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We examine tracer dispersion by the potential flow through a random array of rigid
bodies fixed relative to a mean flow. Both Darcy flow through permeable bodies and
inviscid irrotational flow past impermeable bodies are treated within one theoretical
framework. The variation of the longitudinal dispersivity with body shape and per-
meability « is examined for the case of high Péclet number, Pe. In the absence of
diffusive effects, the longitudinal dispersivity Dz (where the mean flow is parallel
to the z-axis) is calculated by tracing the evolution of a material surface advected
by the mean flow and distorted by the array of bodies. For a random array of iden-
tical bodies of volume V and low volume fraction o, Dy, = a|Df|UL/V. The drift
volume, Dy, is defined as the volume between the final and initial position of a
material surface distorted by a single body moving in an unbounded flow, and L is
the length-scale characterizing the associated longitudinal displacement of the sur-
face. The variation of D, with permeability is illustrated by considering permeable
cylinders and spheres, and the effect of body shape on dispersion is illustrated by
considering impermeable spheroids.

The longitudinal dispersivity arising from the flow past impermeable bodies is
D,z = aCy UL, where Cy, is the added-mass coefficient characterizing the mean
flow around the body. This indicates that bluff bodies enhance longitudinal dispersion
by promoting the longitudinal stretching of fluid elements. For Darcy flow through
bodies of low permeability, the longitudinal dispersivity is D, = a(Cs, + 1)UL.
The length-scale L, and thus Dy, is singular as & — 0, owing to the long retention
time of fluid within the bodies. For highly permeable two-dimensional bodies, Dy, =
a(Cyy+ 1)UL, where Cyy, is the added-mass coefficient characterizing the flow around
an impermeable body moving parallel to the y-axis. Consequently, dispersion by
highly permeable bodies is enhanced when the bodies are slender, in contrast to the
low-permeability limit.

The influence of finite tracer diffusivity on longitudinal dispersion is demonstrated
to make a negligible contribution when « > 0 provided Pe > max(1,1/x) and for
impermeable bodies provided Pe 3» 1. When Pe <« 1/#, the longitudinal dispersion
is dominated by diffusive effects and D, = O(aU?a?/D1).
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1. Introduction

Tn a variety of physical situations, the dispersion of a tracer material suspended in a
fluid is dominated by the impact of discrete bodies on a mean flow. Tracer transport
is influenced by both convective and diffusive processes, whose relative importance is
characterized by the Péclet number, Pe = Ua/D, defined in terms of a characteristic
body length-scale a, mean fluid speed U and tracer diffusivity D. In this paper we
examine dispersion by the potential flow through an array of bodies for the two
regimes of high and low Pe, and pay particular attention to the influence of body
shape and permeability on longitudinal dispersivity.

The influence of inhomogeneities on the flow through a saturated porous media is
important in both oil recovery and the modelling of groundwater flows (Dagan 1987).
Modelling dispersion in porous media generally requires consideration of the flow on
both micro- and macroscopic scales. The microscale flow is typically described by
Stokes flow, while the macroscale flow is described by Darcy’s law, and so corre-
sponds to a potential flow. Microscale dispersion in a porous media is mfluenced
by the topology of the porous matrix, in particular by the tortuosity of the paths
taken by Auid elements passing through the matrix. Koch & Brady (1985) examined
microscale dispersion in porous media by modelling the porous matrix as a dilute
random array of spherical bodies. At high Péclet number, Koch & Brady (1985)
demonstrated that there are a number of different processes contributing to the lon-
gitudinal dispersivity: a mechanical component, %aU, associated with the passive
advection of material {(and independent of volume fraction); a non-mechanical com-
ponent, 2m2aall log(Pe), associated with the no-slip condition on the surface of the
spheres (Saffman 1959); and a contribution from the tracer hold-up within the spher-
ical particles. The longitudinal dispersion arising from the flow through a fixed array
of permeable beads was recently studied by Magnico et al. (1993), who generated
the beads {of typical diameter 600 um) by sintering glass spheres of diameter 55 or
110 pm. As the permeability of the beads was reduced, the longitudinal dispersivity
increased dramatically, owing to the long-time retention of fluid within the beads.

Macroscale dispersion in porous media arises from large-scale variations in perme-
ability, and in certain instances dominates the contribution from microscale diffusion
(Dagan 1987). A large number of theoretical studies have examined the influence of
spatial variations in permeability on dispersion, using as a starting point the assump-
tion that the permeability & at each position is characterized by a lognormal prob-
ability distribution (Freeze 1975). For the specific case that the spatial correlation
of Y = log x decays exponentially over a distance I, Dagan (1984) showed that in
both two and three dimensions, the longitudinal dispersivity is o3 UT, where 0% is
the variance of Y. In this paper we examine the dispersion associated with flow past
discrete permeable inclusions which has a bearing on both macroscale dispersion in
porous media and, as indicated by the experiments of Magnico et al. (1993), on
microscale dispersion.

