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Abstract
The walking droplet system discovered by Yves Couder and Emmanuel Fort presents an
example of a vibrating particle self-propelling through a resonant interaction with its own
wave field. It provides a means of visualizing a particle as an excitation of a field, a common
notion in quantum field theory. Moreover, it represents the first macroscopic realization of a
form of dynamics proposed for quantum particles by Louis de Broglie in the 1920s. The fact
that this hydrodynamic pilot-wave system exhibits many features typically associated with the
microscopic, quantum realm raises a number of intriguing questions. At a minimum, it extends
the range of classical systems to include quantum-like statistics in a number of settings. A
more optimistic stance is that it suggests the manner in which quantum mechanics might be
completed through a theoretical description of particle trajectories. We here review the
experimental studies of the walker system, and the hierarchy of theoretical models developed
to rationalize its behavior. Particular attention is given to enumerating the dynamical
mechanisms responsible for the emergence of robust, structured statistical behavior. Another
focus is demonstrating how the temporal nonlocality of the droplet dynamics, as results from
the persistence of its pilot wave field, may give rise to behavior that appears to be spatially
nonlocal. Finally, we describe recent explorations of a generalized theoretical framework that
provides a mathematical bridge between the hydrodynamic pilot-wave system and various
realist models of quantum dynamics.
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(Some figures may appear in colour only in the online journal)

1. Introduction

‘A man may imagine things that are false, but he can
only understand things that are true . . . ’

– Sir Isaac Newton

Pilot-wave hydrodynamics is the nascent field of study ini-
tiated in 2005 by the discovery of Yves Couder and Emmanuel
Fort [1, 2] that a millimetric droplet may self-propel along
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the surface of a vibrating liquid bath through a resonant inter-
action with its own quasi-monochromatic wave field [3–5].
The compound object comprising the droplet and its guid-
ing or ‘pilot’ wave is termed a walker (figure 1). Hydrody-
namic quantum analogs is the subject dedicated to exploring
the ability of this hydrodynamic pilot-wave system and related
dynamical systems to exhibit behavior analogous to that aris-
ing in quantum systems. The walking-droplet system has led
to hydrodynamic analogs of various microscopic quantum
systems, to varying degrees of success, including tunneling
[6–9], the quantum corral [10–14], the quantum mirage [13],
Landau levels [15–17], Friedel oscillations [18], diffraction
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Figure 1. Image gallery. (a) A bouncing drop. (b) A walker. (c) Faraday waves apparent just above the Faraday threshold. (d) A droplet
moves unpredictably on a bath forced above the Faraday threshold. (e) The subsurface vortical flow generated by a bouncing drop. (f) A
walking droplet, with its trajectory indicated by the black line. (g) A strobed image of a walker surfing its pilot wave. (h) Well above the
Faraday threshold, Faraday waves break, generating droplets. (a), (d) Reproduced from [159]. CC BY 3.0. (b), (c) Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Journal of Visualization. [161] © 2017. (e) Reprinted figure by permission from [61],
Copyright (2014) by the American Physical Society. (f), (g) Reproduced with permission from [4].

from slits [2, 19–25], spin states [17, 26, 27], Zeeman splitting
[27, 28], the quantum harmonic oscillator [26, 29–35], and
the Hong–Ou–Mandel effect [36]. Assemblages of bouncing
droplets have been shown to exhibit features characteristic of
the microscopic realm, including quantized static and dynamic
bound states [28, 37–50], crystal vibrations [51–53] and
spin–spin correlations [54, 55]. Hydrodynamic analogs of var-
ious optical systems have also been explored with the walking-
droplet system, including optical waveguides [56], Bragg
scattering [57], optical ratcheting [58] and particle trapping
with the Talbot effect [59, 60]. The walking-droplet system has
suggested classical reinterpretations of a number of tradition-
ally beguiling quantum notions, including wave–particle dual-
ity, wave function collapse, superposition of states, statistical
projection effects, single-particle diffraction and interference,
nonlocality, uncertainty and entanglement.

When successful, hydrodynamic quantum analogs provide
a means of understanding emergent quantum phenomena from
a classical, trajectory-based perspective. When unsuccessful,
they demarcate the limits of the hydrodynamic system as a
quantum analog, and suggest new directions to explore theo-
retically from a more general pilot-wave framework. The sub-
ject thus offers a mechanism for distinguishing between what
can and cannot be understood about quantum systems from
a classical perspective. In a field whose most distinguished
practitioners have been known to glory in the inscrutability of
their subject (for example, Feynman’s dictum ‘Nobody under-
stands quantum mechanics’), this progressive approach should
represent a welcomed change. The implications of the field
of hydrodynamic quantum analogs for the state of quantum
foundations has been the source of speculation among both
physicists and philosophers [62–71].

Laplacian determinism postulates that, given the initial con-
ditions and governing laws of a physical system, one can pre-
dict its evolution indefinitely. This simple state of affairs is lost
for hereditary systems [72, 73], systems with ‘memory’, whose
dynamics are non-local in time, with their evolution depend-
ing explicitly on their past. Locality is a feature of a physical
theory of particle motion if the particle feels only forces acting
locally upon it. Temporal locality requires that a body respond

only to forces acting instantaneously upon it, while spatial
locality forbids action at a distance. The apparent action at a
distance implied by Coulomb’s law of electrostatics was rec-
onciled through the realization that the forces so defined are
mediated by electromagnetic waves that propagate no faster
than the speed of light. Pilot-wave hydrodynamics explores
the possibility that the spatial nonlocality of quantum mechan-
ics might likewise be rooted in a currently unresolved wave
dynamics, that quantum non-locality might be a manifestation
of spatially local hereditary pilot-wave dynamics.

Particle-wave interactions are common on the macroscopic
scale. Familiar examples include a buoy floating on the sur-
face of the sea, and a grain of sand moving in response to
elastic waves induced on a Chladni plate [74]. In both, the
particles move primarily in response to imposed waves rather
than waves of their own creation. Conversely, in the hydro-
dynamic pilot-wave system, drop motion is driven entirely
by the bouncing drop’s interaction with its own wave field
(figure 1). If the droplet were not present, there would be no
pilot wave; if there were no pilot-wave, there would be no lat-
eral drop motion. Identifying the droplet as a self-propelling
wave source [40] differentiates the walker system from the
great majority of classical wave–particle systems.

