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We examine the spin-up from rest of a stratified fluid with initial Brunt–Väisälä frequency N bound within a
cylindrical container of height 2H and radius R which is set to rotate impulsively with angular speed f/2.
Particular attention is given to characterizing the dependence of the form of the resulting flow on the govern-
ing parameters. Our experimental study reveals a wealth of flow behaviours and instabilities. In all experi-
ments, the initial phase of motion is marked by the establishment of mixed axisymmetric corner regions
fed by radial Ekman transport, a process detailed in Flór et al. (Flór, J.B., Ungarish, M. and Bush,
J.W.M., ‘‘Spin-up from rest of a stratified fluid: boundary flows’’, J. Fluid Mech., 472, 51–82 (2002).).

The subsequent evolution of the central vortex depends critically on the Burger number Bcore ¼ NcH=ð fRÞ,
where Nc ¼ Nð1� 0:2B�1Þ

1=2 is the buoyancy frequency of the central core following the establishment of the
corner regions. For B > 1:0, the axisymmetry of the system is retained throughout the spin-up process: the
central vortex attains a state of near solid body rotation by the diffusion of vorticity from the sidewalls.
For B < 1:0, the central core becomes baroclinically unstable, and its streamlines strained from circles into
ellipses. Subsequently, for Nc=f < 1 (and B < 1:0), the symmetry of the central core is broken in a manner
reminiscent of the elliptical instability. For short tanks (2H=R < 1), the instability is marked by a simple
tip-over of the central core in the laboratory frame that is resisted by the core stratification. For
2H=R > 1, the centreline of the stratified core is deflected into a helical form before the core breaks into a
series of stacked vortices. A Burger number criterion, B ¼ NH=ð fRÞ < 1:0, for the baroclinic instability of
the central core is derived and found to be consistent with the experimental observations.
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1 INTRODUCTION

The adjustment of stratified fluid from one state of rotation to another arises frequently
in various settings in both industrial and geophysical fluid dynamics. Spin-up is a term
used to describe the adjustment of a fluid volume from one state of solid body rotation
to another. An extensive review of spin-up in both homogeneous and stratified fluids is
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presented by Duck and Foster (2001). When the change in rotation rate is incremental,
the mathematical formulation is greatly simplified as the governing equations become
linear. The linear spin-up of a homogeneous fluid was described by Greenspan and
Howard (1963) and Greenspan (1968), and is controlled exclusively by boundary
layer transport. The case of nonlinear spin-up from rest of a homogeneous case is con-
siderably more complex, but has been treated by Wedemeyer (1964) and Weidman
(1976a,b). While considerable attention has been given to the problem of linear
spin-up of a stratified ambient (Holton, 1965; Pedlosky, 1967; Buzyna and Veronis,
1971; Hewitt et al., 1999), very little has been given to the related nonlinear problem.

Greenspan (1981) presented a short note reporting experimental observations of
spin-up from rest of a stratified fluid bound in a cylindrical container. While parameter
regimes were not delineated, both axisymmetric and asymmetric flow regimes were
observed; moreover, both baroclinic and elliptical instabilities were identified. We
here present the results of an experimental investigation of spin-up from rest of a stra-
tified fluid, in which we extend and quantify the qualitative observations made by
Greenspan (1981). Particular attention is given to delineating the criteria for stable
axially symmetric spin-up and for the observed modes of axisymmetry-breaking
instability.

An initially quiescent cylindrical tank of height 2H and radius R containing a stably
stratified fluid with constant Brunt–Väisälä frequency N is impulsively set into motion
at an angular speed � ¼ f =2. In a recent paper, the authors [Flor et al. (2002), hereafter
FUB] present a combined experimental, numerical and theoretical investigation of the
early stages of this process. The theoretical model represents an extension of that of
Wedemeyer (1964) to the case of a stratified ambient, and yields good agreement
with both experimental observations and numerical simulations. The authors demon-
strate that an initial axisymmetric phase arises that is dominated by the generation of
corner regions through radial boundary layer transport along the horizontal bound-
aries. After a time � � 1:3ðE1=2NÞ where the Ekman number E ¼ �=ð�R2Þ, two distinct
fluid domains thus emerge, the corner regions, and the central stratified core. After this
initial stage, a substantial volume of non-rotating core fluid persists, shrouded from the
container boundaries by buffer regions of rotating fluid. We here examine the stability
of the initially axisymmetric configuration. We demonstrate that the subsequent evolu-
tion depends explicitly on N/f and H/R, and detail the nature of this dependence.

In Section 2, we review the physical processes accompanying the initial stage of
spin-up marked by the development of the corner regions. The details of this process
are worth our careful consideration, as they determine the ultimate stability of the
core vortex. In Section 3, we describe the apparatus and procedure followed in our
experimental study. Our experimental observations are detailed in Section 4. In
Section 5, we consider the mechanism responsible for the axisymmetry-breaking
instability. Specifically, we adapt the stability analysis of Griffiths and Linden (1981)
in order to deduce a Burger number criterion for baroclinic instability of the central
core. In Section 6, we summarize the results of our study.