The dispersion associated with high-Reynolds-number flow past bluff bodies is
important in a variety of physical systems; for example, in bubble-induced mixing,
and in the dispersal of pollutants around groups of buildings (Jerram et al. 1995).
In high-Reynolds-number flow past a body, the upstream flow may be described to
leading order as inviscid; however, viscous effects become important in the neigh-
bourhood of the body, generating vorticity which is advected into the wake of the
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body, where the potential flow description breaks down. Nevertheless, potential flow
models have been used successfully in the theoretical modelling of high-Reynolds-
mumber flow past bluff bodies. The description of weakly turbulent flow in terms of a
potential flow advecting and distorting turbulent eddies has been used to model both
the modification of turbulent fields by bluff bodies (Hunt 1973) and dispersion past
two-dimensional bluff bodies (Hunt & Mulhearn 1973). Drazin (1961) demonstrated
that strongly stratified flow past obstacles may be described in any horizontal plane
as potential flow to leading order, and this description has been adopted by Weng &
Carruthers (1994) in characterizing dispersion by wind blowing past hills.

In this paper we calculate the longitudinal dispersivity caused by the potential flow
past a random array of bodies which are fixed relative to a mean flow. The effect
of body shape and permeability on high Pe dispersion has not to our knowledge
been studied previously and characterizing this dependence will be the principal
contribution of this paper. The methodology adopted to tackle this problem is based
on Darwin’s (1953) concept of drift which is ideally suited to studying fluid transport
by potential flows. The approach of Koch & Brady (1985) could be applied to this
problem; however, the interpretation of the longitudinal dispersivity as a function of
body shape does not follow so naturally from their formulation.

‘We restrict our attention to the study of the dispersive properties of a dilute array
of bodies. Since the influence of bodies fixed in potential flows is relatively short-
range (with the velocity disturbance decaying as 1/r® from the body), a leading-
order description of the flow may therefore be obtained by neglecting the interac-
tions between neighbouring bodies and simply superimposing the effects of individual
bodies. In contrast, the description of Stokes flow through an array of bodies is com-
plicated by the long-range influence of the individual bodies on the flow (with the
velocity disturbance decaying as 1/r from the body). The calculations for the effec-
tive dispersivity arising from bodies fixed in a Stokes flow require consideration of
the interactions between neighbouring bodies, even when the array is dilute, and are
accordingly complex (Koch & Brady 1985).

The paper is structured as follows. In §2 we present our theoretical model of
potential flow through a random array of bodies, which incorporates both perfect
flow past impermeable bodies and Darcy flow past porous bodies. In § 3 we consider
the distortion of a material surface by potential flow past individual bodies, and
characterize the dependence of the form of the distortion on both body shape and
permeability. These results are applied in §4 in describing mechanical dispersion
by potential fliow through an array of obstacles. The resulting derivation for the
coefficient of longitudinal dispersivity is used to develop a simple model of mixing
across a horizontal interface in § 5. Diffusive effects at high Pe are analysed in §6.
The relevance of our model of mechanical dispersion to a number of physical systems
is discussed in § 7.

2. Problem definition

We consider dispersion by potential flows, which are described in terms of the gra-
dient of a scalar potential ¢:

u =V, (2.1)
where ¢ = ¢, inside the body and ¢ = ¢ outside the body, and ¢ satisfies Laplace’s
equation because the fluid is incompressible. When the bodies are impermeable to
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initially located at (zo,¥, ) is advected to
i t _ 2
ze(zo,y,2,t) =20 — Ut — -‘ﬁ—_*_-—-U—m + f M dt, (3.2)
U |, J U

in time ¢, where the time integral is taken along a streamline. The fluid is advected
with speed U, while undergoing a permanent displacement in the fluid frame of
reference. The integral term represents a positive ‘drift’{ component in unbounded
flow, the component confined near the point of crossing, while the term in square
brackets represents the negative ‘reflux’ component required by continuity.
Equation (3.2) may be generalized in order to deduce the form of the fluid dis-
placement associated with Darcy flow past a single body of permeability £ embedded
in a matrix of unit permeability. We consider a body in a periedic domain 4 of cross-
sectional area A in order to be able to meaningfully characterize the reflux amplitude,
which must vanish in an unbounded domain. By taking into account boundary con-
ditions (2.25) on the body surface, we demonstrate that the fluid displacement is

o $p2+Uz]* (1—r}[]™ ft|v¢—U|2
zs(zo,y, 2,t) = To Ut—[ i ]0—-— . 7 t1+ A i dt, (3.3)

e ™
- xy, reflux x4, drift

where the limits #; and #; refer to interior points on streamlines passing through the
body. The expression (3.3) for the fluid displacement is exact and may be adapted
to describe the displacement due to the flow through an array of bodies. When
% = 0, the exterior flow is identical to the flow past an impermeable body so the
fluid displacement assumes the form (3.2). When the body is permeable, an addi-
tional contribution to drift is made which is either negative or positive depending on
whether the body is more (x > 1) or less (k < 1) permeable than the surrounding .
material.

