical once they reach the surface region.
Such anistropy affects our treatment of the 3D search, both for the
whole fluid bulk and for the near-surface region. Let us suppose
then, that instead of isotropic diffusion with diffusivity DB, we
have anisotropic diffusion with horizontal and vertical diffusiv-
ities DH and DV, respectively. If we write DV ¼ nDH , then we can
convert this case to one almost identical to the one already
studied just by rescaling all the vertical dimensions by n (see
Fig. 5). The reason why we do not get exactly the familiar scenario
is that now the target is an ellipsoid with vertical semi-axis of
length rT=n instead of a sphere. We would like to replace it with a
sphere of radius rnT which is equally likely to be encountered. A
reasonable approximation for small rT is a sphere of roughly the
same surface area. Approximating the surface of the ellipsoid to
be 4pr2

T=n yields rnT ¼ rT=
ffiffiffi
n
p

. Therefore with anisotropic diffusion,
we should evaluate PBðrS,H=n,rT=

ffiffiffi
n
p

,kBÞ instead of PBðrS,H,rT ,kBÞ.
It is apparent that when no1, this should increase PB since the
particles then move less in the vertical direction and thus the
random walk is closer to planar.

4. Discussion

We proceed by applying our results to three specific biological
systems. Relevant parameters for each system are listed in
Table 2. First, for a typical coral we assume the gamete diffusion
to be mainly due to the fluid motion. Both the surface turbulence
and currents near the bottom have typical speed U ¼ 0:1 m=s and
scale L¼0.1 m, giving a diffusivity D� 10�2 m2=s. As the gametes
survive for many hours after release, the loss rate lo10�4 s�1.
We here consider the worst case scenario l¼ 10�4 s�1. Referring
to Table 2 and Fig. 6, we see that bulk search would be advan-
tageous only for mo0:03, which corresponds to the loss rate
being 1000 times larger on the surface than in the bulk. Hence, we
expect the surface search to be advantageous for all realistic
values of loss rates and diffusivities, an inference consistent with
the fact that many coral species do employ the water surface for
their reproduction (Oliver and Babcock, 1992). We discuss below

why some species do not use this strategy despite the robust
advantage predicted by our model.

Second, marine green alga Monostroma angicava has photo-
tactic gametes that concentrate near the water surface. Their
typical gamete speed is 2� 10�4 m=s and tumbling timescale
5� 10�1 s, giving a diffusivity D¼ 2� 10�8 m2=s. We estimate
the dimensional loss rate to be on the order of 2� 10�4 s�1 (i.e.
more than half of the gametes will be dead after 2 h, see Grave
and Oliphant, 1930). From Table 2 and Fig. 6, we infer that a
surface to bulk loss rate ratio of at least 5000 is required to favour
the bulk search. Hence, surface search is again favourable.

Third, we consider the case of a polychaete annelid worm
Phragmatopoma californica, which does not employ surface search.
We obtain a critical value of m� 0:3, so indeed, in this scenario the
advantage of surfacing can be easily outweighed by relatively
hostile surface conditions. The main difference between this and
the previous two examples is the large size of the annelid gametes
relative to their range, which accounts for their use of the bulk
search.

The results of our analysis suggest that surface search is
advantageous in a variety of situations spanning a broad range
of scales. However, we have thus far tacitly assumed that
organisms release their gametes onto the same surface on which
they themselves live. Many bottom-dwelling organisms never-
theless release positively buoyant gametes, which float to the

Fig. 5. Rescaling vertical distances by n, the relative magnitude of vertical and

horizontal diffusivities, allows our model to capture the influence of anisotropic

diffusion.

Table 2
Values of relevant parameters for three types of water-dwelling organisms. The

critical value of m, the relative hostility of the surface environment required to

cancel the advantage gained by surfacing, is found to be high for corals and the

marine algae M. angicava, and low for the annelid worm P. californica. As expected,

organisms living in conditions where m is high (e.g. M. angicava and a large

number of coral species) tend to employ the water surface for reproduction, while

those with low m employ the water bulk (e.g. P. californica).

Typical coral M. angicava P. californica

Depth [m] 10 0.4 0.25

Target size rT [mm] 1 0.01 5

Diffusivity D [m2 s�1] 10�2 2�10�8
10�5

Loss rate l [s�1] 10�4 2�10�4
10�4

Gamete range kS [m] 10 0.01 0.5

Rel. target size r 10�4 10�3 10�2

Rel. depth H 1 40 0.5

Crit. value of m 0.03 0.02 0.3

Fig. 6. Log–log plot of the critical value of relative water depth H ¼H=kS , at which

surface and bulk searches are equally advantageous (PS¼PB), as a function of

relative target size r¼ rT=kS , for different values of m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlB=lSÞðDS=DBÞ

p
. Here, H is

the water depth, rT the target size and kS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DS=lS

p
the range, with lS , lB and DS,

DB being the loss rates and diffusivities on the surface and in the bulk, respectively.