2 DEVELOPMENT OF THE CORE VORTEX

The ultimate stability of the core flow is strongly influenced by the initial phase of
spin-up from rest, detailed in FUB, and briefly reviewed here for the sake of clarity.
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It is marked by the establishment of boundary layer flows which transport fluid radially
outward along the upper and lower bounding surfaces and into corner regions whose
height is limited by the stratification. The density of the fluid transported radially
into the corner regions decreases progressively; consequently, the fluid is emplaced
layerwise in the corner regions, where a radial stratification thus develops. The
corner regions may either extend to the midplane of the tank, or fall short. In the
former case, the central core loses contact with the sidewalls, while in the latter, vertical
boundary layers develop through the diffusion of angular momentum from the
sidewall. At the end of this initial stage, the flow is characterized by an isolated, station-
ary, vertically-stratified core region suspended between the rotating corner regions
(Fig. 6(b)). The vertical stratification within the core is diminished by the vertical
boundary layer transport forced in the initial stage (note the reduced number of hori-
zontal dyelines from Fig. 6(a) and (b)).

According to the results obtained in FUB, fully developed corner regions have
approximately a height h ¼ 0:3fR=N and volume

�V ¼
2

3
�hR2 ¼

�

5
R3 f

N
: ð1Þ

When the Burger ratio (the ratio of the Rossby deformation radius NH/f to the tank
radius R), B ¼ NH=ð fRÞ < 0:3, the corner regions thus extend to the midplane of the
tank, h > H. The development of the corner regions requires that the isopycnals
within the central core be displaced by a vertical distance
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N
: ð2Þ

This vertical stretching necessarily decreases the density gradient within the core: the
Brunt–Väisälä frequency is reduced to a value Nc given on the average by

Nc ¼ N 1�
�z

H

� �1=2

¼ N 1�
1

5B
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The radius of the stationary core decreases slightly during the establishment of the
corner vortices owing to the diffusion of vorticity from the sidewalls. The thickness
�R of the sidewall boundary layers after the time required for the development of
the corner vortices, T ¼ 1:3E�1=2N�1, is given by

�R

R
¼ 1:3

�

N

� �1=2

E1=4: ð4Þ

In the parameter regime of interest to our experiments, the resulting change in the core
radius is negligibly small, of order 10% or less.

When B < 0:3, the corner regions extend vertically to the midplane of the tank;
consequently, the core will be entirely separated from the sidewall boundaries by
spun-up fluid regions. The form of the central core region will thus depend explicitly
on the aspect ratio of the cylindrical tank.
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3 EXPERIMENTAL STUDY

A detailed description of the experimental apparatus and technique is given in FUB.
We here reiterate the important points. Experiments were performed at two different
sites, the Fluid Dynamics Lab at MIT and the LEGI in Grenoble. A schematic illustra-
tion of the experimental apparatus is presented in Fig. 1. Five cylindrical tanks, of inner
diameter 14, 30, 44, 50, and 72 cm were used in the experiments. The tank was
positioned on a 1.0-m diameter rotating platform and filled with a linearly stratified
saltwater solution using the Oster double-bucket technique.

After the tank was filled, horizontal or vertical planes of fluorescein dye were
emplaced in the fluid. The horizontal dye planes correspond to isopycnals, and their
evolution reveals the vertical motion within the tanks. Horizontal planes were emplaced
using a metal frame spanned by cotton strings coated with dried fluorescein dye
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FIGURE 1 A schematic illustration of the experimental apparatus.
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(Hopfinger et al., 1991). The frame was removed and a horizontal lid placed on top of
the tank. Vertical planes were emplaced by slowly sweeping a vertical dyed string
(with a weight attached at its base) through the tank. Before the rotation was initiated,
the vertical density profile was measured, by passing a conductivity probe vertically
through the fluid domain and the Brunt–Väisälä frequency N ¼ ½�ðg=�Þð@�=@zÞ�1=2 cal-
culated. The table was set into motion, and the rotation frequency f ¼ 2� achieved in
less than one rotation period. The density profiles were measured several times during
the spin-up process. The flow was illuminated by a vertical laser or light sheet which
passed through the tank centreline. Observations of the dye field gave information
about the boundary layer flows, the instability of the non-rotating core fluid, and a
qualitative measure of the mixing of the stratified fluid. A digital camera mounted in
the rotating frame (see Fig. 1) recorded the flow evolution and the images were directly
recorded onto the hard disk of a PC.

The ( f/N, 2H=R) parameter regime was explored. The non-dimensional parameter
ranges covered were 0 � N=f � 2:5 and 0:54 � H=R � 3:5, and the Ekman number
was of the order O(10�5). Five particular experiments will be discussed in detail.