For our purposes, it will prove useful to characterize the deformation of a material
surface in terms of the total volume of fluid transported forward by the body relative
to the flow:

Dy = [ Jim zaan,v.z,1)4, (3.0

which we henceforth refer to as the ‘drift volume’, and a length-scale L corresponding
to the distance of the centre of volume displaced from the yz-plane:

D2 =} [ (fim zo(eo, 2,0 a4 (3.5)

When the body is moving in irrotational inviscid flow (« = 0), Dy corresponds to
Darwin’s drift volume, and is simply related to the body volume V through the
added-mass coefficient, Dz = Cz V.

The reflux associated with an isolated body fixed in a periodic domain may be
determined by the velocity potential in the far field. In an unbounded flow, the

t In unbounded flow, the drift component is evaluated by subtracting ‘reflux’ from z (¥, 2, t}. When
the body is impermeable, the drift term may also be evaluated directly from the integral expression
in (3.2).
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far-field velocity potential may be described in terms of a dipole of strength d. In a
periadic flow, an infinite distribution of such dipoles is required in order to satisfy the
kinematic periodicity conditions (see Eames et al. 1994, fig. 11). The reflux may be
determined by summing the contributions of these dipoles, and we thus demonstrate
that the integral of reflux across the periodic flow is

f z,dA = —4rd (3D), f 2,dA = —2xd  (2D). (3.6)
A A

The conservation of mass requires that equal volumes of fluid be transported forward
and backward:

0=£V+f z,dA+f zad4, 37)
A A

where €V is the volume held up by the body. In general, e =0 for £ > 0, e = 1 for
x = 0 and when & < 0, € depends on the body shape. The drift volume,t from (3.6)
and (3.7), is thus given by

Dy =4nd—€V (3D), Dy =2rd— €V (2D). (3.8)

In what follows, we consider in detail the nature of the distortion of the material
surface for the two special cases of interest: inviscid flow past impermeable bodies
and Darcy flow past permeable bodies.

{a) Impermeable bodies

When an impermeable body is fixed in an inviscid irrotational flow, € = 1 and the
strength of the dipole which characterizes the far-field flow is related to the body
volume by (Taylor 1928)

d=(Coy +1)V/ar (3D), d=(Cex+1)V/2x (2D). (3.9)

Equation (3.9) thus indicates that the drift volume is equal to the volume of fluid
associated with the added mass of the body: Dy = C,.V, in accordance with Dar-
win’s (1953) proposition.

The dependence of the distortion profile on the bluffness of an impermeable body
is illustrated here by considering two-dimensional flow past an elliptical body. The
ellipse has half-width @ and half-length b, and the flow is described by the velocity
potential given by Batchelor (1967, p. 434). The deformation of a material surface
by an ellipse inclined to the mean flow is equivalent to the deformation by a cylinder
of radius 3(a + b) (Appendix A). Figure 2a shows the effect of varying the aspect
ratio of an ellipse aligned with the mean flow on the form of the distorted inter-
face, and demonstrates that the profiles become more peaked as the ellipse becomes
more oblate or bluff (figure 2b). The drift volume associated with an impermeable
ellipse aligned with the mean flow, Dy = ma?, is independent of the length of the
ellipse. However, the length-scale characterizing the distortion of the material sur-
face, L/a = 2Ca/(a+b) (Appendix A), varies with a/b but tends to a constant 2C as
the bluffness of the ellipse increases (figure 2b). The constant coefficient C is defined

t An slternative method of deriving (3.8) may be obtained by modifying Yih’s (1985) geometrical
derivation of Darwin'’s proposition.
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Fjgura 1. Schematic illustration of the flow through a random array of identical bodies of
permeability k, embedded in a material of unit permeability.

as the value of L/a when a = b, and is determined numerically to be C = 0.74 from
the deformation of a material surface by a cylinder. For comparison, the length-scale
L characterizing the distortion of the material surface by the flow past an imperme-
able ellipsoid aligned with the mean flow (Pozrikidis 1996} is plotted in figure 2b. As
in the analogous two-dimensional problem, the length-scale L is determined uniquely
by the width of the ellipsoid as the aspect ratio increases.

The distortion of a material surface by an oblate ellipse inclined at various angles 8
to the mean flow is shown in figure 3a. The cross-sectional area presented to the mean
flow decreases as ¢ increases so that the deformation becomes less pronounced. Con-
sequently, the length-scale characterizing the displacement of the material surface,
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Figure 2. {a) The distortion of a material surface by a rigid impermeable (x = 0) ellipse for
a/b=0.3, 1.0, 2.0. (b) The length-scale L characterizing the deformation of the material surface

by an ellipse {~ — —) and ellipsoid (—).