Three example organisms are shown in the graph. For fixed r and H , one can read

off the maximum value of m for which the advantage of surface search is

outweighed by surface environment hostility. Surface search is more efficient

for corals and M. angicava when m40:03, and for P. californica when m40:3.
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water surface. Getting to the surface might be a long and
dangerous process, especially in deep water. If the male gametes
have any means of detecting the location of female gamete (e.g.
chemotaxis), this may also negate the disadvantage of the 3D
random walk. There are many other ways in which organisms can
tweak the encounter probability in the right direction; however,
as this can be typically be done both on the surface and in the
bulk, this introduces complications beyond the scope of our
model. For example, deep dwelling organisms release their
gametes with significant initial velocity, which hastens their
spread. Flowers on the water surface use surface tension to
distort the neighbouring free surface and thus increase their
effective target size. The maximum increase in the target radius
attainable by this method is twice the capillary length lc ¼ffiffiffiffiffiffiffiffiffiffiffiffi
s=rg

p
� 2 mm, which can increase the surface encounter prob-

ability substantially for small gametes.
Under most conditions, the encounter rates between passive

particles are higher on or near the surface than within the bulk.
This geometric consequence may have some bearing on models of
the creation of early terrestrial life. According to most current
theories, the simple organic molecules created by natural pro-
cesses in the atmosphere and oceans (Miller, 1953) accumulated
on the water surface, and were possibly further concentrated near
the shores by wind (Panno, 2004), there combining to form
macromolecules capable of replication and metabolism. Although
the mechanism responsible remains a point of contention, it is
clear that constraining the basic molecules to lie on a surface
would significantly increase the encounter rate, thus accelerating
the process. We note that other factors might have further
concentrated these molecules, for example containment within
bubbles or drops created by breaking waves or hydrothermal
vents. In any case, our study suggests that the evolution of early
life would have been accelerated had it arisen on the water
surface.

Increased encounter rates near surfaces can also affect how we
interpret reproduction in liverworts and hornworts, ‘‘lower’’
plants thought to be similar to those that first invaded the
terrestrial environment. Because liverworts and hornworts
require a film of liquid water as a pathway by which antherozoids
are delivered to eggs, reproduction in the terrestrial environment
is considered to be at a disadvantage relative to that in water.
However, confinement to a thin film of water might actually
increase the probability of antherozoid–egg encounter relative to
that operating when antherozoids are dispersed into a lake or
stream.

Finally, our model points in the direction of novel models of
predator–prey dynamics. Predatory habits will generally depend
on the type of region to which movement is confined. Presumably
different strategies will be required for catchment of prey moving
on a surface than in the bulk. While predators and prey are often
confined to the same fluid domain, such is not always the case;
for example, some birds prey on fish only at or near the water
surface. The role of geometry on predator–prey dynamics is left as
a subject for future research.

Appendix A. Exact solutions for Pd in infinite geometries

Consider two motile gametes (point particles) performing
random walks in d-dimensional space. Let the lengthscales of
the random walk steps be d1 and d2 for the first and second
gamete, respectively, and the timescale of the step be t, common
for both. Also let the loss rates for each gamete be l1, l2,
respectively. Now let Pd be the probability that the gametes will
ever encounter each other, that is, that they will get within a
distance rT of each other before expiring. Only the distance

between the gametes and the loss rates l1, l2 play a role in this
probability, so Pd ¼ PdðR,l1,l2Þ where R¼ 9x1�x29. We can choose
the coordinates so that at time t¼0 one gamete is at the origin
and the other one is at Rêx. Considering the encounter probability
at time t¼ t, we arrive at

PdðRÞ ¼ ð1�l1tÞð1�l2tÞ
1

ðSdÞ
2

Z
Sd

dm

Z
Sd

dn Pdð9Rêxþd1m�d2n9Þ,

ðA:1Þ

where Sd is the surface of a d-dimensional sphere and m, n are
unit vectors. Writing r¼ d1m�d2n and assuming r5R (i.e. d15R

and d25R), Taylor series expansion yields

PdðRÞ ¼ ð1�l1tÞð1�l2tÞ PdðRÞþ
d2

1þd
2
2

2R
�
d2

1þd
2
2

2Rd

 !
P 0dðRÞ

"