A key feature of the walking droplet system is that of ‘path-
memory’ [15, 75]. At each impact, the drop responds to the
wave field generated by some number of its previous bounces,
the precise number being determined by the longevity of its
pilot-wave field. The bath thus serves as the memory of the sys-
tem, storing the information of the walker’s past, specifically
its path and its environment, in its wave field. The more persis-
tent the waves generated by the bouncing drop, the longer the
memory. The feature of path-memory is apparent in virtually
all of the theoretical models developed to describe the walk-
ing droplets [76]. Specifically, there is a propulsive wave force
proportional to the slope of the local wave field whose form
must be deduced by integrating backwards in time in order to
account for all the waves generated along the walker’s path.
The path memory renders the drop motion non-Markovian, its
dynamics hereditary. Of course, the walker system is local in
both space and time: the instantaneous force acting on the drop
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is determined by the local form of its pilot-wave, and the pilot-
wave field evolves in time through a local partial differential
equation. However, the influence of its wave field renders the
droplet dynamics non-local in time: the wave force depends
on the droplet’s history. This temporal non-locality in the drop
dynamics can give rise to behavior that appears to be non-local
in space. Several examples of the possible misinference of spa-
tial nonlocality in the walker system will be reviewed in what
follows.

The other critical ingredient for the emergent quantum-
like behavior is resonance between the walker’s bouncing
motion and its wave field. The combination of the bath vibra-
tion and this resonance leads to a highly structured, quasi-
monochromatic wave field that imposes a dynamic constraint
on the walking droplet. The three established paradigms for
the emergence of quantized dynamical states and quantum-
like statistics from pilot-wave hydrodynamics, to be detailed
in what follows and summarized in section 10.1, are all firmly
rooted in the quasi-monochromatic form of the droplet’s pilot
wave.

The hydrodynamic pilot-wave system is a particular case
of a more general classical pilot-wave dynamics, theoretical
explorations of which have extended the range of quantum
analogs, as reviewed in section 9. Such a generalized pilot-
wave framework also provides a means of comparing pilot-
wave hydrodynamicswith its quantum predecessors, including
de Broglie’s double-solution pilot-wave theory [68, 77–80],
Bohmian mechanics [81, 82], stochastic dynamics [70, 83,
84], and stochastic electrodynamics [85, 86]. It has also lead
to the first tentative walker-inspired attempts to formulate a
trajectory-based quantum mechanics [20, 70, 87–89].

Before proceeding, it is appropriate to define the limited
scope of this review. Hydrodynamics has been a rich source
of metaphor and physical analogy for microscopic physics
[4], from Newton’s description of photons as stones skip-
ping through the ether [90] to Lord Kelvin’s description of
microscopic particles as vortical knots in the ether [91]. The
walking-droplet system has a significant number of precursors
in terms of hydrodynamic quantum analogs. These include
Thomas Young’s use of ripple-tank experiments to demon-
strate the wave nature of light [92], hydrodynamic analogs of
the Aharanov–Bohm [93] and Casimir [94] effects, and a clas-
sification of droplet vibration in terms of a dynamic periodic
table [95]. The specific goal of this report is to review work
done on the walking-droplet system since its discovery, and to
outline its intriguing connections to existing realist models of
quantum dynamics.

By way of providing both motivation and historical context,
in section 2 we discuss the quantum predecessors of the hydro-
dynamic pilot-wave system. In section 3, we provide a brief
overview of the walking-droplet system, and in section 4 detail
the hierarchy of theoretical models developed to describe it. In
section 5, we review experimental and theoretical studies of
static and dynamic bound states formed from the interactions
of multiple bouncing droplets. We devote section 6 to a review
of orbital pilot-wave dynamics, as may arise when the walk-
ing droplet is subjected to an external force. In section 7, we
review studies of walker motion in a confined corral geometry.

More general walker-boundary interactions, including scatter-
ing and diffraction, are treated in section 8. Finally, in section 9
we review the explorations of a generalized pilot-wave frame-
work in which the common features of de Broglie’s quantum
dynamics and the walking-droplet system are retained, but the
limitations and shortcomings of both may be side-stepped. A
summary is presented in section 10, along with projections for
fruitful research directions.

2. Quantum pilot-wave theories

Quantum mechanics is a theory that describes the statisti-
cal behavior of microscopic particles. The absence of a sat-
isfactory description of an underlying dynamics has left the
field in a state comparable to that of thermodynamics prior
to the development of statistical mechanics [96]. Moreover, it
has left the door open to the proliferation of quantum inter-
pretations, attempts to comprehend what the theory actually
means [97–99]. Such interpretations have run the gamut from
mystical to perfectly sensible. According to the Copenhagen
interpretation, the statistical description provided by quan-
tum mechanics is complete: there is no underlying physical
reality, or notion of quantum particles following trajectories.
The insistence on the completeness of the statistical descrip-
tion of quantum systems leads immediately to various diffi-
culties, including superluminal wave-function collapse [100],
the confounding notion of complementarity, and the para-
dox of Schrödinger’s cat. The philosophical extravagance of
the Copenhagen interpretation opened the door to equally
untestable rivals, notable among them being the Many-Worlds
interpretation [101], according to which the universe branches
into copies of itself in response to any decoherence event such
as the act of human observation.

Following the preeminence of the Copenhagen interpre-
tation, a number of relatively commonsensical perspectives
have emerged, and are evidently gaining ground. According to
the statistical [102] or ensemble interpretation [103], quantum
mechanics describes the statistical evolution of an ensemble of
similarly prepared states. Consistent histories [104] dispenses
with many of the difficulties of other interpretations, includ-
ing wave function collapse and non-locality, and ensures a
framework in which classical rules of probability are satisfied
by formulating a self-consistent history of the system evolu-
tion. While undoubtedly improvements over their compara-
tively immoderate predecessors, these perspectives remain but
interpretations, providing no physical picture as to what form
the underlying quantum dynamics might take.

Virtually all attempts to envisage a realist quantum dynam-
ics have involved particles interacting with a background field,
either a coherent pilot wave as proposed by de Broglie [77–79]
and Bohm [81, 82], or a stochastic vacuum field as posited
in stochastic dynamics [83, 84] and stochastic electrodynam-
ics [85, 86]. As we shall see, experimental and theoretical
modeling of pilot-wave hydrodynamics has, in various param-
eter regimes, captured certain features of all such theories.
Since these theories of quantum dynamics have yet to be satis-
factorily completed, they remain classified as interpretations.
However, it is worth noting that, if successful in providing a
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dynamical picture that is consistent with the statistical predic-
tions of standard quantum mechanics in all settings, they will
leave no room for interpretation.