L, which is given exactly by (Appendix A}

L (2 cos? 6 + g sin? B) , (3.10)

a a+b\b

decreases monotonically as 8 increases, as indicated in figure 3b.

(b) Permeable bodies

When the body has low permeability, 0 < » < 1, the dipole strength characterizing
the far-field flow is identical to that associated with an impermeable body. While no
fluid is held up by the body (e = 0), the body itself is saturated with fluid, so that
the drift volume, Dy = (Cyz + 1)V, is discontinuous at « = 0.

When the body is two dimensional and highly permeable {x > 1), the velocity
potential on the body surface satisfies ¢2 = 0 (from (2.2b)) and ¢ — ~Uzx as
l&| — oo. Consequently, in unbounded flow, the isopotential surfaces around a highly
permeable body moving parallel to the z-axis correspond precisely to streamlines
associated with the flow past an impermeable body (of the same shape) moving
parallel to the y-axis, i.e. ¢o = U(x—(Cyy+1)Vz/277%) as r — oo. Thus, the dipolar
strength is d = —(Cyy + 1)V/2x. From (3.8) the drift volume, Dy = —(Cyy + 1)V, is
negative in this large-« limit because fluid permeating through the body travels faster
than the mean flow. The difficulty in generalizing this result to arbitrarily shaped
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Figure 3. (a) The distortion of a material surface by an ellipse inclined to the mean flow at an
angle § = 0, 7 /6, ©/3, w/2. (b) The length-scale L characterizing the deformation of the material
surface by an ellipse as a function of the orientation to the mean flow, 4.

three-dimensional bodies lies in the fact that the stream-function is not Laplacian in
three dimensions.

We illustrate the dependence of the distortion profile on body permeability by
considering the special case of two-dimensional Darcy flow past a permeable cylinder.
The flow is described by the velocity potential

U(l + %)'rcosﬂ, r>a,

(1+ k)

where d = a?(1 — k) /(1 + &) is the dipole strength characterizing the far-field flow.
Figure 4a shows the effect of the cylinder permeability on the flow past an isolated
cylinder (streamlines shown in the inset), as well as the associated distortion of a
material surface. When & > 1, fluid passes preferentially through the cylinder and so
the material surface is displaced backwards. When the cylinder has a low permeability
(k < 1), fluid is generally diverted around the cylinder but a finite volume slowly
permeates through. Fluid within a distance 2ax of the centreline flows through the
cylinder where it is retained for a time O(a/U x); consequently, the distorted interface
is displaced a large distance Ofa/«) forward.

T cos B, r < a,
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The length-scale L characterizing the deformation of the material surface is shown
in figure 4b. Here we see that L is singular for cylinders of low permeability because
a finite volume of fluid permeates through the cylinder with a velocity «U, and
is displaced a distance a/x forward; consequently, L = O(a/«). The corresponding
results for the flow around a permeable sphere are also shown. When the permeability
of the sphere is low, fluid within a distance a+/x of the centreline is displaced a
distance O(a/k) forward and consequently L = O(a/k); the singularity of L is a
generic feature of flow past bodies of low permeability. When the bodies are highly
permeable, L/a tends to a constant value.

4. Mechanical dispersion

We consider potential flow past an assemblage of bodies, and demonstrate that the
longitudinal dispersivity may be calculated by tracing the evolution of a material
surface advected by the flow. The flow interaction between adjacent bodies in a
potential flow is weak because the velocity decays rapidly with distance from the
body. Consequently, when the volume concentration is small (a < 1), the deforma-
tion of the material surface is determined correctly to O(a) by superimposing the
drift and reflux components associated with individual bodies. In addition, when the
material surface has been advected a distance greater than O(W) past a body, the
reflux component of displacement z, = D;/A is constant across the periodic flow
(Eames et al. 1994), so that the deformation of the material surface by IV bodies is

N
mf(.’ltg, y,z,t)=-Ut+ sz(y'— Yi 2 — Z4, t) + Nz, + O(aa), (4.1)
i=1
where z4(y—yj, 2= 2;, t) is the drift component of the distortion of a material surface
by the single body centred at (z;, y;, 2;). For times ¢ such that (Ut + 20 —z;)/a > 1,
the drift profile assumes a constant form, and for (Ut + zp — z;)/W > O(1), the
reflux component is constant across the periodic flow.
The displacement of the material surface in the direction of the flow is z, so that
the variance of displacement of the distorted material surface is

o2(t) = l/(zf(zo,y,z,t) oan
A fa
where

ZH(t) = i- /:4 25 (%0, 9> 2, 1) dA (4.2)

is the mean position of the surface and, again, A is the cross-sectional area of the
periodic domain A. The long-time longitudinal dispersion coefficient, Dz, is defined
as half the rate of change of the variance of longitudinal displacement, o (Batchelor
& Townsend 1956):

o1de?() L o%(d)
Doo=lm 5=d — &%
‘We are thus able to characterize the longitudinal mechanical dispersivity of potential

flow past an array of bodies purely in terms of the deformation of a material surface
advected by the flow.