þ
d2

1þd
2
2

2d
P 00dðRÞþO

r2

R2
r

� �#
: ðA:2Þ

Writing D¼ ðd2
1þd

2
2Þ=2dt, l¼ l1þl2, and letting d1-0, d2-0 and

t-0 while keeping D and l constant simplifies Eq. (A.2) to

PdðRÞ ¼ k2 d�1

R
P 0dðRÞþP 00dðRÞ

	 

, ðA:3Þ

where k2 ¼D=l. The boundary conditions are

PdðrT Þ ¼ 1 and lim
R-1

PdðRÞ ¼ 0: ðA:4Þ

ODE (A.3) can be easily solved for both d¼2 and d¼3; applying
the boundary conditions (A.4) we get

P2ðRÞ ¼
K0ðR=kÞ
K0ðrT=kÞ

¼
K0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lR2=D

q
Þ

K0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lr2

T=D
q

Þ

,

P3ðRÞ ¼
rT

R
e�ðR�rT Þ=k ¼

rT expf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lr2

T=D
q

g

Rexpf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lR2=D

q
g

, ðA:5Þ

where K0ðsÞ is the modified Bessel functions of the second kind of
order zero.

Appendix B. Encounter probability in finite-depth 3D scenario

When the body of water has a finite depth H, we cannot use
the spherical symmetry which allowed us to treat the encounter
probability as a function of the initial gamete distance only. We
will use a less direct method based on manipulations of the
probability density function f ðx,tÞ describing the location of a
gamete. For simplicity, we will assume one gamete (the target) to
be non-motile and place it at the origin of our coordinate system.
The integral of f ðx,tÞ over the whole space gives us the probability
that the motile gamete is still alive at time t. Introduction of an
absorbing boundary condition at the encounter distance from the
target (i.e. distance rT from the origin) further reduces the total
integral of f ðx,tÞ, by an amount which must be equal to the
encounter probability between the two gametes.

We proceed by deriving the evolution equation for f ðx,tÞ and
then solving it under the initial and boundary conditions of the
two- and three-dimensional scenarios.

B.1. Evolution of f ðx,tÞ

Consider the evolution of the PDF f ðx,tÞ for a particle performing
a random walk in d-dimensional space. We assume that the particle
moves in discrete steps of length d, each step takes time t and the
loss rate is l, i.e. over a timestep t, f is reduced by an amount ltf .
The direction of each step is random and every direction is equally
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likely. If the particle is at x at time t, at time t�t it must have been at
a point x̂ with 9x�x̂9¼ d. Hence if we average the PDF at all such
points, we will get the PDF at x and t. In d dimensions (Sd is the
surface of the d-dimensional unit sphere)

f ðx,tÞ ¼
1�lt

Sd

Z
Sd

f ðxþdn,t�tÞ dSd: ðB:1Þ

Assuming d small and using the symmetry of Sd, Taylor expansion of
the right-hand side of (B.1) yields

f ðx,tÞ ¼ ð1�ltÞ f ðx,t�tÞþ d2

2d
r

2f ðx,t�tÞþOðd3
Þ

" #
: ðB:2Þ

Writing D¼ d2=2td and letting t-0 and d-0 while keeping D

fixed yields

@f

@t
¼Dr2f�lf : ðB:3Þ

B.2. 2D absorption

We want to solve the evolution Eq. (B.3) subject to the initial
condition f ðx,0Þ ¼ dðx�x0Þ and the absorbing boundary condition
f ðx,tÞ ¼ 0 on 9x9¼ rT . Letting R¼ 9x09 and nondimensionalizing using

x¼ Rx̂, t¼
R2

D
t̂ , rT ¼ RE, l¼

l̂D

R2
, ðB:4Þ

we transform the system into

@f

@t̂
¼ r̂

2
f�l̂f for t̂ Z0,

f ðx̂,0Þ ¼ dðx̂�x̂0Þ,

f ðx̂,t̂Þ ¼ 0 for 9x̂9¼ E: ðB:5Þ

Without the absorbing boundary condition and with l̂ ¼ 0, f would
be given simply by

f ðx̂,t̂Þ ¼
1

4pt̂
e�9x̂�x̂09

2
=4t̂ : ðB:6Þ

Now since the governing equation in (B.5) is linear, the solution to the
full system will be given by the sum of (B.6) and a corrector function
f cðx̂, t̂Þ, whose value at 9x̂9¼ E will be exactly the opposite of the
value of (B.6) there, so together they satisfy the boundary condition.
Assuming E51, the variation of Eq. (B.6) over the circle 9x̂9¼ E will
be always small relative to its value, so we can approximate it by
its value at the origin. This means that our approximation to fc (call it
~f c) has to satisfy radially symmetric boundary condition ~f cðx̂, t̂Þ ¼
�f ð0,t̂Þ at 9x̂9¼ E. Therefore ~f c will be radially symmetric: ~f cðx̂,t̂Þ ¼
~f cðr,t̂Þ. We can thus write the general form of ~f cðr,t̂Þ satisfying I.C.
~f cðr,0Þ ¼ 0