2.1. For whom the Bell does not toll

It is widely believed that the work of John Bell, specifically
the derivation of Bell’s inequality [105] and the experimental
violation thereof [106–109], sounds the death knell for hidden
variable theories. A more defensible inference is that experi-
mental violation of Bell’s inequality requires that any hidden
variable theory be nonlocal in the quantum sense [110]. Mor-
gan [111] and Vervoort [66, 67] assert that Bell’s inequalities
have no bearing on hidden-variable theories in which parti-
cles interact through a background wave field. Bell himself,
who derived his inequality, then saw it violated by the experi-
ments of Aspect [106–108], came to the conclusion that there
must be a pilot-wave dynamics underlying quantum statistics
[110, 112]. Specifically, he supported the de Broglie–Bohm
theory, according to which particles interact with a nonlocal
quantum potential [112]. Readers who believe that they under-
stand Bell’s work better than Bell himself are invited to revisit
his original writings [110], along with a recent account of the
systematic misinterpretation thereof [98].

Any theory, hidden variable or otherwise, must answer to
the same experimental data. All features of quantum mechan-
ics must be captured by a successful hidden variable theory,
including quantum non-locality. In the absence of a hidden
variable theory, the quantum non-locality inferred by the quan-
tum correlations measured experimentally [106–108] requires
superluminal signaling, ‘spooky action at a distance.’ A suc-
cessful theory would provide a rational explanation for such
correlations based on the particle dynamics, thereby obviating
the need for superluminal signaling.

2.2. The Madelung transformation

The original hydrodynamic interpretation of quantum mechan-
ics follows directly from the Madelung transformation [113],
which allows the linear Schrödinger equation (LSE) to be
recast in hydrodynamic form. Consider the standard quantum
mechanical description of a particle of mass m in the pres-
ence of a potential V (x, t). The particle’s wave functionΨ(x, t)
evolves according to the LSE:

i�Ψt =

(
− �

2

2m
∇2 + V

)
Ψ, (1)

where � is the reduced Planck’s constant. Expressing the
wave function in polar form, Ψ(x, t) = R(x, t) eiS(x,t)/�, and
substituting into (1) yields

Dρq

Dt
+ ρq∇ · vq = 0,

∂S
∂t

+
1
2

mv2
q + Q + V = 0, (2)

where vq(x, t) = ∇S(x, t)/m is the quantum velocity of prob-
ability, D/Dt = ∂t + vq ·∇ the material derivative, S(x, t) the
action, ρq(x, t) = R2 the probability density, and Q(x, t) =

− �
2

2m
1
R∇

2R the quantum potential. The first equation in (2)
expresses the conservation of probability. Taking the gradient

of the second yields the evolution equation for the quantum
velocity of probability vq:

m
Dvq

Dt
= −∇Q −∇V. (3)

From the perspective of the fluid mechanician, the
Madelung formulation [113] has two attractive features [114].
First, it consigns Planck’s constant � to a single term, the coef-
ficient on the quantum potential. Second, the system corre-
sponds to that describing the evolution of a shallow, inviscid
fluid layer if one associates ρq with the fluid depth, and vq with
the depth-averaged fluid velocity. When Q is linearized about a
state of uniform ρq, it assumes the form of the surface-tension-
induced curvature pressure in shallow-water hydrodynamics
[115]. One thus sees the first tentative relation between the
roles of � in quantum statistics and surface tension σ in hydro-
dynamics, a relation that has been deepened by a comparison
between the walker system and de Broglie’s physical picture
[3] (see section 2.4).

The hydrodynamic formulation that follows from the
Madelung transformation is the standard approach to describ-
ing a number of quantum systems, including Bose–Einstein
condensates [116]. As it represents no more than a mathe-
matical reformulation of the Schrödinger equation, it adds no
new physics, only a means of interpreting the evolution of
the statistics of a quantum system in terms of fluid flow. The
walking-droplet system suggests a much richer hydrodynamic
interpretation of quantum mechanics, a physical picture replete
with the notion of particles generating waves and moving in
response to them [3–5], a dynamics evocative of de Broglie’s
original pilot-wave theory (see section 2.4).

2.3. Bohmian mechanics

Bohmian mechanics [81, 82] was formulated by David Bohm
in 1952 in an attempt to reintroduce the notion of particle tra-
jectory to quantum mechanics. It is briefly reviewed here in
order to distinguish it from the relatively rich double-solution
pilot-wave theory of de Broglie, which the walking droplet
system more closely resembles [3, 117]. Unlike de Broglie’s
mechanics, Bohmian mechanics was not rooted in relativ-
ity: its starting point was the linear Schrödinger equation (1).
The basic assertion of Bohmian mechanics is that the particle
velocity ẋp is identical to the quantum velocity of probabil-
ity vq; consequently, the trajectory of the particle is prescribed
by equation (3). The particle thus moves in response to the
classical and quantum potentials. Notably, Bohmian mechan-
ics posits no mechanism for wave generation. The only wave
in Bohmian mechanics is the wavefunction of the standard
quantum formulation, as necessarily satisfies Schrödinger’s
equation (1) and prescribes the statistical behavior of the
system.

Bohmian mechanics immediately drew criticism from sev-
eral circles, a common objection being to the nonlocal form
of the quantum potential [118]. In response to these criticisms,
Bohm and Vigier [119] invoked a stochastic background field.
They then viewed the Bohmian trajectories as streamlines in a
gas flow, but imagined that the real particles would stray from
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these streamlines in response to stochastic fluctuations, just as
dust particles in an air flow stray from streamlines in response
to Brownian motion [3, 117].

Particle diffraction from slits is treated in Bohmian mechan-
ics by solving Schrödinger’s equation for the wavefunction,
from which the form of the quantum potential is calculated.
The Bohmian particle paths are then computed via (3) using
an ensemble of initial conditions corresponding to a Gaussian
beam. Philippidis [120] thus deduced a self-consistent result,
specifically, particle paths consistent with the wavefunction
used to derive them. Recent advances in weak measurement
have reported that mean particle paths in the single and double
slit experiments are consistent with the predictions of Bohmian
mechanics [121]. Given that Bohmian mechanics can be seen
as a dynamical reformulation of a statistical theory, it would
seem optimistic to imagine that it might describe anything
more than a mean dynamics. Of course, a description of the
mean dynamics is an improvement over no description at all;
thus, Bohmian mechanics has found wide application in both
optics [122] and physical chemistry [123, 124]. Moreover, as
noted by Bell [110, 112], workers in Bohmian mechanics [71,
96, 125–128] have provided a valuable perspective that has
acted to counter the prevailing complacency surrounding the
meaning of quantum mechanics.

The walking droplet system demonstrates how quantum-
like statistics may, in certain circumstances, emerge from
classical pilot-wave dynamics. It is significantly richer than
Bohmian mechanics, replete with a mechanism for particle-
induced wave generation, and with a real, particle-centered
wave to complement the statistical wave form. While these
added complexities of the walker system make it a more chal-
lenging dynamical system to analyze, it allows one to see the
manner in which one might circumvent the difficulties inherent
in Bohmian mechanics, namely the need to invoke a nonlo-
cal quantum potential and a stochastic background field. The
manner in which the hydrodynamic pilot-wave system does
so is evocative of a predecessor of Bohmian mechanics, de
Broglie’s double-solution pilot-wave theory.

