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The motion of a buoyant inviscid drop rising vertically along the rotation axis of a rapidly
rotating low viscosity fluid bounded above and below by rigid horizontal boundaries is
considered in the case that the drop is circumscribed by a Taylor column that spans the entire
fluid depth. Both the shape and steady rise speed of the drop are deduced as a function of the
interfacial tension. The analysis demonstrates that the drop assumes the form of the prolate
ellipsoidal figure of revolution which would arise in the absence of any relative motion in the
surrounding fluid. The hydrodynamic drag on the drop follows simply from the analysis of
Moore and Saffman [J. Fluid Mech. 31, 635 (1968) ], who considered the equivalent motion of
a rigid particle. The rise speed of a deformed inviscid drop is approximately one-half that of an
identically shaped rigid particle; in particular, the rise speed of a spherical inviscid drop is 0.41

that of a rigid sphere.

I. INTRODUCTION

The motion and deformation of drops in rotating fluids
arises in a variety of applications, including industrial sepa-
rations, materials processing, and geophysical fluid dynam-
ics. We describe herein the buoyancy-driven motion of a de-
formable inviscid drop translating along the axis of a rapidly
rotating fluid of low viscosity, bounded above and below by
rigid horizontal boundaries. In particular, we bring together
two studies: (1) an extension of the analysis originally pre-
sented by Moore and Saffman’ for the drag on a rigid parti-
cle rising along the length of a Taylor column; and (2) the
well-known calculation for the shape of a stable, rigidly ro-
tating drop held together by surface tension.>® Our analysis
yields a simple prediction for the shape and steady rise speed
of an inviscid drop in the case that both inertial and viscous
effects are negligible, so that a “geostrophic balance” exists
in the bulk of the surrounding fluid.

The Taylor-Proudman theorem requires that all fluid
motions in a geostrophically balanced incompressible flow
be independent of the spatial coordinate that varies in a di-
rection parallel to the axis of rotation. Consequently, when a
body moves slowly through a fluid rotating rapidly about a
vertical axis, it drags along with it a vertical column of fluid,
in which there is no vertical motion relative to the body.’
The Taylor column that circumscribes the body has a verti-
cal extent determined by the fluid viscosity, and will span the
entire depth of a sufficiently shallow horizontal fluid layer.
In this case, as the body rises, the boundaries of the layer act
to disrupt the vertical motion of the fluid in the Taylor col-
umn. A qualitative representation of the resulting flow field
is illustrated in Fig. 1 for the case of a stress-free body rising
between rigid horizontal boundaries.

A physical description of the detailed fluid motion with-
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in the bounded Taylor column is best given in terms of vorti-
city dynamics. The vertical vorticity field in the fluid asso-
ciated with the fluid’s solid body rotation is perturbed by the
rise of the body (see Fig. 1). Vortex compression upstream
of the body generates negative relative (vertical) vorticity,
while vortex stretching in the body’s wake generates positive
relative vorticity. The associated swirl velocities couple to
the rigid container boundaries through the action of viscos-
ity in thin boundary layers, giving rise to Ekman pumping
and suction on, respectively, the upper and lower container
boundaries. If the translating particle is rigid, an additional
thin Ekman boundary layer is attached to the particle sur-
face; however, in the limit that the particle surface is stress-
free, which approximates an inviscid drop or bubble, no such
boundary layer exists. The flow picture is completed by con-
tinuity, which requires a net downflow in thin Stewartson
layers that define the vertical walls of the Taylor column.?
The role of the fluid viscosity is to relax the Taylor—Proud-
man constraint of two-dimensionality through the genera-
tion of small-scale boundary layer motions: the body is able
to rise only by virtue of the Ekman transport from the fore to
the aft regions of the Taylor column.