~f cðr,t̂Þ ¼ �

Z t̂

0
A2ðuÞ

e�r2=4ðt̂�uÞ

4pðt̂�uÞ
du ðB:7Þ

and it must satisfy the boundary condition at 9x̂9¼ E

�~f cðE,t̂Þ ¼ f ð0, t̂Þ ¼
e�9x̂09

2
=4t̂

4pt̂
¼

e�1=4t̂

4pt̂
: ðB:8Þ

We can visualize ~f c as continually releasing ‘‘particles’’ at the origin.
From now on we will drop the hats on the nondimensionalized time.

Hence our approximate solution to (B.5) is

f ðx,tÞ ¼
e�9x�x09

2
=4t

4pt
�

Z t

0
A2ðuÞ

e�x2=4ðt�uÞ

4pðt�uÞ
du: ðB:9Þ

In order for Eq. (B.9) to satisfy Eq. (B.8), we must haveZ t

0
A2ðuÞ

e�E
2=4ðt�uÞ

4pðt�uÞ
du¼

e�1=4t

4pt
, 8tZ0: ðB:10Þ

The total encounter (absorption) probability is given by

P2 ¼

Z 1
0

A2ðuÞ du, ðB:11Þ

where A2ðxÞ is determined for all xZ0 by the relation (B.10). If we
now have non-zero l̂ in Eq. (B.5), we can proceed in a similar manner
as above, inserting factors of e�l̂t where necessary to finally arrive at
Eq. (B.11) again, but this time with A2ðxÞ determined byZ t

0
A2ðuÞK2ðt�u,l̂,EÞ du¼ K2ðt,l̂,1Þ for 8tZ0, ðB:12Þ

where K2ðx,l̂,EÞ ¼ 1=xe�l̂x�E2=4x.
We can compute P2ðl̂,EÞ by integrating Eq. (B.12) from 0 to 1

with respect to t and using Eq. (B.11) to obtain

P2ðl̂,EÞ ¼
R1

0 K2ðu,l̂,1Þ duR1
0 K2ðu,l̂,EÞ du

¼

R1
0

1

u
e�l̂u�1=4u du

R1
0

1

u
e�l̂u�E2=4u du

: ðB:13Þ

B.3. 3D absorption

We proceed just as in the 2D case, starting from the system
(dropping the hats and writing a¼H=R)

@f

@t
¼r

2f�l̂f for tZ0, f ðx,0Þ ¼ dðx�x0Þ, f ðx,tÞ ¼ 0 for 9x9¼ E,

ðB:14Þ

@f

@z
¼ 0 at z¼ 0 and z¼ a, ðB:15Þ

only this time, the solution with l̂ ¼ 0, without absorbing bound-
ary condition and without the reflecting surfaces at z¼0 and z¼ a
would be given by

f ðx,tÞ ¼
e�9x�x09

2
=4t

ð4pÞ3=2t3=2
, ðB:16Þ

where x0 ¼ ð1;0,0Þ.
In order to get rid of the boundary conditions at z¼0 and z¼ a,

we reflect the point x0 and the absorbing surface in both planes
infinitely many times (see Fig. 7), so that they are satisfied

Fig. 7. Left: original setup in the finite 3D scenario. Right: after performing

reflections in both planes.
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automatically by symmetry

f ðx,tÞ ¼
1

ð4pÞ3=2t3=2

X1
n ¼ �1

e�9x�xn9
2
=4t

" #
, ðB:17Þ

where xn ¼ ð1;0,znÞ with zn ¼ 2na. Again the situation is symme-
trical about both z¼0 and z¼ a so the reflecting boundary
conditions are met. Now we have to consider the absorbing
boundary at the origin and all its reflections (centered at
ð0;0,znÞ). Since E51, just as previously we can introduce a
corrector function fc, which is now a superposition of a spherically
symmetric function about the origin and all its reflections in the
planes. Due to the symmetry of the situation, if we satisfy the
boundary condition on one of the absorbing surfaces (say the one
around the origin) then we will automatically satisfy the bound-
ary condition on all of its reflections too. Hence our approximate
solution to the whole system (B.14) and (B.15) is given by

f ðx,tÞ ¼
1

ð4pÞ3=2

1

t3=2

X1
n ¼ �1

e�9x�xn9
2
=4t�

X1
n ¼ �1

Z t

0
A3ðuÞ

e�9x�x0n9
2
=4ðt�uÞ

ðt�uÞ3=2
du

" #
,

ðB:18Þ

where x0n ¼ ð0;0,znÞ, subject to f ðEn,tÞ ¼ 0, i.e.