4 EXPERIMENTAL OBSERVATIONS

The increase in vertical distance between the isopycnals within the stratified central core
that accompanies the development of the corner regions is evident in Figs. 5–10. The
evolution of the horizontal dye lines allows for the computation of the density gradient
within the central core. In Fig. 2, we present the observed dependence of the density
gradient within the central core following establishment of the corner regions.

FIGURE 2 The core stratification following establishment of the corner regions. Experimental values are
deduced from the vertical displacement of the horizontal dye lines (see e.g. Figs. 5a, b and 7a–d) and
compared with (3).
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Specifically, we indicate the dependence of the percentage decrease in stratification on
the Burger number, B ¼ NH=ð fRÞ. Our experimental data is evidently well described by
Eq. (3).

The second stage of the flow evolution was observed to depend explicitly on the
aspect ratio of the core, 2H=R, and on Nc/f. The stratified spin-up regime diagram is
presented in Fig. 3, and makes clear that several distinct flow regimes arise according
to the values of the reduced Burger number Bcore and Nc/f. These regimes are consid-
ered in turn below.

4.1 Axisymmetric Flows

In region I of Fig. 3, the flow maintains its axisymmetry throughout the spin-up pro-
cess. Figure 4 illustrates a typical flow evolution in a case where the dye was initially

III, IV wobblingI stable II tripole
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FIGURE 3 Schematics of the different regimes (above) and regime diagram (below) illustrating the depen-
dence of the form of the flow on the governing parameters, specifically, the ratio of the core stratification to
rotation rate, Nc/f, and the aspect ratio of the core vortex, 2H=R. Open circles: stable vortices; triangle:
tripolar vortices; open squares: wobbling vortex. In region IV the number of vortices into which the core
vortex breaks up, is displayed within the squares. The criterion for instability, Bc � 1:0, is based on the initial
Burger number NH=ð fRÞ and is therefore transformed to the axes represented in the figure to the criterion
2Bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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distributed along vertical lines. The initial spin-up stage is also represented in Fig. 5.
The development of the corner regions results in the bowing of the isopycnals (see
Fig. 5(b)). Following the establishment of the corner vortices, the corner fluid slowly
slumps back horizontally owing to the diffusion of vorticity from the sidewalls: as
the difference in angular velocity across the boundaries of the corner eddies is dimin-
ished, so too is the curvature of the isopycnals. Subsequently, the core fluid spins up
principally by the viscous diffusion of momentum from the container boundaries.
The final state of near solid-body rotation is thus achieved after a time � � R2=�.
The stratification thus serves to limit the spin-up process to a shallow layer through
suppressing the vertical boundary layer transport that arises in the homogeneous
system. We note that the final state is characterized by a three-layer structure: a strati-
fied central layer bound above and below by the partially mixed fluid that once consti-
tuted the corner regions.

4.2 Asymmetric flows

In region II of Fig. 3, the axial symmetry of the flow is broken in a manner that depends
explicitly on the value of Nc/f. A typical sequence for the parameter regime Nc=f > 1
and 2H=R < 1 is shown in Fig. 6. After the establishment of the corner regions and
the spin-up of the fluid near the sidewall boundaries, the mixed corner fluid slowly
flushes back to the centre of the tank. Simultaneously, baroclinic waves propagate
along the interfaces between interior and corner regions and the central core loses its
symmetry. We denote by mode 1 a lateral shift of the corner region, and by mode 2
an elliptical deformation of the initially circular corner region. The mode 1 and 2

FIGURE 4 The evolution of the flow in the stable region I of the regime diagram (Fig. 3). (a) At t¼ 0, just
prior to initiating spin-up; (b) at t¼ 200 s; (c) at t¼ 259 s. Note the winding of the dye into an onion shaped
structure by the rotational shear induced by the sidewall boundaries. Experimental parameters (exp 1 in
Table I) with N=f ¼ 3:16 s�1, 2H=R ¼ 5:43 and the tank radius is R¼ 7 cm. Only the lower half of the
tank is shown.
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waves are marked, respectively, by asymmetric and axisymmetric oscillations of the
corner regions.

Figure 6 shows the flow evolution for a relatively low value of N/f (point a in Fig. 3).
Here, mode 1 oscillations grow, followed by a slight wobbling and simultaneous

FIGURE 5 Initial stage of the spin-up showing the formation of the mixed corner regions and stationary
core. At (a) t¼ 0, just prior to initiating spin-up, and (b) t¼ 142 s, after the maturation of the corner regions.
Experimental parameters (exp. 20 in Table I): N=f ¼ 1:88 s�1 and 2H=R ¼ 0:72; the tank radius is R¼ 25 cm.