2.4. de Broglie’s matter waves

de Broglie’s double-solution pilot-wave program [77–80, 129,
130] was an attempt to reconcile quantum mechanics with rel-
ativity [68]. His basic premise was that there are two things
in the Universe, light and matter. Since light was then known
to have both wave and particle natures, he proposed that so
too must matter, hence de Broglie’s matter waves. He posited
that particles have an internal vibration, and move in concert
with their matter waves. On the basis of his physical picture, de
Broglie predicted electron diffraction, the experimental con-
firmation of which [131, 132] earned him the Nobel Prize in
physics in 1929.

Relativity requires that a particle of rest mass m0 have
energy E = m0c2, while quantum mechanics requires that
E = �ω. Equating these two equations, referred to by Wilczek
[133] as a ‘poem in two lines’, yields the Einstein–de Broglie
relation, m0c2 = �ω, as defines the Compton frequency, ωc =
m0c2/�. According to de Broglie, quantum particles are

oscillators exchanging their rest mass energy m0c2 with field
energy �ω at the Compton frequency. In a manner left unspec-
ified by de Broglie, the particle vibration generates a pilot
wave with the de Broglie wavelength λB that guides the parti-
cle. The synchrony of the particle’s internal oscillation with
its pilot wave in all reference frames, as follows from rela-
tivistic considerations [68, 88], was referred to by de Broglie
as the ‘harmony of phases’, and considered to be a key fea-
ture of his pilot-wave mechanics, ‘une grand loi de la nature’
[134]. Notably, synchrony between the droplet and its pilot
wave is also critical to the emergent quantum-like behavior of
the hydrodynamic pilot-wave system.

de Broglie envisioned a quantum particle as having an
internal vibration, with the Compton frequency, that cre-
ates a pilot-wave field satisfying the Klein–Gordon equation
[130, 135],

φtt − c2Δφ+ ω2
cφ = 0. (4)

The particle thus excites a field of monochromatic waves
and moves in response to the gradient of the wave phase
(see table 3). The de Broglie wavelength, λB = 2π/kB, rep-
resents the wavelength of the monochromatic wave form
whose group speed corresponds to the particle speed:
dω
dk (kB) = v. The de Broglie relation p = γLm0v = �kB, where

γL =
[
1 − (v/c)2

]−1/2
is the Lorentz factor, follows directly

from the dispersion relation of the Klein–Gordon equation:
ω2 = ω2

c + k2c2. The resulting physical picture is that of a
particle being propelled by a monochromatic wave form that
dresses the particle, an image manifest in the walking droplet
system.

While there are similarities between de Broglie’s concep-
tion and the hydrodynamic pilot-wave system, there are also
a number of qualitative differences. First and foremost, de
Broglie did not specify the manner in which the particle vibra-
tion generates the wave: equation (4) is unforced. Second, the
Klein–Gordon equation is undamped, while the waves accom-
panying the walking drop are damped by viscous effects.
Third, de Broglie’s trajectory equation posits that the particle
responds to gradients in the phase of its pilot-wave field: parti-
cle inertia plays no role. As we shall see in what follows, there
is accumulating evidence that the low-drop-inertia, undamped
wave limit is that in which the quantum-like behavior of the
walking droplets is most pronounced.

De Broglie’s greatest obstacle was identifying the form of
his pilot wave φ. While he asserted that the particle vibration
was responsible for wave generation, he did not express mathe-
matically the manner in which this generation arose. He stated
that the pilot wave satisfied the Klein–Gordon equation (4),
but did not demonstrate the manner in which a particle vibrat-
ing at the Compton frequency would generate such a waves,
or the form that it would take. Several possibilities were thus
explored. First, he assumed that φ was monochromatic, from
which p = �kB follows directly from his trajectory equation
(table 3). Following the work of Bohm [81, 82], he proposed
that φ took the same form as the Ψ wave of equation (1), apart
from a nonlinearity in the vicinity of the particle [80, 130].
With this concession, Ψ ∝ φ, de Broglie’s double-solution
theory effectively merges with Bohmian mechanics, hence the
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so-called de Broglie–Bohm pilot-wave theory, which is effec-
tively Bohmian mechanics [136]. The hydrodynamic pilot-
wave system presents an example where the instantaneous
pilot wave differs substantially from the emergent statisti-
cal form [10, 13], which is more in line with de Broglie’s
original conception [3, 117]. A recent attempt to extend de
Broglie’s double-solution mathematical program, informed
by the walking-droplet system [88, 89], will be described in
section 9.3.

de Broglie presented an early form of his theory at the
Solvay conference of 1927, but drew criticism from several cir-
cles, and his theory was not thereafter widely accepted [137].
Indeed, de Broglie himself abandoned it for a time before
returning to it following the work of Bohm [81, 82]. Nev-
ertheless, it provided a number of the cornerstones of quan-
tum theory. In addition to inspiring the de Broglie relation,
p = �kB, and the Einstein–de Broglie relation, m0c2 = �ω, his
physical picture suggested that many of the quantum myster-
ies may be rooted in an unresolved dynamics on the Compton
scale, the scale of particle vibration [138]. His physical pic-
ture inspired Schrödinger to develop both the Klein–Gordon
and Schrödinger equations in order to describe the pilot wave
[139]. Subsequently, these wave equations were adopted to
describe the wavefunction, and so only the statistical behav-
ior of quantum systems, a development to which Schrödinger
himself objected [140]. The physical picture that had inspired
the development of the principal governing equations of quan-
tum mechanics was thus abandoned in favor of . . . no physical
picture.

Compelling as de Broglie’s double-solution theory may
seem in light of a number of the alternatives, it was never com-
pleted. In particular, because the generation mechanism and
form of the pilot-wave field φ were not specified, it was not
possible to demonstrate that the proposed pilot-wave dynam-
ics would give rise to statistical behavior described by the
Ψ wave. Furthermore, the physical origin of the pilot wave
field was not specified. In his later works, de Broglie [80]
sought its origins in a stochastic background field, the mod-
ern equivalent of which would be the quantum vacuum [141].
While the electromagnetic vacuum field has been most thor-
oughly investigated as a potential pilot-wave field [85, 86],
other possibilities exist. Notably, the wave equation (4) con-
sidered by de Broglie is precisely that describing the Higgs
field [88].