X1
n ¼ �1

Z t

0
A3ðuÞ

e�ðE
2þ z2

nÞ=4ðt�uÞ

ðt�uÞ3=2
du¼

1

t3=2

X1
n ¼ �1

e�ð1þ z2
nÞ=4t : ðB:19Þ

Then our encounter (absorption) probability function is P3F ¼R1
0 A3ðuÞ du. If we denote SðxÞ ¼

P1
n ¼ �1 e�xn2

, then
P1

n ¼ �1

e�z2
n=4t ¼

P1
n ¼ �1 e�ð2naÞ2=4t ¼ Sða2=tÞ. Now going back to non-zero

l̂, we can go through the same steps as above, inserting factors
of e�l̂t where appropriate to arrive at a modified version of
Eq. (B.19)Z t

0
A3ðuÞK3ðt�u,l̂,EÞ du¼ K3ðt,l̂,1Þ, 8tZ0,

where

K3ðx,l̂,EÞ ¼ e�l̂x�E2=4x

x3=2
S

a2

x

� �
for xZ0: ðB:20Þ

Integrating Eq. (B.20) from 0 to 1, and employing the same
method as in the 2D case, we eventually arrive at

P3F ðl̂,E,aÞ ¼
R1

0 K3ðu,l̂,1Þ duR1
0 K3ðu,l̂,EÞ du

¼

R1
0 u�3=2e�l̂u�1=4uS

a2

u

� �
du

R1
0 u�3=2e�l̂u�E2=4uS

a2

u

� �
du

ðB:21Þ

It can be shown that the formulae (B.13) and (B.21) are
actually exactly equal to the exact expressions (A.5) for infinite
geometries (i.e. when a¼1 in 3D scenario), by showing that they
satisfy the same ODE with the same boundary conditions. Using
Eq. (A.5) in Eq. (B.21) allows us to simplify (B.21) to

P3ðl̂,E,aÞ ¼

P
nAZ

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ4n2a2Þl̂
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4n2a2
p

P
nAZ

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2þ4n2a2Þl̂
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ4n2a2
p

: ðB:22Þ

Appendix C. Continuum of gametes

Consider the case of infinite 2- or 3-dimensional space filled
uniformly with targets (female gametes). Let the target density,

i.e. the probability of finding a target within a small region
divided by the region volume, be r2 in 2D scenario and r3 in
3D scenario. We can then place a particle (a male gamete) in this
continuum of targets and ask what is the probability PS, PB, that it
will encounter a female gamete before it dies, in 2D and 3D,
respectively. We can obtain PS and PB using the known encounter
probabilities P2ðRÞ, P3ðRÞ for a pair of gametes a distance R apart,
in 2D and 3D, respectively (see Appendix A).

In 2D, divide the plane into concentric rings of thickness dr

around the male gamete. The probability of finding a female
gamete in a ring with radius r is ð2prdrÞr2 and the probability
that the male gamete will not encounter a female gamete
originating from this ring is then 1�ð2prdrÞr2P2ðrÞ. Hence the
total probability of the male gamete not encountering any female
gamete is then 1�PS ¼

Q1
n ¼ 0½1�ð2pðndrÞdrÞr2P2ðndrÞ�. Taking the

logarithm of both sides yields lnð1�PSÞ ¼
P1

n ¼ 0 ln½1�ð2pðndrÞdrÞ

r2P2ðndrÞ� and taking the limit dr-0 gives lnð1�PSÞ ¼R1
0 ln½1�2prdrr2P2ðrÞ� ¼

R1
0 �2pr drr2P2ðrÞ ¼�r2

R1
0 2prP2ðrÞ dr.

Since the gametes must be at least a distance rT apart originally
(the sum of their radii), we can integrate from rT instead of 0. Thus
we obtain

PS ¼ 1�exp �r2

Z 1
rT

2prP2ðrÞ dr

� �
: ðC:1Þ

Similarly, in 3D we find

PB ¼ 1�exp �r3

Z 1
rT

2prP3F ðrÞ dr

� �
: ðC:2Þ
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J. Moláček et al. / Journal of Theoretical Biology 294 (2012) 40–47 47