TABLE I Governing parameters for experiments performed in the present study

Exp. 2H (cm) R (cm) N (s�1) f (s�1) B Nc/f 2H/R

1 38 7 1.43 0.453 8.57 3.12 5.43
2 38 7 1.43 0.7 5.54 2.01 5.43
3 38 7 1.43 1.43 2.71 0.96 5.43
4 30 15 1.01 0.4 2.53 2.42 2.0
5 30 15 1.41 2.26 0.62 0.51 2.0
6 30 15 1.41 0.52 2.71 2.61 2.0
7 42 15 1.21 2.28 0.74 0.45 2.8
8 21 15 0.74 2.26 0.23 0.12 1.4
9 27 15 1.05 2.26 0.42 0.34 1.8

10 17 15 1.18 1.32 0.51 0.70 1.13
11 15 15 0.96 0.21 2.29 4.37 1.0
12 15 15 1.0 0.5 1.0 1.79 1.0
13 15 15 0.76 0.21 1.81 3.41 1.0
14 19 36 1.4 0.5 0.74 2.39 0.53
15 19 36 1.4 1.5 0.25 0.40 0.53
16 19 36 1.18 2.52 0.12 – 0.53
17 19 36 1.4 0.5 0.74 2.39 0.53
18 25 25 1.69 2.04 0.41 0.60 1.0
19 25 25 1.72 1.85 0.46 0.70 1.0
20 18 25 1.56 0.83 0.68 1.58 0.72
21 23.8 25 1.77 2.12 0.37 0.59 0.95
22 21.5 25 1.63 0.61 1.15 2.43 0.86
23 13.5 25 2.1 2.1 0.27 0.51 0.54
24 45.7 25 0.67 1.9 0.32 0.22 1.82
25 25.6 25 1.7 1.7 0.51 0.78 1.02
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increase in ellipticity of the core region (see Fig. 6(c) and (d)). As the corner fluid flushes
back to the centre, the near-wall rotating fluid is also stretched, inducing the formation
of two cyclonic satellites which can be discerned from the vertical compression of the
dye lines near the outer wall (see Fig. 6(c) and (d)) and together with the elliptical
core comprise a tripolar vortex. In the subsequent evolution, the tilted core vortex
abutts the sidewall and dissipates or even breaks up (not shown) thus reducing its
size while the two satellites merge, leading eventually to an asymmetric dipolar
vortex (see Fig. 6(g)). Throughout this flow evolution, the isopycnals within the central
core and adjoining vortices are only weakly distorted from the horizontal. With increas-
ing values of N/f and B, the baroclinic interfacial waves and core wobbling are reduced
in amplitude and the evolution of the core into a tripolar vortex was weaker or even
absent.

In Section 5, we shall demonstrate that the axisymmetry-breaking instability
observed in this regime may be interpreted as a baroclinic instability understood by
analogy with that described by Griffiths and Linden (1981).

When Nc=f < 1 (region IV in Fig. 3), the development of the symmetry-breaking
baroclinic instability is accompanied by a tilting of the central core reminiscent of clas-
sic elliptical instability (Kerswell, 2002). Figure 7 shows the evolution in this case, and

FIGURE 6 Core evolution in region II of the regime diagram (Fig. 3). At (a) t¼ 0, just prior to initiating
spin-up; (b) t¼ 142 s, after the maturation of the corner regions; (c) t¼ 273 s; (d) t¼ 361 s; (e) t¼ 382 s;
(f) t¼ 616 s and (g) t¼ 18min. The baroclinic waves along the corner interfaces are evident in (b), (c) and
(d); the synchronized oscillations of the corner-regions suggest a mode 1 baroclinic wave. The wobbling of the
core vortex is evident in (c), (d), (e) and (f), where the long and short side of the elliptical anti-cyclonic core
vortex are apparent. The cyclonic satellite vortices are also evident in (f). Finally, (h) at t¼ 79min, the three
remnant layers are apparent. Note that the initial circular dye structure evident at t¼ 0 is a remnant from the
initial dye emplacement. Experimental parameters (exp. 20 in Table I): N=f ¼ 1:88 s�1 and 2H=R ¼ 0:72; the
tank radius is R¼ 25 cm.
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FIGURE 7 Core evolution in region IV of the regime diagram (Fig. 3). (a) At t¼ 0, just prior to initiating
spin-up. Unstable wave motion along the side-wall boundary (see Fig. 9) leads to the mixing evident at (b)
t¼ 31 s. After the formation of the corner regions, (c) 125 s the wobbling of the core region commences as is
evident at (d) t¼ 189 s. When the entire lower boundary is covered with rotating fluid (e) t¼ 210 s, the core
develops into an ellipsoid while the amplitude of the oscillation and the ellipticity of the core increase
(f) t¼ 288 s, (g) t¼ 294 s, (h) 303 s. The long and short sides of the core are evident in, respectively, (e), (f),
and (h) and (d), (g), and (j). The cyclonic satellite vortices are evident in (g) and (j). At its maximum ellipticity
the core vortex becomes peanut-shaped and internal waves pinch off top and bottom, (i) 355 s, thus reducing
the core size (j) 427 s. After dissipation of a dipolar remnant vortex (k) t¼ 188min, three layers emerge at (l)
t¼ 200min. Experimental parameters (exp. 21 in Table I): N=f ¼ 0:84, 2H=R ¼ 0:95, tank radius R¼ 25 cm.
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clearly illustrates both the ellipticity and the wobbling of the central vortex. The wob-
bling is in phase with the baroclinic waves at the interface of the corner region (as
revealed by the time sequences in Fig. 8(a), (b) and (c). Here, the central vortex interacts
with the sidewall boundary (Fig. 7(e)–(i)) which leads to an inward propagating internal
wave which prompts the break off of a small blob of fluid on top of the central vortex
(Fig. 7(h) and (i)). The accompanying evolution of the isopycnals at two fixed radii is
presented in Fig. 8 and reveals that the period of the core oscillations is close to the
rotation frequency of the turntable, indicating that the central core wobbles in the
rotating frame, but is stationary in the lab frame. The observed instability thus corre-
sponds to the central core simply tipping over in the laboratory frame. Figure 8(c)
shows the spatio-temporal evolution of a horizontal line of pixels, that reveals the
baroclinic oscillations of the interface (modes 1 or 2) as well as the motion of the central
vortex and cyclonic satellite vortices in time. For T>120 s these oscillations are initially
of mode 2 and subsequently (T>200) of mode 1. After t¼ 250 s, the wobbling is
damped out (Fig. 7(i)) and the tripolar vortex (with black core, and ‘white’ satellites)