The problem of particle translation along the length of a
vertical Taylor column spanning the entire depth of a bound-
ed horizontal fluid layer was first considered by Moore and
Saffman.® An accompanying experimental study was per-
formed by Maxworthy.® Of the various possible combina-
tions of rigid and/or stress-free particle and container boun-
daries, three were considered by Moore and Saffman:! (i) a
rigid particle between rigid boundaries; (ii) a rigid particle
between a stress-free upper boundary and rigid lower bound-
ary; and (iii) a particle with a stress-free surface ( eg, a
bubble) between stress-free boundaries.

For a rigid sphere of radius a rising vertically between
rigid boundaries through a fluid of density p, kinematic vis-
cosity v, and rotating with angular speed (), Moore and Saff-
man determined the steady rise speed U,, to be'®
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FIG. 1. A schematic illustration of the flow induced by a stress-free axisym-
metric body rising through a rapidly rotating low viscosity fluid bound by
rigid horizontal boundaries.
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where Ap is the density difference between the sphere and
the fluid. In this case, since both the particle and container
boundaries are rigid, Ekman transport occurs over both sur-
faces. For the case of a rigid sphere rising between stress-free
container boundaries, the rise speed U, decreases to U, = 4§

X (Ap 8)/(pQa) Jv/Q =0.58U,,. Since Ekman layers can-
not develop on the stress-free container boundaries, the fluid
can be transported from the upstream to the downstream
regions of the Taylor column only by way of the Ekman
layers on the body surface. The decreased efficiency of this
fluid transport mechanism is responsible for the decreased
rise speed of the rigid sphere. Finally, Moore and Saffman
state that a stress-free buoyant particle cannot rise between
stress-free boundaries since, in this case, Ekman layers can-
not develop on either the body or container boundaries, and
thus fluid cannot be transported from the upstream to the
downstream regions of the Taylor column. As the authors
indicate, this paradoxical result suggests the inadequacies of
the geostrophic approximation in describing this particular
flow.

In this paper, we extend the aforementioned work by
considering a deformable inviscid drop, which represents
the limit of a stress-free body, rising between rigid horizontal
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boundaries in the case that the associated Taylor column
spans the entire fluid depth. In Sec. II, we determine the
form of the flow induced by a rising stress-free body with a
prescribed axisymmetric shape. Our analysis, which closely
follows that of Moore and Saffman,' leads naturally to the
calculation of the body’s hydrodynamic drag and steady rise
speed presented in Sec. I1I. In Sec. IV, using approximations
consistent with those invoked in the drag calculation, we
deduce the shape of a deformable inviscid fluid drop bound
by interfacial tension. The drop shape is determined from a
balance between centrifugal forces and the interfacial ten-
sion forces of the curved interface. The resulting equilibrium
axisymmetric shapes correspond to the well-known family
of prolate ellipsoids formed by fluid drops suspended in a
rapidly rotating fluid of higher density.>® Finally, since the
drop has an axisymmetric shape, the drag result of Sec. III
may be applied directly, and so we are able to determine both
the drop shape and steady rise speed as a function of the
interfacial tension.

Il. DYNAMICAL PICTURE

We begin with a description of the dominant physical
processes accompanying particle translation through rapid-
ly rotating fluids. While our discussion differs only slightly
from that of Moore and Saffman,’ we include it here in order
to illustrate the self-consistency of the approximations made
in the drag and drop shape calculations.

Consider a plane layer of incompressible fluid contained
above and below by rigid horizontal boundaries. The system
rotates about a vertical axis with constant angular velocity £
in the presence of a vertical gravitational field g. The solid
body rotation of the fluid is disrupted by the slow, steady, on-
axis rise of a buoyant inviscid drop. We introduce a cylindri-
cal coordinate system (7,6,z) with origin at the drop’s center
of mass and with the z axis vertical, so that & = Q Z and
g = — g Z. Henceforth, the superscripts “ -+ and “—"
denote flow variables in the upstream (z>0) and down-
stream (z <0) regions of the fluid, respectively. The drop is
assumed to be axisymmetric, with a steady shape specified
byz = f * (r) for r < R, where R is the “equatorial” radius of
the drop. In Sec. IV we demonstrate that, in the dynamic
limit considered in this paper, a deformable drop will assume
a shape that is not only axisymmetric, but fore-aft symmet-
ric, sothat £+ () = — F (#).