Before proceeding, it is worth enumerating the many lines
of evidence supporting de Broglie’s proposal of associating
a quantum particle with a high frequency oscillation at the
Compton frequency ωc. First, it is required from dimensional
analysis if one assumes that the relevant fundamental con-
stants are �, c and m0. Second, it provides the means by which
to connect solutions φ of the Klein–Gordon equation (4) to
solutions Ψ of the linear Schrödinger equation (1). Specifi-
cally, if φ(x, t) = Ψ(x, t)eiωct is a solution of the Klein–Gordon
equation, then Ψ(x, t) satisfies the LSE provided the parti-
cle speed v � c [142]. Zitterbewegung was a feature of early
models of quantum theory taken to indicate a high-frequency
jitter of microscopic particles at ωc [143]. The classical model
of the electron is that of a charge orbiting the Compton radius,

λc = h/(mc) at the Compton frequency [144]. Particle vibra-
tion atωc plays a critical role in both Hestenes’ Zitterbewegung
interpretation of quantum mechanics [145] and in stochas-
tic electrodynamics [85, 86]. Notably, Compton frequencies
are not yet observable experimentally for most particles; for
example, the Zitter frequency of the electron is 1.6 × 1021 s−1.
Nevertheless, some evidence of Zitterbewegung has recently
been reported in Bose–Einstein condensates [146] and trapped
ion systems [147].

2.5. Stochastic dynamics

While the pilot-wave theories of de Broglie and Bohm rely
on a particle being guided by a coherent wave form, either
the Ψ wave in Bohm’s mechanics or the unspecified φ wave
in de Broglie’s, stochastic dynamics posits that microscopic
particles are propelled by a stochastic background field associ-
ated with the quantum vacuum. Nelson [83, 84] introduced the
stochastic interpretation of quantum mechanics. Starting with
the linear Schrödinger equation (1), he argued that the evolu-
tion of the quantum statistics of a microscopic particle of mass
m may be understood in terms of a diffusive process charac-
terized by diffusivity �/(2m). If one asserts that a microscopic
particle has momentum p = �kB, then this diffusivity may be
reexpressed as D ∼ vλB, as one expects to arise from a ran-
dom walk of a particle with mean speed v and step length λB.
As will be seen in what follows, similar random walks have
been found in a number of theoretical models of pilot-wave
hydrodynamics.

A modern extension of de Broglie’s double-solution
pilot-wave theory has emerged from the field of stochastic
electrodynamics, according to which the pilot wave is elec-
tromagnetic in origin [86]. A number of lines of evidence
suggest that, even at zero Kelvin, there is electromagnetic
energy in the quantum vacuum field [141]. Consistency with
the requirement of Lorentz invariance and experiments on the
Casimir effect indicates that this zero-point field has a partic-
ular spectral form: the vacuum mode with frequency ω has
energy U(ω) = �ω/2 [148]. Notably, the quantum vacuum
thus provides a natural means by which to introduce Planck’s
constant � into a classical theory. The successes and limita-
tions of stochastic electrodynamics in rationalizing quantum
phenomena have been recently reviewed by Boyer [149].

In de la Peña and Cetto’s conception of stochastic elec-
trodynamics [85, 86], the stochastic background field excites
the vibration of the particle at its natural frequency. The par-
ticle then interacts with resonant vacuum modes: the resulting
pilot-wave is thus an electromagnetic wave with the Compton
frequency and Compton wavelength in the particle frame of
reference. The de Broglie wave arises due to the particle
motion [86], and represents the envelope of this Doppler-
shifted, Lorentz-transformed pilot wave [85]. As posited,
stochastic electrodynamics provides alternative rationale for a
number of quantum phenomena [150–152], but its ability to
capture diffraction from slits has been questioned [153, 154].
The relation between stochastic dynamics and stochastic elec-
trodynamics has recently been reviewed by de la Peña et al
[155].
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Figure 2. Regime diagram indicating the dependence of the drop’s bouncing behavior on the dimensionless vibrational acceleration of the
bath, γ/γF, and vibration number, Ω = ω/

√
σ/ρa3, for a bath with viscosity 20 cS driven at ω/(2π) = 80 Hz. Drop dynamics both below

[156] and above [157] the Faraday threshold, γ/γF = 1, are shown. Reprinted from [157], with the permission of AIP Publishing.

3. The walking droplet system

The hydrodynamic pilot-wave system consists of a millimetric
drop placed on the surface of a vibrating liquid bath (figure 1).
The walking droplet system is visually striking, its aesthetic
appeal evident even with a simple classroom demonstration
[158–161]. Quantitative experiments are typically performed
on a fluid bath of silicone oil with viscosity between 20 and
100 cS vibrating at 20–100 Hz. While all are based on the
original design of Couder and Fort’s experiments [2, 38, 162],
a number of refinements have improved precision and repeata-
bility [25, 49, 163–165]. The drop behavior is known to
depend critically on both drop size and driving acceleration
[38, 41, 156, 166–168]; consequently, the generation of repro-
ducible data requires precise control of both. Based on the
drop-generator designs of Terwagne et al [169] and Yang et al
[170], Harris et al [165, 171] thus developed a device to pro-
duce uniform droplets with diameters ranging from 0.5 to 1.4
mm (accurate to ±1%). A number of experiments have indi-
cated the importance of isolating the walkers from air currents
with a lid [13, 23]. This requirement has prompted the devel-
opment of launchers that allow for the experiments to run con-
tinuously, even with a lid [18, 23, 45, 46, 172]. Most recently,
Ellegaard and Levinsen [25] achieved temperature control of
the bath, thereby eliminating spurious effects associated with
drift of the ambient room temperature.

3.1. Faraday waves

Consider a horizontal liquid bath of depth H, density ρ, sur-
face tension σ and kinematic viscosity ν subjected to a ver-
tical vibration of amplitude A0, frequency ω and acceleration
γ sinωt (where γ = A0ω

2), in the presence of a gravitational
acceleration g. Faraday waves [173] develop on the surface
when a critical vibrational acceleration, the Faraday threshold
γF, is exceeded [174–176] (figure 1(c)). The system vibra-
tion has the feature of naturally imposing a quantization on the

resulting waves; specifically, the Faraday waves always have
an oscillation frequency that is an integer multiple of ω/2.
In all cases considered to date in the context of pilot-wave
hydrodynamics, the most unstable mode is subharmonic, with
half the frequency of the bath’s vibrational forcing. The wave-
lengthλF of the resulting Faraday wave field is then prescribed
by the water-wave dispersion relation, which relates the Fara-
day wavenumber kF = 2π/λF to the frequency of vibrational
forcing ω and the wave frequency ωw:

(ω/2)2 = ω2
w(kF) ≡

(
gkF +

σk3
F

ρ

)
tanh kFH. (5)

The form taken by the Faraday wave field may be influenced
by the bounding geometry for small domains, but a square
planform is the norm in sufficiently large domains.