FIGURE 8 Spatio-temporal evolution of the dye along a vertical line at (a) the rim of the tank and (b) the
centre of the tank for the experiment shown in Fig. 7. The vertical time bars along the horizontal axes denote
10 s intervals; the lines along the vertical axes indicate 1 cm intervals. (c) The evolution of the vortex over a
horizontal mid-cross-section in time (horizontal axis) shows the simultaneous wobbling and rotation of
the elliptical core vortex (dark regions) while for large t it shows the lateral advection of mixed fluid by
the cyclonic satellite vortices (gray) near the boundary. The white peaks for 120 < t < 250 correspond to the
wobbling of the horizontal dye lines. Note that the core oscillation starts during the formation of the core
region.
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abutts the sidewall, thus advecting the vorticity from the sidewall and enhancing the
spin-up process. Also in this parameter regime, a field of baroclinic waves is excited
on the sides of the stratified core, as is evident in Fig. 9. These waves typically grow
in amplitude until breaking, thus enhancing the mixing of the interior. The oscillations
of the core regions and the wobbling of the interior start simultaneously at a later stage,
as shown in Fig. 8(a), when the fluid from the corner regions is flushed towards the
interior.

In taller tanks (2H=R > 1), the straining of the cigar-shaped central vortex into an
ellipse leads to the helical deflection of the centreline of the central vortex in a
manner again reminiscent of elliptical instabilities in tall tanks (Eloy, 2000).
Subsequently, the central vortex breaks up into a number of vortices, the number
increasing with the aspect ratio H/R of the tank (see Fig. 3).

A final case worth discussing is that of B < 0:3 (region III in Fig. 3), for which the
corner vortices extend to the midplane of the tank, and so intrude towards the centre
of the tank (see Fig. 10(a)–(e)). Nevertheless, the buoyancy frequency in the interior,
Nc, corresponds well to the predicted value (3) (see Fig. 2). Following the maturation
of the corner regions, the central core becomes elliptical, then proceeds to wobble
and precess around the rotation axis (see Fig. 10(e) and (f)). Once again, the cyclonic
satellite vortices are evident from the squeezed dyelines. The precession is clear in
Fig. 10 for the case where the corner regions extend to the mid-plane of the tank.
The wobbling is similarly evident in the marked deflection of the isopycnals from the
horizontal as illustrated in Fig. 11. The wobbling of the central vortex may lead to
its instability and break-up: the resulting secondary vortices are evident in Fig. 10(f)–(i).

5 STABILITY

Our observations reveal that the instability of the core region is initiated by the devel-
opment of a baroclinic instability at the interface between the interior and corner
regions, and that the resulting strain on the core flow may prompt an elliptical instabil-
ity of the central core. We proceed by deducing a criterion for the baroclinic instability
of the system.

The interior is stratified and quiescent, while the corners are homogenized and rotat-
ing. For the sake of simplicity, we examine the stability of an interface between two

FIGURE 9 Sequence of images illustrating the amplification and eventual breaking of the wave motion
near the sidewall of the tank for the experiment shown in Figs. 7 and 8. The length of the image covers the
tank-height and is here 25 cm; the time intervals correspond to 3 s starting at t¼ 0 s.
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homogeneous layers with uniform horizontal velocities (see Fig. 12). Specifically, we
follow the approach of Griffiths and Linden (1981) who examined the baroclinic
instability of the flow forced by the release of buoyant fluid from an annular source
at the surface of a rotating fluid. We identify the interface between core and corner
regions with their outer interface, and so readily adapt their analysis to examine the sta-
bility of our system. In our system, we assume that boundary layer transport is confined
to the interface and negligible on the horizontal boundaries, an assumption expected to
be valid provided the corner regions are spun-up.