In a frame rotating uniformly with the container, the
fluid velocity v(r) = (u,v,w) is related to that in the station-
ary frame, u(r), by v(r) =u(r) — Q Ar, and the Navier—
Stokes equations take the familiar form

&+v-Vv+20/\v= —ind—l-szv, 2)
ot P
Vev =0.

The dynamic pressure p, is related to the fluid pressure p by
Pa=p+pgz — (p/2) QP (3)

Taking the curl of (2) yields an equation governing the evo-
lution of the relative vorticity, ® = V A v, of the fluid,
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The drop’s steady rise speed U is assumed to be suffi-
ciently slow, and the rotation rate of the fluid Q sufficiently
rapid that both the particle Rossby and Ekman numbers,
respectively, #, = U/RQ and E, = v/QR?, are small. A
geostrophic flow is thus established in the bulk of the sur-
rounding fluid. Viscous effects are important only within
thin Ekman layers on the rigid upper and lower container
boundaries. In the limit of small Ekman number, the ratio of
the boundary layer thickness § = v/ to the characteristic
drop dimension is necessarily small: 8/R = \[E, <1.

Boundary layer scaling of the steady vorticity equation
reveals that, in the limit (#,,, E,, %, /\/—E-k ) €1, the diffu-
sion of vertical vorticity @, across the upper/lower Ekman
layers is balanced by the vortex compression/stretching as-
sociated with the vertical velocity gradient across the layers,

dz az
The jump in vertical vorticity, Aw,, across the Ekman layers
is thus given approximately by

20 —g~v ho,
1]

) *

thatis, Aw, ~ U /4. This implies azimuthal swirling motions
within the Taylor column of typical velocity

RAw,=U /\/E'k_ , which are necessarily much larger than
the drop’s rise speed.

The flow outside of the thin boundary layers is thus
characterized by length, velocity, and time scales of, respec-
tively, R, U/\/E, , and R \/E, /U. Nondimensionalization
of Eq. (2) based on this scaling reveals that, in the limit
(Ro» Ex, Ro/\[E )<, inertial and viscous effects may
be neglected, so that a geostrophic balance prevails in the
bulk of the fluid: ’

200 Av= —Vp,. (5)

Taking the curl of (5) yields the familiar Taylor constraint
of two-dimensionality, dv/dz = 0. The drop is necessarily
circumscribed by a Taylor column, in which there is no verti-
cal motion relative to the drop, so that w = U. Outside the
Taylor column (7> R), the fluid is quiescent. Within the
Taylor column, radial pressure gradients are balanced by
Coriolis forces associated with azimuthal fluid motion. The
geostrophic swirl velocities are formally obtained by appli-
cation of the Ekman compatibility conditions,'!! which re-
late them to the vertical velocity, w* = U, of the fluid in the
Taylor column,
£ _ 06 dw*)
v + 2r dr

Integration reveals that the swirl velocities in the fore and aft
regions of the Taylor column are equal in magnitude and
opposite in sense of circulation,

vr ()= —v- () = — UW/5).

The relative vorticity of the fluid is purely vertical and re-
verses sign in the fore and aft column regions,
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a)zi = :FQ%O/\’E/C‘
The fluid helicity density H, relative to the rotating frame, is
likewise an odd function of z:

H*=@*v: = T (A,/E.)QU.

Since the swirling motions correspond to simple rigid body
rotations, no viscous stresses arise in the bulk flow. Conse-
quently, provided the rising drop is axisymmetric and stress-
free, the geostrophic flow will not be disturbed and thus no
boundary layer need exist at the drop surface.

The dynamic pressure fields up- and downstream of the
drop are the geostrophic-pressures obtained by integrating
the radial component of (5), and are given simply by

pE (1) = +pQU(r/5). (6)
The flow field is now completely described.