(4.3)
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We consider the case in which the bodies are fixed and randomly positioned;
consequently, the deformation due to each body is statistically independent and the
variance of displacement (as N — oc) is

N 2
1 .
o0 = 5 (Ll sty ~o2 =20~ Dy1)
L&
2 :-:_;1 (im zay — 3,2 — 2 1) — Dy/A)%. (44)

The number of bodies which have passed through the interface is N = UtaA/V, so
that

N
— 1i 1 2
-t g3 ) - DiAeA

_aU 2 D)z'

The periodic domain is much larger than the body size and, consequently, the sec-
ond term on the right-hand side of (4.5) is much larger than the first by a factor
|D¢|/AL < 1. Moreover, the integral of z3 over the cross-section of the periodic
domain, A, may be replaced by the integral over an unbounded region, Ac. The
longitudinal dispersivity is

al/

2V Jao

An alternative argument, which may be applied to derive (4.6), is provided in the
analysis of Acrivos et al. (1992), who calculated the longitudinal diffusion of particles
in Stokes flow (see their §2). The time taken for the dispersivity to tend to the
limiting value in (4.6} is UT >> max(V/Aa, L); consequently, the dispersive process
is Fickian for times ¢ > T

The longitudinal mechanical dispersivity associated with the potential flow past
an array of bodies may alternatively be expressed as

Dz = T4 dA. (4.6)

Dyy = aU%’—L—. (4.7)

This general expression for the longitudinal dispersivity in terms of the drift volume,
Dy, and L represents the principal contribution of this paper. Using the results of
§3 for the drift volume Dy and length-scale L for flow past individual bodies, it
is now straightforward to deduce the explicit form of the coefficient of longitudinal
dispersivity, Dzs, for a number of special cases, and to interpret the dependence of
D, on body shape and permeability.

(a) Impermeable bodies

When the bodies are impermeable (x = 0), we have seen in §3a that the drift
volume is given by the product of the body volume and the added mass coeffi-
cient, Dy = C.V; consequently, the coeflicient of longitudinal dispersivity is simply
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Figure 4. (a) The distortion of a material surface by a rigid cylinder (a/b = 1.0), of permeability
& = 0, 0.1, 0.5, 2.0. (b) The length-scale, L, characterizing the centre of volume of the Dy,
calculated numerically as a function of body permeability, &, for the case of a cylinder (——)
and sphere (— - -).

expressed as Dy, = aC.,UL. In this form, we can see that bluff bodies, which are
characterized by large values of C.., enhance mechanical dispersion by increasing
the longitudinal stretching of fluid elements.

We return to the special case considered in §3e of an oblate ellipse aligned with
the mean flow, for which C,; = a/b. The longitudinal dispersivity associated with
an array of ellipses aligned with the mean flow is D;; = aU2Ca?/(a + ). When
a/b 2 2 (see figure 2b}, L is independent of the ellipse length and D, = 2Cala?/b.
Figure 5a illustrates the dependence of the coefficient of longitudinal dispersivity
on the aspect ratio of the two-dimensional ellipse and three-dimensional ellipsoids
aligned with the mean flow, and demonstrates the validity of the scaling results for
oblate bodies. For an oblate ellipsoid, when a/b 2 5, L = 0.81a and C,, ~ 2a/b,
so that the longitudinal dispersivity is D, = 0.52aUa?/b.

For ellipses inclined at an angle & to the mean flow, the longitudinal dispersivity
may be calculated analytically (Appendix A) to be

9%Ca® fa
Do = Uy (E

Figure 5b shows the variation of D, with @ for a/b = 1,2,3,4. As # increases or

b 2
0052 8 4+ E Si.]’.l2 9) .
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Figure 5. (a) The variation of the longitudinal dispersivity, Dzz, with aspect ratio for imiperme-
able ellipses (— — -}, and ellipsoids { ) aligned parallel to the mean flow. (b) The variation of
D, with the angle of inclination of the ellipse to the mean flow. (¢) The variation of Dz with
body permeability &, for porous cylinders ( ) and spheres (— — —}. The limiting values of the
dispersivity for impermeable and highly permeable cylinders and sphere are indicated.

as the aspect ratio of the ellipse decreases, the longitudinal dispersivity decreases
significantly (as indicated by figure 5b) because the cross-sectional area presented by
the ellipse to the mean flow decreases.