Following Griffiths and Linden (1981), we eliminate the cylindrical geometry by con-
sidering the stability of a channel flow in a quasi-two-dimensional geometry. We take
the dimensionless perturbation equations for the streamfunction � defined relative to
the rotating frame of reference with indices 1 and 2 denoting, respectively, the corner
and interior regions:

@

@t
þU1

@

@x

� �
r2�1 � F1ð�1 � �2Þ
� �

� F1U1
@�1

@x
¼ �

E1=2
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�
r2�1; ð5Þ

@
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þU2

@
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� �
r2�1 � F2ð�1 � �2Þ
� �

þ F2U2
@�1

@x
¼ �

E1=2
2

�
r2�2; ð6Þ

FIGURE 10 Flow evolution in region III of the regime diagram (Fig. 3) for the case where the corner
regions span the entire depth of the fluid. At (a) t¼ 0, just prior to initiating spin-up; (b) t¼ 67 s, after the
initial formation of the corner regions; at (c) t¼ 112 s and (d) t¼ 159 s, one observes their continuing growth
due to the limited height of the tank. Subsequently, the core develops into an ellipsoidal form: at (e) t¼ 180 s
and (f) t¼ 188 s, the short and the long side of the elliptical core are apparent, respectively. The cyclonic
satellite vortices are apparent in (g) t¼ 233 s and (h) t¼ 244 s. After dissipation of the vortices, three layers
emerge and are apparent in (j) t¼ 2 h 48min. Experiment parameters (exp. 23 in Table I): N=f ¼ 1,
2H=R ¼ 0:53; the tank radius R¼ 25 cm.
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where the Ekman numbers E1 ¼ �=ð�h2Þ, E2 ¼ �=½�ðH � hÞ2�, the Rossby number
� ¼ u=ð�LÞ, and L and h are, respectively, the width and mean height of the corner
region and u is the characteristic velocity scale at the interface. As a typical velocity
scale u we employ the mean velocity �R0 where R0 ¼ 2R=3 is the middle of the
corner region. The dimensionless velocities are U2 ¼ �1 and U1¼ 0, whereas the
Rossby number � ¼ �ðR0=LÞ.

FIGURE 11 Spatio-temporal evolution of the dye along a vertical line at (a) the rim of the tank and (b) the
centre of the tank for the experiment shown in Fig. 10. The vertical time bars along the horizontal axes denote
50 s intervals; the horizontal lines along the vertical axes indicate 1 cm intervals.

FIGURE 12 Schematic illustration of the model geometry and parameters.
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The Froude numbers are defined in Griffiths and Linden (1981) as F1 ¼ f 2L2= ðN2HhÞ
and F2 ¼ f 2L2=½N2HðH � hÞ�, with N2H ¼ g= ��� ð��=2) and �� the maximum density dif-
ference between mid-height H and tank bottom. Note that this is the maximum possible
density difference across the interface. The radial extent and maximum height of the
fully developed corner regions were calculated by FUB to be, respectively, L ¼ 2R=3
and hmax ¼ fR=ð3NÞ ¼ H=ð3BÞ. For the mean height we take the approximate value
h ¼ hmax=2. We can thus express the Froude numbers for our system as F1 ¼ 8=ð3BÞ
and F2 ¼ ð8=ð3BÞÞð1=ð6B� 1ÞÞ and the Rossby number as � ¼ �1. Moreover, the
depth ratio � ¼ h=ðH � hÞ is uniquely prescribed by B: � ¼ 1=ð6B� 1Þ. By this definition
of the Froude number, the Burger number is thus limited to B ¼ 1=6, the value for which
the corner region reaches mid-depth, i.e. h ¼ hmax=2 ¼ H.

We follow Griffiths and Linden (1981) in considering perturbations of the form
� � exp½ikðx� ctÞ� cos ly with wave vector K2 ¼ k2 þ l2 with cross-stream wave
number l ¼ �=2. A discussion of the dependence of the system on � is presented in
Griffiths and Linden (1981). Substituting the perturbations into (5) and (6) yield a dis-
persion relation

	c2 þ 
cþ � ¼ 0; ð7Þ

where

	 ¼ K2 K2 þ
8

3 ð6B� 1ÞB
þ

8

3B

� �
;


 ¼
6
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16U 0
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We have used the transformation U 0
i ¼ Ui �=ð6

ffiffiffiffi
E

p
PrÞ; E ¼ �=�R2 is the general

Ekman number based on tank radius and Pr ¼ N=f is the Prandtl ratio. The shear
across the interface is then U 0