Beyond the Faraday instability threshold, γ > γF, the Fara-
day wave system has a number of curious features, including
some common to quantum systems and quantum chaos [177].
In certain parameter regimes, the most unstable wave pattern
is a mixed state consisting of two distinct wavelengths, the
result being a quasi-crystalline wave structure [176, 178]. In
the chaotic wave regime arising for γ � γF, ‘scars’ emerge
[179, 180], corresponding to regions of anomalous wave
energy. Scars are also prominent features of quantum billiards,
which describe the wavefunction of a particle confined to a
domain and colliding perfectly elastically against the domain’s
boundary [181]. Finally, there is a critical vibrational acceler-
ation γR ∼ (σ/ρ)1/3ω4/3 above which the vibration prompts
interfacial fracture: surface tension is incapable of stabiliz-
ing the wave, whose crests pinch off into drops with size
comparable to λF (figure 1(h)) [182, 183].

3.2. Bouncing and walking drops

A fluid drop of radius a, density ρ, mass m = 4πa3ρ/3
and surface tension σ is an oscillator with a natural fre-
quency ωd ∼

√
σ/m prescribed by a balance between fluid

7



Rep. Prog. Phys. 84 (2020) 017001 Review

Figure 3. Vertical dynamics of bouncing and walking droplets. (a) Kymographs, deduced by juxtaposing a vertical array of pixels through
the droplet’s centerline, illustrate the drop’s bouncing [167] and walking [156] modes: in order, (1, 1) bouncing, (2, 2) bouncing, (2, 1)2

walking and chaotic walking. (b) Dependence of a bouncing droplet’s touch-down (red) and take-off (blue) times on the bath’s vibrational
acceleration γ/γF. The kinematic-match model of the droplet’s vertical dynamics (curves) [193] (see section 4.4) is compared with
experiments (shaded regions) [194]. The vertical lines indicate the transitions between different bouncing modes in experiment (solid) and
simulations (dashed). (c) The dependence of the impact phase Φ (black lines) and horizontal speed u0 (blue line) on the vibrational forcing
γ/γF, as predicted by the theoretical model of Milewski et al [44] (see section 4.4). The droplet speed u0 is nondimensionalized by the phase
speed, Cp, of a wave with the Faraday wavelength. Background colors denote different bouncing and walking modes. The impact phase
necessarily takes multiple values in regimes with more than one impact per bouncing cycle. The abrupt jump in both phase and speed
indicates the transition between the (2, 1)1 and (2, 1)2 walking modes. (a) Reproduced with permission from [156, 167]. © Cambridge
University Press. (b) Adapted with permission from [193]. © Cambridge University Press. (c) Reproduced with permission from [44].
© Cambridge University Press.

inertia and curvature forces induced by surface tension
[184, 185]. When a millimetric fluid drop is placed on
the surface of a vibrating bath, it may be levitated on the
bath surface, either hovering or bouncing [186]. The crite-
rion for non-coalescence is that the air layer between bath
and drop maintain a critical thickness (of order 100 nm)
during the course of each impact; otherwise, van der Waals
forces acting between the two liquid phases initiate coa-
lescence [162, 187, 188]. When the drop bounces, its dis-
tortion into an oblate spheroid during impact increases the
surface area of the underlying air film, thereby discouraging
coalescence. When the drop bounces at its natural frequency,
there is a resonance in the system. Hydrodynamic quantum
analogs arise when there is an additional resonance, between
the bouncing and the resulting subthreshold Faraday waves.
Because the Faraday waves are viscously damped, the system
may then be viewed as a damped oscillator forced at its reso-
nant frequency. For a bath of a given viscosity, the longevity of
the waves generated by the droplet impact, as determines the
system’s ‘path-memory’, increases with the vibrational accel-
eration. The terms ‘memory’ and vibrational acceleration are
thus used interchangeably henceforth.

The evolution of the bouncing droplet system with increas-
ing vibrational acceleration at a fixed frequency has been char-
acterized experimentally in a number of studies [37, 38, 156,
167, 168, 189]. The system behavior depends on the chosen
fluid, as well as the vibrational frequency. The most exten-
sive walking regime arises with the 20 cS–80 Hz combina-
tion [41, 156, 168], the behavior of which is summarized in
figure 2. The horizontal axis indicates the magnitude of the
vibrational acceleration, while the vertical axis indicates the
vibration number, Ω = ω/ωd = ω/

√
σ/ρa3, which indicates

the relative magnitudes of the bath’s vibrational frequency
and the drop’s natural frequency, and serves as a proxy for
drop size [167, 190, 191]. Different periodicities are evident

in the vertical dynamics of both bouncing and walking states.
In the bouncing mode (i, j)p, a droplet bounces j times over
i vibration periods [167, 192]. The subscript p orders differ-
ent modes with the same bouncing periodicity according to
their mechanical energies, with large p denoting bouncers with
larger bouncing amplitude.

Consider a drop of radius a = 0.4 mm, and viscosity
ν = 20 cS forced at ω/(2π) = 80 Hz, corresponding to a hor-
izontal line in figure 2 with vibration number Ω = 0.87. Just
above the coalescence threshold, the drop bounces with the
same period as the bath vibration, in a (1, 1) mode (figure 3(a)).
The amplitude of the bouncing droplet then generally increases
progressively with driving acceleration and the impact phase
shifts until the period of the bouncing reaches twice that of
the vibrational forcing, and so becomes commensurate with
the subharmonic Faraday waves favored by the bath vibration.
Figures 3(b) and (c) illustrate the evolution of the bouncing
dynamics during this progression. Drops in the resulting reso-
nant (2, 1) bouncing states may have one of two impact phases
relative to the bath vibration, and so be either in-phase or out-
of-phase with respect to other droplets. The transition to the
resonant (2, 1) state coincides with a substantial increase in the
bouncer’s wave energy, and is soon followed by the onset of
horizontal droplet motion, the transformation from bouncing
to walking.

In the walking state, a droplet self-propels in a straight line
through a resonant interaction with its own wave field. A vari-
ety of walking states exist. Resonant (2, 1) walkers arise when
the bouncing frequency matches the Faraday frequency. In
the parameter regime reported in figure 2, two different res-
onant walking states are possible, characterized by different
impact phase and denoted by (i, j) = (2, 1)1 or (2, 1)2 [156].
In the (2, 1)1 and (2, 1)2 modes, the drop is in contact with
the bath for approximately TF/2 and TF/4, respectively, where
TF = 4π/ω is the Faraday period [38, 44, 50, 156, 167, 195]
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(figures 3(a) and (b)). In the high-memory limit, γ → γ−
F ,

this resonance may be lost, and the bouncing may become
chaotic; nevertheless, the drop walks in a straight line [168].
The range of drop sizes over which walking arises for a par-
ticular fluid and vibrational frequency is limited. For example,
in figure 2, the smallest walkers have a radius of 0.25 mm and
the largest, 0.47 mm. It is thus, presumably, that this hydro-
dynamic pilot-wave system was not discovered until 2005
[1].