{(b) Permeable bodies

When 0 < & < 1, the longitudinal dispersivity is Dzz = a(Czz + 1)U L. We have
seen in §3b that the length-scale L is singular for a permeable cylinder as £ — 0,
owing to the long retention time of a finite volume of fluid within the body. Figure 4b
shows the variation of the longitudinal dispersivity with permeability for permeable
eylinders and spheres, and clearly illustrates the associated singularity in dispersivity
as k — 0, which is a generic feature of flow past bodies of low permeability. This
singularity was also a feature of the analysis of Magnico et al. (1993), who modelled
the tracer transport in terms of a one-dimensijonal random walk, and demonstrated
that when s < 1, the longitudinal dispersivity is Dz, ~ Ua/x.
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Table 1. The longitudinal dispersivity, Dz, normalized by aUa, for e dilute random array of
cylinders and spheres.

{The asymptotic expressions for & — 1 and k£ — 0 were calculated using (3.3} and (4.7), and

checked against numerical solutions.)

impermeable & — 0 k—1 K= 00
. 8 8 2
cylinder 0.74 v Er-(l — &} 2.59
sphere 0.38 31—5 1-w)?* 334

For the case of two-dimensional highly permeable bodies, the longitudinal disper-
sivity is Dyz = a(Cyy + 1)UL. In this high-x limit, the longitudinal dispersivity
is enhanced by slender bodies, which are characterized by large values of Cyy, and
the influence of body shape on longitudinal dispersivity is seen to be opposite in
the high- and low-& limits. The limiting values of D,, as k — oo are indicated in
figure 4b and table 1, and show that highly permeable spheres generate greater longi-
tudinal dispersion than highly permeable cylinders, which is contrary to when they
are impermeable. The examples chosen are point-symmetric bodies, which do not
illustrate the strong tendency of the flow to be focused by highly permeable slender
bodies, an effect. discussed by Phillips (1991).

5. Mixing across a horizontal interface

We proceed by applying our simple model of mechanical dispersion in order to exam-
ine the efficiency of the bodies in mixing across a horizontal interface. Consider two
superposed fluids, the upper being clear and the lower dyed, initially separated by a
horizontal interface z = 0. The horizontally averaged dye concentration is given ini-
tially by € =0 (x > 0) and C =1 (z < 0). At some time ¢ = 0, bodies begin to pass
through the interface, thus distorting it and smoothing out the step in C(z) through
mechanical dispersion. This is essentially the method used to determine experimen-
tally the longitudinal dispersivity associated with the flow through a porous sample,
where the initial step change in concentration corresponds to the injection of a salt or
dye. The longitudinal dispersivity is measured from the horizontally average concen-
tration profile at the exit of the sample of porous media. Magnico et al. (1993) used
this method in their experimental study of dispersion by beads of low permeability,
and observed that when the mean transit time of the tracer through the sample was
comparable to the residence time within the beads (i.e. Ut ~ L}, the concentration
profile was non-Gaussian. In this discussion of the evolution of C, we restrict our
analysis to the limit of Ut 3> max(L,V/aA), for which the longltudmal dispersivity
is constant and C spreads as a Gaussian profile.

We have shown that the dispersive process is Fickian for large time so that the
horizontally averaged concentration field C satisfies

8C  dzz(t) 8C orC
Bt A oz Do
The mean displacement of the material surface calculated from (3.6) and (3.9) is
%7(t) = —€VN/A, where N is the number of bodies which have passed through the

(5.1)
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surface. The mean velocity of the material surface relative to the bodies is

d_’w_(%t)- = th@ = —U(l + €a), {5.2)

which is increased relative to the free stream speed —U by the retention of fluid by
the bodies. Substituting (4.7) and (5.2) into (5.1) gives

ac ac |Ds|L 82C
The horizontally averaged concentration field C changes owing to reflux, which shifts
the interface at a speed U(1 + ea), and to the mechanical dispersion associated with
the body-scale distortions of the interface.

We examined the variation of the concentration field with time by considering
the deformation of a material surface by a number of bodies. Figure 6a~c shows
the deformation of a material surface by a number of high permeability cylinders
(x = 2) which have risen through the interface. As IV increases, the deformation of the
interface becomes more pronounced. Figure 6d shows the evolution of the horizontally
averaged dye concentration profiles with increasing V. Initially the concentration
profiles are heavily skewed; however, the skewness decreases as N increases. For the
sake of comparison, the Gaussian profile, anticipated on the basis of (5.3), is shown.