1ll. DRAG CALCULATION

In order for a body of density p;, = p — Ap and volume
V torise at a steady rate, the buoyancy force Vg Ap must be
balanced by the hydrodynamic drag force. The hydrody-
namic drag on the inviscid drop considered in Sec. II, Dy, is
obtained by integrating the dynamic pressure p,; over its sur-
face,

D, = f pn dS, )
Ay
where n is the unit normal to the local body surface S. The
vertical drag force on the axisymmetric drop is a result of the
difference in geostrophic pressures upstream and down-
stream of the drop, so that (7) reduces to

D, =fo 20 {pd [nf (N1 = pi [ f ~ (N1 }dr.

Using (6) for the geostrophic pressure field, we obtain by
direct integration the result

Dy, = mpQUQ/vR*. (8)
The drop’s steady rise speed U), is obtained from a bal-
ance of buoyancy and drag forces, which yields

V Ap g v
U,——_28& [V 9
T ER* p .Q\/-(: &

1t follows that the rise speed of a stress-free body of equator-
ial radius R decreases with rotation rate ) and increases
with the viscosity v of the surrounding fluid. Again, viscosity
acts to relax the Taylor—Proudman constraint of two-dimen-
sional motion imposed by the fluid’s rotation.

The axisymmetric drop shape affects the rise speed only
insofar as it defines the radius R of the Taylor column. This
result is in contrast to that of Moore and Saffman, who dem-
onstrated that the rise speed of an axisymmetric rigid body
depends explicitly on the body’s geometrical form. Compar-
ing Egs. (9) and (1) reveals that the rise speed of an inviscid
spherical drop is less than half that of a rigid sphere of the
same radius: U = 43/105U,,. For an inviscid drop, Ekman
layers develop only on the container walls and not on the
drop surface, so the fluid in the upstream region of the Tay-
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lor column has only one route by which to exit into the
downstream region. The Ekman transport mechanism is
thus less efficient for a drop than for a rigid body, and the
associated rise speed is decreased.

1V. DEFORMABLE INVISCID DROP: SHAPE
CALCULATION

In this section we consider the shape of a deformable
inviscid fluid drop bound by a constant interfacial tension o
and rising along the fluid’s axis of rotation. The steady invis-
cid drop shape is determined from the normal stress balance
at the fluid—fluid interface, which requires that the pressure
difference across the interface be balanced by the interfacial
tension forces of the curved surface. Thus along the drop’s
surface S, we have

Darop (1:2) —pE (12) =0V, (10)

where V_-n is the local surface curvature. If the drop fluid
rotates uniformly on axis with the angular velocity £ of the
surrounding fluid, the pressure inside the drop is

Parop (1hZ) =P + ¥ %0, — p gz,

where p. is a reference pressure at the drop’s center. In the
geostrophic regions up- ( + ) and downstream ( — ) of the
drop, Eqgs. (3) and (6) yield

r
5

where p, is the pressure that would prevail at the origin in
the absence of the drop. Substituting into (10) thus yields

1 b )
pE(rz) =ps £ pQU <+ — Qpr — pez,

2 2
po—ApQTrz+Apgz$pQU%=UV,-n, (11)
where py = pc — p4. Note that both the third and fourth
terms on the left-hand side of (11), which correspond to the
contributions of, respectively, the hydrostatic and geostro-
phic pressures, reverse sign at the equatorial plane z = 0.
These pressures act to destroy the fore—aft symmetry of the
drop. Nondimensionalizing all lengths with respect to R (r
and z henceforth denote dimensionless distances) and using
(9) for the rise speed U reduces (11) to the dimensionless
form:

3
P4 437 + ffz¢-‘;— 9(%) P=V,m,

where & =R Ap/o and == — R*Q? Ap/80 are, re-
spectively, the gravitational and rotational Bond numbers,
P = pyR /0, and a is the undeformed drop radius. The rela-
tive magnitudes of the geostrophic, hydrostatic, and centri-
fugal pressures at the drop surface are given by

M&Ni(f_)Lﬁ’o__ (122)
centrifugal ~ = \R/ ~ JE. bp ,
hydrostatic & z Ty p (120)