A striking feature of the walking droplets is the stability
of the free walking state; indeed, in the absence of interactions
with boundaries or other walkers, the walkers self-propel along
a straight line. This stability is all the more beguiling when one
considers that the drop is riding on the crest of its pilot wave
field (see figures 1(b) and (g)). The simplest intuitive argument
suggests that such an arrangement should be unstable. If the
drop is perturbed backwards, it will receive a relatively small
kick from its wave field at impact, so slow down; if perturbed
forward, it will receive a relatively large kick, so speed up.
What this reasoning fails to take into account is the stabilizing
influence of the system memory. When the drop decelerates or
accelerates, the effective density of wave sources along its path
[196] increases or decreases, respectively, thereby increasing
or decreasing the amplitude of the local wave field in such a
way as to stabilize the walking state. The robust stability of
the free walking state should thus remind us not only of the
importance of memory in pilot-wave hydrodynamics, but of
the subtlety of hereditary systems.

Tambasco and Bush [157] explored the behavior of the
walker system just above the Faraday threshold, and reported a
number of new dynamical states, characterized by zig-zagging
and meandering motion, as well as a diffusive regime aris-
ing at high memory. Higher resonances in the drop oscilla-
tion may also be excited. Gilet et al [190] and Dorbolo et al
[191] examined the bouncing of relatively large oil drops of
radii a ∼ 0.75 mm and viscosity ν < 100 cS on a highly vis-
cous bath (ν = 1000 cS). Levitation criteria were deduced, and
nonaxisymmetric modes of droplet vibration excited, leading
to drop propulsion via tumbling. Hubert et al [197] exam-
ined the dependence of the bouncing threshold on the forcing
frequency with a similar arrangement. They found that the
bouncing threshold exhibits a minimum when the vibration
number Ω ≈ 1 and a maximum when Ω ≈ 3, which corre-
spond respectively to the drop’s principal modes of defor-
mation acting in resonance and antiresonance with the bath
vibration. Most recently, it has been shown that bouncing
droplets may be achieved with liquid metals, specifically, an
alloy of gallium and indium [198]. While walking states have
yet to be achieved with these liquids, this discovery may fur-
ther extend the dynamical range of hydrodynamic pilot-wave
systems.

Novel phenomena have also been observed by modulat-
ing either the phase or frequency of the vibrational forc-
ing. Perrard et al [199] showed that, when a walker is sub-
jected to an abrupt increase in the forcing acceleration, it may
exhibit a π-shift in its bouncing phase, and so encounter a per-
fectly reversed wave field at impact. It thus reverses direction,
retracing its trajectory for a time that increases as the forcing

acceleration approaches the Faraday threshold, γ → γF, effec-
tively erasing its wave field in the process. Sampara and Gilet
[200] examined the behavior of the walker system driven with
two commensurate frequencies. A number of novel behav-
iors were reported, including chaotic walking near the Faraday
threshold marked by a stop-and-start dynamics. Valani et al
[201] recently showed that such a two-frequency forcing may
give rise to a new class of walkers dubbed ‘superwalkers’,
which are twice the size of the traditional walkers and self-
propel at up to four times the speed owing to their relatively
prolonged impact with the bath and the concomitant lateral
acceleration induced by impact (figures 5(c) and (d)). The
superwalkers open the door to a new parameter regime for
pilot-wave hydrodynamics and invite further explorations of
the role of multiple-frequency vibrational driving.

3.3. Pilot-wave field measurements

The novelty of the walking-droplet system lies in the subtle
interplay between the droplet and its guiding wave. It thus
behooves us to understand the precise form of the wave field
generated by the drop impact on a free surface. The pilot-
wave field in the walking droplet experiment has a characteris-
tic amplitude of 1–20 microns and wavelength λF ∼ 4.8 mm
(figure 4). Its duration on the free surface can be as long as
several seconds in the high-memory limit (γ → γF). Visual-
ization with a semi-reflective mirror [175] allows one to see
its form. Moisy et al [202] developed a robust means of quan-
titative measurement of the pilot wave field, the free-surface
synthetic Schlieren technique, which deduces the surface
topography from the apparent distortion of a background
image. The resulting quantitative measurements of the wave-
field have been used to characterize walker interactions with
boundaries [24, 172, 203] and to benchmark both theoretical
models and numerical simulations [75, 204].

Each time the drop impacts the surface, it generates
a transient wave front with a characteristic amplitude of
1–20 microns that propagates radially with a speed of 5–20 cm
s−1 [44, 75, 204]. Behind this front, a quasi-monochromatic
wave form persists with a wavelength λF prescribed by the
surface wave dispersion equation (5). The superposition of
many such waves yields the wave field of a stationary reso-
nant bouncer, as illustrated in figure 4(a). While slow outward
propagation of the zeros of this wave field indicate a weak trav-
eling component [44, 204], the waves may in many instances
be adequately described in terms of a quasi-monochromatic
standing Faraday wave field [75]. The form of the walker wave
field is illustrated in figure 4(b). Experimental measurements
and simulations both indicate its characteristic horseshoe-like
form [38, 44, 75, 204, 205]. As the walker is a moving source
of waves, the Doppler effect is evident in its wavefield, the
apparent wavelength decreasing and increasing, respectively,
up- and downstream of the walker [75].

Tadrist et al [49] brought unprecedented experimental pre-
cision to bear on the walker system. Specifically, they devel-
oped an experimental technique for inferring the precise time
and location of each drop impact by visualizing the outward
propagating transient wave front generated at impact. Their
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Figure 4. Bouncer and walker wave fields (a = 0.38 mm, f = 80 Hz). (a) Measured wave field of a period-doubled bouncer (γ/γF = 0.77)
[204]. The gray curve shows a projection of the cross-section of the wave field passing through the droplet’s center. The gray cylinder
indicates the droplet’s projected shadow. (b) Comparison between experimental measurements (top) and simulation (bottom) of the walker
wave field (γ/γF = 0.966) [204]. The wave fields of (c) bouncing (γ/γF = 0.73) and (d) walking (γ/γF = 0.9) drops, as predicted by
Milewski et al [44]. Color bars indicate the wave height in microns. Scale bars denote λF � 4.8 mm. In panels (b) and (d), the walkers move
to the right. (a), (b) Reprinted by permission from Springer Nature Customer Service GmbH: Experiments in Fluids. [194] © 2016. (c),
(d) Reproduced with permission from [44]. © Cambridge University Press.

technique allows for resolution of the fast vertical dynamics
responsible for wave generation, the uncertainty in which they
identified as a source of chaos in the walker system [49].