6. Diffusive effects at high Péclet number

The results for mechanical dispersivity have been calculated by neglecting the effects
of tracer diffusivity. We proceed by considering the influence of weak diffusive effects
and so examine the limit of large, but not infinite, Pe. The impact of diffusion on
dispersion is important in regions, such as near stagnation points or within low
permeability bodies, where the flow is slowly moving relative to the stream velocity
/. When & > 0, there are no stagnation points in the flow and the minimum flow
speed is typically U min(1, O(x)), so that diffusive effects can be ignored everywhere
when the Péclet number defined in terms of the minimum local flow speed is large, i.e.
Pe > max(1,1/x). When the bodies are characterized by a low permeability, such
that kPe is small, diffusion is important within the bodies. Although the diffusive
component of tracer transport is not treated in this paper, the appropriate scaling for
D, may be anticipated by considering tracer particles which remain trapped within
the bodies for a time a?/D;, where D; is the molecular diffusivity within the bodies,
before leaving by cross-streamline diffusion. Tracer hold-up makes a contribution of
order al72a2/D; to the longitudinal dispersivity. Hence, in the «Pe < 1 regime, the
Jongitudinal dispersion is dominated by diffusive effects and Dz = O(al 242 /D). A
similar contribution to dispersivity was found by Koch & Brady (1985} from tracer
hold-up within rigid spheres fixed in a Stokes flow.

For flow past impermeable bodies, diffusive effects are only important at the stag-
nation points on the body surface. Since these stagnation regions are small and
localized, they make a negligible contribution to the longitudinal dispersion. We
thus conclude that the coefficient of longitudinal dispersion is Dzz = ¢CazzUL + D2,
for potential flows past impermeable bodies for Pe > 1.
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Figure 6. The time evolution of an initially horizontal material surface distorted by permeable
cylinders (x = 2) rising though a periodic channel (W/a = 40): (e) N = 10, (b)) N = 100, (¢)
N = 1000. The associated evolution of the horizontally averaged concentration field is shown in
(d) as (—), along with the profiles predicted theoretically by (5.3) (- - -).
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Table 2. The longitudinal dispersivity arising from the potential flow past two- or
three-dimensional impermeable bodies, at large and small Péclet number Pe(= U a/Ds).
(The low-Péclet-number results are derived by applying Maxwell’s (1873) method of calculating
D, for cylinders and spheres to arbitrary shaped bodies. The table demonstrates that bluff
bodies enhance Dz at high Pe by increasing the stretching of fluid elements, whereas bluff

bodies reduce Dzs in the limit of low Pe.)

flow longitudinal
regime dispersivity D

Pel (1—a(l+Ce))De
Pex1 alCr. L

7. Concluding remarks

We have examined the effect of body shape and permeability on dispersion by bodies
randomly positioned in a potential flow. We have quantified the longitudinal disper-
sivity in the high Péclet limit, and shown that diffusive effects are negligible for imper-
meable bodies at high Pe and for permeable bodies provided Pe > max(1,1 /k). In
these cases, the longitudinal dispersivity may be calculated by examining the defor-
mation of a material surface advected through an array of bodies. We have expressed
the coefficient of longitudinal dispersivity as D, = elU|D¢|L/V, and found that the
influence of body permeability on the longitudinal dispersion is quite dramatic {see
table 1). When the bodies are impermeable (table 2), the dispersivity is increased by
body bluffness, which serves to enhance the longitudinal stretching of fluid elements.
The longitudinal dispersivity increases significantly as x — 0 owing to the long-time
retention of fluid within the bodies. In the high-x limit, fluid passes preferentially
through the bodies, and slender rather than bluff bodies enhance longitudinal dis-
persiow.

We have shown that the longitudinal dispersivity increases significantly in the
limit of vanishingly small permeability, providing that diffusive effects are negligible,
Pe > max(1,1/k). The enhancement of dispersivity at low & does not reflect the
breakdown of the mathematical model, and its physical significance is underlined by
the experimental study by Magnico et al. (1993), who showed that the longitudinal
dispersivity associated with the flow past a fixed array of porous spherical beads
increased significantly (by a factor of about five) as the relative permeability of the
beads decreased {by a factor of about 10). Magnico ef al. (1993) argued, as we
have, that when xPe > 1, diffusive effects may be ignored within the beads and
the longitudinal dispersivity is dominated by the flow through the beads and the
dispersivity is Dz, ~ Ua/k. This singularity in dispersivity also has a bearing on
numerical simulations of dispersion in ground water. For instance, Wheatcraft et al.
(1990) studied dispersion through a fractal porous material consisting of impermeable
inclusions, using a value of x = 0.01 in order to avoid computational problems
experienced when & = 0. The results of this paper suggest that additional care
must be taken when bodies of low permeability are embedded in the flow and that
their impact on the flow may be significant, even when their volume fraction is low,
i.e. even when « is O(k). We should note that as x — 0, diffusive effects become
increasingly important within the regions of low permeability and provide an upper
bound for the longitudinal dispersivity of O0(aa®U? /D).
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Bubble-induced mixing is used in a variety of industrial processes, and is in gen-
eral influenced by both the transport properties of individual bubbles, and those
associated with the large-scale convective overturnings established by gradients in
bubble concentration. The flow upstream of a high-Reynolds-number bubble may
be described to leading order by potential flow theory; however, the inviscid flow
description breaks down in a thin boundary layer adjoining the bubble and in the
trailing wake (Moore 1965). The fluid transport associated with the rise of individ-
ual high-Reynolds-number bubbles was studied by Bhaga & Weber (1981) and more
recently by Bush & Eames (1998), who demonstrated that the contribution made by
the inviscid flow component to fluid transport was significant. While the flow gener-
ated by rising bubbles is unsteady and the position of the bubbles is not fixed relative
to one another, we may still gain some insight into bubble-induced mixing by apply-
ing our potential flow model. Qur results indicate the dependence of dispersivity on
the aspect ratio a/b of oblate ellipsoids, D, = 0.26ald,(a/b)*/3, where the effec-
tive diameter of an ellipsoid is d. = 2(a®b)'/3. Consequently, we anticipate that the
dispersive properties of high-Reynolds-number bubbles rising in water, whose aspect
ratio (Clift et al. 1978) varies from a/b = 1-5 as the Reynolds number increases
from 100 to 1500, are extremely sensitive to the Reynolds number. There may be
other important contributions to the mixing processes from the trailing vorticity or
unsteady bubble motion; consequently the potential flow description presented here
yields a lower bound for the longitudinal dispersivity.