R) z
centrifugal = 2 £~ J E, bp (a =

In the dynamic regime of interest (#,/4/ E; €1), and
in the special case of Ap/p =~ O(1), the geostrophic contribu-
tion to the normal stress balance is negligible. The hydrostat-
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ic contribution is likewise negligible, except within the nec-
essarily small polar region, 7S (a/R)"* (R#o/\JE: )"
wherein the drop shape also depends on the gravitational
Bond number . At leading order, the drop is thus fore—aft
symmetric, and the normal stress balance assumes the form
describing the shape of a stationary drop in a rotating fluid:

P+43F =V n (13)

The drop shape is determined by a balance between the cen-
trifugal force, which acts to drive the lighter drop fluid along
the axis of rotation, and the force owing to interfacial tension
and curvature, which tends to maintain the sphericity of the
drop. For the case of a buoyant drop, 2 <0, the shape is
prolate ellipsoidal, with an ellipticity determined by 2."
The solution to (13) has been given by Chandrasekhar,®
Rosenthal,* and Ross.>® The latter author considered the
case 2 <0 and demonstrated that the prolate ellipsoidal
drop shapes are stable to infinitesimal perturbations. For
completeness, we outline in the Appendix the method of so-
lution of Chandrasekhar,”> who considered only the case in
which X > 0 and oblate ellipsoidal shapes arise.

Since the inviscid drop has an axisymmetric shape, we
may apply the results of Sec. ITI. The rise speed (9) is set by
the drop’s equatorial radius R, which is, in turn, implicitly
determined by the rotational Bond number =. We may thus
deduce the drop’s velocity as a function of =. Figure 2 illus-
trates the drop’s shape and rise speed as a function of the
rotational Bond number, The rise speeds have been normal-
ized with respect to that of a spherical inviscid drop. The
solid line indicates the rise speed of a deformed inviscid drop

8 O/
00Y)

1 e f !
/g

d /

FIG. 2. Rise speed, Uj, (solid line), and shape of an inviscid fluid drop
bound by surface tension and rising on axis, as a function of the rotational
Bond number . The dashed line represents the rise speed, U,,, of an identi-
cally shaped rigid body, as given by Moore and Saffman:® U,, = (V/4rm)
X (Ap/pIWV/Q (g/Q)SE P dr/{L + [ + (df7dr)* 1"}~ where
z= + f(r) defines the body’s surface. Rise speeds are normalized with re-
spect to that of a spherical inviscid drop, U, = $(Ap/p) (g/Qa)v/Q, and
deformed shapes are scaled such that their volumes correspond to that of
the undeformed spherical drop.
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and the dashed line that of an identically shaped rigid body.
In the limit of large surface tension (3 —0), the drop is
spherical and its rise speed a minimum. As rotational effects
become more important, 2 decreases through the range
(0, — 1) and the drop becomes progressively more prolate.
The rise speed for a drop of fixed volume, which scales with
the equatorial radius as R ~*, necessarily increases with this
progression. In the limit of £ — — }, the drop tends toward a
cylindrical thread,® and the rise speed increases without
bound. In this limit, viscous effects are expected to dominate
the dynamics (E, » 1), so that the geostrophic balance no
longer adequately describes the flow.

V. DISCUSSION

Through coupling the analyses of Chandrasekhar® and
Moore and Saffman,! we have deduced the steady shape and
rise speed of an inviscid drop rising on axis in a rapidly rotat-
ing fluid. In the limit of (%,,E,,%,/\[E; ) €1, the drop is
circumscribed by a Taylor column, and its rise induces an
azimuthal geostrophic flow in the over- and underlying flu-
id. While the associated geostrophic pressure field balances
the vertical buoyant force on the drop, it has no appreciable
effect on the shape, which is determined by a balance be-
tween centrifugal and surface tension forces. Our analysis
reveals that the equatorial radius of the resulting prolate el-
lipsoidal drop determines the rise speed. Hence both the
steady shape and rise speed are uniquely determined by a
single parameter, namely, the rotational Bond number 3.