1 �U 0
2 ¼ 1=ð6

ffiffiffiffi
E

p
PrÞ and marginally stable conditions

(zero growth rates) are obtained for

1

6
ffiffiffiffi
E

p
Pr
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2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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K2 � l2

p : ð8Þ

The marginal stability curves for different B numbers are plotted as a function of the
scaled wave number K2B in Fig. 13(a). A minimum shear is evidently required for
instability. The region of instability is bounded on either side: for a fixed Burger
number B, the lower bound is set by viscous dissipation of the long waves via
Ekman layer friction (at left in Fig. 13(a)), while the short-wave cut-off (at the right
in Fig. 13(a)) corresponds to the standard inviscid result for baroclinic instability
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(Phillips, 1954; Pedlosky, 1970). The minimum of the marginal stability curves indicates
the critical wave number km for which the flow first becomes unstable. The azimuthal
wave number is km � L 2�=ð�mÞ with �m ¼ 4�R=ð3nÞ the mean circumference of the
corner region, n the wave mode and L ¼ 3=2R the width of the current. With these
scalings the mode n is equal to km. The most unstable azimuthal wave numbers are
represented against B in Fig. 13(b) showing that the dominant modes of instablity of
the interface in the spin-up flow are mode 2 (elliptical) and mode 1 (circular).
Schematic illustrations of these dominant modes are presented in Fig. 13(b). To inter-
pret these results, it is helpful to consider the growth rate of the two modes for typical
Ekman number and Prandtl ratio shown in Fig. 13(c). We note that, for small Burger
number B � 0:5 mode 2 is the first unstable (see Fig. 13(b)), but since mode 1 grows the
fastest it will eventually dominate, whereas for B > 0:55 mode 1 dominates as the first
mode as well as the fastest growing mode. Further we note that the inverse B number is
linearly proportional to the height of the corner region so that the theoretical outcome
is very sensitive to the mean height of the corner region, hmax=2.

The critical Burger number above which the flow is stable to all baroclinic perturba-
tions can be found by setting the denominator in (8) to zero. For K ¼ l ¼ �=2, one thus
finds Bc ¼ 1:00. The corresponding line is represented in Fig. 3, where the
B ¼ NH=ð fRÞ number is calculated from the initial value for N (since the value of
hmax depends on N and not Nc). This critical Burger number represents the left side
in Fig. 13(b), corresponding to long waves (small k) implying the possible growth of
the lowest modes for B < Bc. There is a cut-off at B < 1=6, where the ratio � vanishes.
Since the layers have equal depth, we assume � ¼ 1 (and thus F1 ¼ F2, E1 ¼ E2), and
so obtain

1

6
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The most unstable wavelength and vertical shear are thus given by
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All flows with B > 64=ð3�2Þ ¼ 2:16 are stable. The minimum B value for which
baroclinic modes are predicted to arise are also presented in Fig. 3 along with our
experimental observations. In accordance with the predictions of the stability theory,
spin-up flows with Burger number smaller than the critical Bc number are generally
found to be unstable.

In all experiments we found that wave mode 1 dominates the motion at the interface
of the corner region. For low Burger number, initially a mode 2 can be discerned from
the oscillatory motions at the interface (see Fig. 8(c)) in agreement with the theory
represented in Fig. 13(b). Nevertheless, a mode 1 eventually grows and dominates in
agreement with the predicted higher growth rate of this mode (see Fig. 13(c)). Also,
the growth in perturbation amplitude, being slow for B > 0:8 and large for B < 0:6
is in agreement with the theoritical predictions. The observations are consistent with
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FIGURE 13 (a) Marginal stability curves calculated from (8) for Burger numbers B ¼ 0.265, 0.40, 0.55 and
0.70 using Maple V. The minimum of each curve represents the minimum wave number km ¼ ðK2

� Pi2=4Þ1=2

for which the flow becomes unstable for a specific value of the shear 1=ð6E1=2PrÞ and (b) these first-unstable
wave numbers presented as a function of Burger number. In (c), the growth speeds of wave number 1 (upper
curve) and 2 (lower curve) are represented against Burger number B for 1=ð6E1=2PrÞ ¼ 52, a good approx-
imation to the present experiments for which E � O(10�5) and Pr ¼ 1 (higher modes have smaller growth
rates). A schematic illustration of the mode 1 and 2 wave instabilities is displayed in Fig. 13(b)).
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the theoretical result, and so support the hypothesis that baroclinic instability is the
mechanism responsible for the asymmetric flows observed.

6 DISCUSSION

The evolution of the initial stage of non-linear spin-up from rest of a stratified fluid,
specifically the development of the corner regions and persistence of a stratified central
core, was detailed in FUB. Our experiments have revealed that the subsequent evolu-
tion of the flow depends critically on the structure of the non-rotating core, specifically,
its aspect ratio 2H=R and f/Nc, where Nc denotes the buoyancy frequency within the
core established by the initial stage of spin-up. The geometry of the core region is pre-
scribed by that of the corner regions, and the buoyancy frequency within the core
Nc ¼ Nð1� 0:2B�1Þ

1=2 reflects the degree of stretching of isopycnals by the vertical
transport into the horizontal boundary layers. The subsequent evolution of the strati-
fied core has been interpreted in terms of the combined influence of baroclinic and
elliptical instabilities of the central core.