The results we have derived for a random array of identical bodies may be extended
to the general case where the body geometry and permeability are variable. By fol-
lowing the arguments used to derive (4.7), we can demonstrate that the longitudinal
dispersivity associated with a random array of bodies is

Dpw = f"_‘*U-“)f'—ﬁLﬁdﬁ, Pes 1, (7.1)
Ve

where ag is the volume fraction of bodies with a prescribed geometry and p'érme-
ability specified by the dummy variable 3. These results provide some insight into
dispersion arising from a random permeability distribution. For instance, Dagan
(1984) showed that when the random permeability field is spatially correlated over
a distance I, the longitudinal dispersivity is Dy, = UloZ. This result could be
anticipated from table 1 (as k — 1), because the regions with relative permeabil-
ity 1+ O{oy) dominate longitudinal dispersion and have a characteristic length 7,
so that Dy, = O(UIo%). When the permeability field of an assemblage of identi-
cal bodies is characterized by a lognormal distribution, the longitudinal dispersivity
may be calculated from (7.1). The longitudinal dispersivity associated with arrays of
permeable cylinders and spheres may be calculated using (7.1) and table 1 and are,
respectively (Appendix B),

8
Dee = E{-aUaa]z, and D, = %aU ac.

Finally, the results in this paper have motivated an experimental study of disper-
sion by potential flow, which may be achieved using a Hele-Shaw cell (Bear 1972),
and which is currently being undertaken by the authors.
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Appendix A.

We demonstrate that the deformation of a material surface by an ellipse inclined in
a uniform stream corresponds to that caused by a cylinder of radius %(a + b). This
result may be established using the complex variable formulation of the potential
flow problem. The flow around an ellipse may be mapped from the z-plane to the
¢-plane to the flow around a cylinder of radius c = 1(a +b) (see Batchelor 1967,
p. 428). The transformation 2(¢) = ¢ +A?/¢, where A2 = }(a®—b?), maps the ellipse
to a cylinder in the ¢-plane. The flow in the ¢{-plane corresponding to the flow past a
cylinder gives w(¢) = U(¢ — c?e2%/(). The fluid displacement due to the flow past
the ellipse is

oo 2 00 AN
_ g _ dw dw dwdw)] do
xd(¢)—[mUdt_/_m[(dz 1)(dz 1)/(dzdz) U
where the overbar denotes the complex conjugate. Transforming the integrand to the

C—pla:ﬂe,
*® fdw dz\ [dw dz\d¥
ww=[(%-%) (& #)7 (A1)

where the time # is defined by

4 _dwdw
¢ d¢ d¢’
Substituting for w(¢) and 2({) into (A 1) shows that
_2abfa o5, b ., = 3 dtf
md(tp)—a+b(bcos 9+asm 9)(/_00 |€I4F)' (A2)

The integral on the right-hand side corresponds to the fluid displacement by a cylin-
der of radius ¢, normalized by the length-scale c. The length-scale L defined by (3.5)
for an ellipse aligned with the flow may be calculated from (A 2) to be
L Ll (E cos? 8 + E sin? 9),

b .a
where C = 0.74. The longitudinal dispersivity due to a dilute random array of ellipses
is thus

a a+b

26b fa b, 4
Drx —aU——a+b(bcos 3+asm 9).

Appendix B.

When oy < 1, the longitudinal dispersivity, Dy, associated with an assemblage of
cylinders whose permeability is characterized by a lognormal distribution, may be
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calculated from (7.1) and table 2:

_8 oe s 1 (log k)?
Dzz = 37TC¥UQ.];°°(1 - K) \/Q_ﬂ_—o_ymexp( 20_% dKZ

8
= 3-aUa(1 - 2exp(30%) + exp(20%))

8
= gaf,aUcH- O(aUac¥). -
The corresponding result for an array of spheres may be calculated by the same
method.
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