We have assumed throughout that the Taylor column
extends to the boundaries. Theory predicts that a Taylor
column will extend a characteristic distance R /E, up- and
downstream of a body rising slowly on axis through an un-
bounded fluid.!! Maxworthy’s experimental study'® re-
vealed columns to be typically an order of magnitude
shorter. In order for the Taylor column to span the entire
fluid depth, we thus require that the layer depth L be such
that LS R /E,.

Our analysis applies only when geostrophic flow exisis
in the bulk of the fluid. From Eq. (9) we see that

Zo _4 g (_9_)4 A
JE. 3 a*\R/ p
Thus, in order to achieve the parameter regime %2, /,[E; <1
when Ap/p=0(1), we require that g/a0*<1. Fora 1 cm
radius air bubble in water, for example, rotation rates on the
order of (2> 10 sec ~ ' would be necessary in order to achieve
the desired dynamical regime. If low viscosity immiscible
fluids of comparable density (Ap/p € 1) were used, the geos-
trophic flow regime might be more easily realized experi-
mentally. As is made clear in Eq. (12), however, in this case
the hydrostatic and dynamic pressures may no longer be
negligible and so may act to destroy the fore—-aft symmetry of
the drop. An experimental investigation of the results de-
rived herein is currently in progress.

As a final caveat, we note that only in the case consid-
ered, namely that of an inviscid drop, is it justifiable to treat
the drop surface as a stress-free boundary. For the case of a
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viscous drop, the internal and external flows couple through
viscous boundary layers at the interface. The modification of
our results necessitated by the consideration of finite drop
viscosity will be the subject of a forthcoming paper.

The theory of buoyancy-driven particle motion in rapid-
ly rotating fluids may be applied in describing the dynamics
of the Earth’s liquid outer core. According to the dynamo
hypothesis of the Earth’s magnetic field, convective motions
within the outer core are responsible for the sustenance of
the geomagnetic field. The Earth’s outer core is thought to
be composed of a low viscosity, electrically conducting bina-
ry fluid comprised of iron and some lighter alloying element. .
Thermodynamic arguments suggest that core convective
motions may be driven to a large extent by chemically rather
than thermally induced buoyancy.'*'® Compositional
buoyancy may be generated as iron preferentially freezes out
of solution at the inner-core boundary, where a slightly
buoyant iron-depleted fluid layer accumulates before going
unstable via the Rayleigh-Taylor mechanism and releasing
a buoyant “blob” or plume (e.g., Moffatt!” ). The analysis
presented here was motivated by an interest in the form of
the flows that might be induced by the rise of these buoyant
“blobs.” A discussion of the application of this and subse-
quent work to the problem of compositional core convection
will be forthcoming.
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APPENDIX: DETAILS OF THE DROP SHAPE
CALCULATION

The dimensionless force balance (13) along the axisym-
metric drop surface z = 4 f(r) may be expressed as

1 11 1 11d ré
* L —P=——Veoan= ——— —— R
P =% s 83 rdr (L4 49"
(A1)
where ¢ = df /dris the local slope of the drop boundary, and
p* = P/8%. Following Chandrasekhar,? we outline the few
steps that lead to a simple equation describing the drop

shape. Integration of (A1) with respect to r yields

p* 1 1
Zreor= _S_EHI%?)W' (A2)
At the drop equator (r = 1), ¢— — w0, and so
pr_1 (L _ 1) _
2 8 \=
Substitution into (A2) yields
$/(1+ )= —r(1 -2+ 37),
or, solving for ¢,
Bush, Stone, and Bloxham 1146

Downloaded 02 Jun 2008 to 18.87.1.30. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



¢:gj=f_=_ 1 —3 43/
dr [1—-P1—Z 432V
Integration yields

z=f‘(r)=fl r(l—}_‘,-}-Zrz)» F.

r [1=PF(1 =3+ 24272

Via a series of transformations, this expression can be re-
duced to an algebraic equation involving elliptic integrals,
and so the drop shape z = f{r) may be determined numeri-
cally as a function of 3.
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