For B > 1:0, the core remains stable and the system maintains its axisymmetry
throughout the spin-up process, which occurs on a diffusive timescale. Ultimately,
the fluid is thus characterized by three layers, remnants of the mixed top and bottom
corner regions and the stratified core (Greenspan, 1981). For B < 1:0, the interface
between the stratified central core and homogenized corner regions becomes baroclini-
cally unstable. Our experiments and theoretical developments indicate the dominance
of an interfacial wave mode 1 disturbance in the parameter regime examined; this
wave has a maximum growth-rate for approximately B < 1:0 above which we note
that the wobbling does not occur. The onset of instability of the central core has
been interpreted in terms of a baroclinic instability that develops at the edges of the
corner regions. The Burger number criterion for instability, B < 1:0, was found by
adapting the theoretical developments of Griffiths and Linden (1981), and is consistent
with our experimental observations. The agreement of the theory with the data sup-
ports the hypothesis that baroclinic instability is the responsible mechanism.

The interfacial wave mode 1 (that increases in amplitude with decreasing Nc/f ), is
presumably related to the wobbling of the core region. The accompanying upward
motion of the corner regions applies a baroclinic torque on the interior, and suggests
an opposite tilt of the interior isopycnals as observed. When this mode develops at
the interface, the swirling circular motion of the central core (relative to the rotating
frame) is subjected to a straining motion that may prompt an elliptical instability.
For Nc=f < 1, the core develops an elliptical instability very similar to those observed
by Malkus (1989) and Eloy et al. (2000). While in their experiments, elliptical instability
was prompted by boundary forcing, that is by deforming a rotating cylinder into an
ellipse, in our experiments the elliptical straining is forced by the baroclinic instability
of the central core.

In a short container (2H=R < 1), the instability is marked by the tipover of the
central core reminiscent of the elliptical tipover mode elucidated by Waleffe (1990) as
resulting from the interaction of a horizontal vorticity perturbation and the back-
ground strain. In a tall container (2H=R > 1), the centreline of the central core was
initially distorted into a helix in a manner reminiscent of the homogeneous experiments
of Eloy (2000). Subsequent interaction with the sidewalls generally lead to the break-up

294 J.B. FLOR et al.



into different lenses. For increased values of rotation, Nc=f � 1, the wobbling is
reduced and an elliptical, cigar-shaped vortex precesses around the rotation axes.
The instabilities in this case were marked by the distortion of the core streamlines
into ellipses, and the subsequent instability of the stratified core to elliptical instabilities
(Kerswell, 2002). The flow ultimately resumed an axially symmetric form and spin-up
continued by diffusion, mainly from the sidewalls.

A number of caveats should be made concerning our stability analysis. First, the
theory is based on the quasi-geostrophic (� � 1) vorticity equations while the present
flow is more accurately ageostrophic (� ¼ �1). At the end of the spin-up of the bound-
aries one can consider the interior flow as an anti-cyclonic vortex with vorticity �f
embedded in a rotating fluid and with an aspect ratio determined by the initial
conditions. Though the stability of stratified vortices is discussed extensively in the
literature, the non-linear stability of anti-cyclonic vortices has not yet been investigated
and is left as a subject of future consideration.

Second, our analysis focusses only on baroclinic instability, thus implicitly assuming
that the destabilizing shear is mainly vertical. In reality, both vertical and horizontal
shear are present and either may trigger instability; if the horizontal shear is dominant,
the instability is barotropic. The relative magnitudes of the two shears in the spin-up
flow is prescribed by the slope of the interface, and so proportional to the
hmax=L ¼ �=N.

The flow evolutions shown in Figs. 6, 7 and 10 with the appearance of elliptical
vortex structures and their subsequent tip-over remind us of elliptic instability and
the instability driven by precession (see Kerswell, 2002). But, the growth-rates of the
elliptic and precession instabilities are both proportional to the ellipticity of the flow,
and so are initially zero in our spin-up flows. Furthermore, the relatively strong strati-
fication and the zero absolute vorticity of the core are stabilizing (see Craik, 1989;
Kerswell, 2002). These instability mechanisms will be effective when the baroclinic
waves that distort the flow axisymmetry couple with inertial waves and thus enhance
elliptical instability and/or precession driven instability.

In this respect it is worth noting that our critical Burger number is of the same order
as the minimum critical Burger number found by Miyazaki and Hanazaki (1994) for the
baroclinic instability of elliptical and circular vortices in a rotating stratified fluid. Their
circular vortices are unstable due to the resonant interaction between bending waves
(which in the spin-up experiments can be interpreted as the wobbling due to large
amplitude baroclinic waves of mode 1) and the elliptic deformation of the core vortex.

In the limit of small N/f, which corresponds to mainly barotropic shear, the bending
mode dominates, and the flow evolves in a manner reminiscent of the elliptical instabil-
ity observed by Eloy et al. (2000) in homogeneous flows. An interesting extension of the
current study would be an investigation of the influence of weak stratification on the
elliptical instability observed by Eloy (2000).
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