Early studies of pilot-wave hydrodynamics were under-
taken in relatively deep fluid layers, for which the Fara-
day wavelength λF � 2πH, which requires bath depths of
H > 5 mm for the range of frequencies (50–80 Hz) typically
considered. The resulting Faraday waves then decay before
reaching the lower boundary, so the bottom topography has a
negligible influence on the walker. Recent studies have shown
that drops may also achieve a robust walking state in shallow
water; specifically, Sáenz et al [13, 18] demonstrated that drops
may walk in layers as thin as 1.6 mm. Chu et al [61] and Tsai
et al [206] visualized the vortical flows beneath relatively large
(a ∼ 1 mm) bouncing droplets, and proposed that asymme-
try in these vortices, induced either by a partner droplet or a
weakly sloping bottom topography, could lead to propulsion.
Finally, in many hydrodynamic quantum analogs, the bound-
aries of the fluid bath are generally marked by shallow ‘beach’
regions of typical depth 0.1 mm. While this geometry serves to
locally damp the drop’s pilot wave, it introduces uncertainty in
the form of the interfacial boundary condition to be applied in
theoretical models, which is necessarily neither Dirichlet (zero
amplitude) nor Neumann (zero-slope) [11, 12, 21, 22, 56, 204,
207–209].

4. Theoretical modeling

The first theoretical treatment of parametric instability in
a continuum system was Benjamin and Ursell’s [210]

description of inviscid Faraday waves, which was subse-
quently built upon to incorporate the role of fluid viscosity
[211, 212]. Müller et al [213] presented a model for Faraday
waves valid in the weak dissipation limit ν/ωλ2

F � 1, wherein
the viscous boundary layers are small relative to the Faraday
wavelength. Through a systematic asymptotic expansion of the
linear water-wave dispersion relation with viscous corrections,
they obtained an integro-differential Mathieu-type equation
for the time evolution of the wave height. These models of
Faraday waves have provided valuable touchstones for the
development of the hierarchy of theoretical models describ-
ing resonant walkers, specifically, the motion of a droplet in
response to the sub-threshold Faraday pilot-wave field that it
generates by bouncing at the Faraday frequency. The models
for resonant walkers can be roughly divided into two classes,
those that approximate the wave field as the sum of monochro-
matic waves (sections 4.1–4.3), and those that solve the rele-
vant partial differential equations for the evolution of the free
surface (sections 4.4–4.5).

Because the Weber number characterizing the droplet
motion is typically small, We = ρv2

z a/σ ∼ 0.1, with vz being
the droplet’s impact speed, the drops are only weakly per-
turbed by impact on the surface. Moreover, since the intrusion
depth of the drop into the bath is small, the hydrostatic pres-
sures generated during this impingement are negligible rela-
tive to the surface-tension-induced curvature pressures. Thus,
the dominant physics of drop impact on a bath is captured
by considering drop impact on a soap film, a problem exam-
ined experimentally and theoretically by Gilet and Bush [192,
214]. They demonstrated that, provided the film deflection
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is sufficiently small, the soap film acts on the drop like a
linear spring with a spring constant proportional to the sur-
face tension σ. Such linear spring models also satisfactorily
describe the vertical motion of a stationary drop bouncing
in place on a liquid bath at low memory [167]. However, at
high memory the bouncing state is affected by the drop’s relic
wave field [50, 156]. Describing the emergent walking state
requires a description of the horizontal force balance, which
in turn requires a model for the pilot-wave form generated by
successive impacts.

4.1. Path-memory model

Emmanuel Fort developed the first theoretical model of walk-
ing droplets, a discrete-time model for a period-doubled res-
onant walker [2, 15, 26, 42]. The drop is modeled as a point
particle and the impacts as instantaneous, occurring at times
tn = nTF. The vertical dynamics is assumed to be decoupled
from the horizontal. The walker is subject to two forces in the
horizontal direction: a linear drag force, and a propulsive force
proportional to the gradient of the wave height h̃ at the walker’s
position. The walker’s horizontal velocity is updated at each
impact according to these two forces, and the horizontal posi-
tion evolved accordingly. The model thus assumes the form
of an iterated map in the walker’s horizontal position xn and
velocity vn at time t = tn:

xn+1 = xn + vn+1TF,

vn+1 = e−Dts/m
(
vn − |vz|∇h̃(xn, tn)

)
. (6)

Approximate values for the drop’s vertical velocity vz, drag
coefficient D and contact time ts are deduced from experi-
ments. The form of the wave field taken in their path-memory
model has been successively refined over time [26, 75, 196].
Most recently, the time-averaged wave height h̃ is given by
time-averaging equation (9) (to be developed in section 4.2)
over the impact time, with the

√
t-term removed for the sake of

analytical convenience [26]. This model has successfully ratio-
nalized the emergent quantum behavior in a number of settings
[15, 26, 29, 42, 117, 215, 216] to be detailed in sections 5–8.

4.2. Pilot-wave hydrodynamic models

Moláček and Bush [156, 167] developed a hydrodynamically
consistent model for bouncer and walker motion based on a
reduction of the Navier–Stokes equations. They demonstrated
that the droplet’s vertical position z(t) on a vibrating fluid bath
may be described to leading order in terms of a linear spring
model:

mz̈ +H(−z) (c1ż + c2z) = −mg(t), (7)

where g(t) = g + γ sinωt is the effective gravity in the vibrat-
ing bath frame of reference and H is the Heaviside func-
tion, that ensures that the bath-induced spring force acts only
during impact. Here, z = 0 at the point where the drop’s
lowermost extremity impacts the unperturbed bath surface.
Implicit in this model is the assumption that the drop impacts
an unperturbed interface, that the waves generated by prior
impacts have decayed to zero, an assumption known to

break down as γ approaches γF. Moláček and Bush [167]
experimentally characterized the dependence of the droplet’s
coefficient of restitution and contact time with the bath on
the Weber number, We = ρż2a/σ, and the resulting empirical
relations allowed them to express c1 and c2 in terms of We.
Due to discrepancies between the experimentally measured
bouncing mode transitions and those predicted by equation (7)
at high memory, Moláček and Bush [167] developed a log-
arithmic spring model to account for the effect of bath and
drop deformations on the vertical dynamics. Their model
successfully rationalized the regime diagrams that detail the
dependence of the bouncing behavior on the dimensionless
vibrational acceleration and vibration number [156, 167, 168]
(see figure 2).

To describe the walking state, Moláček and Bush [156]
derived a trajectory equation for the droplet’s horizontal dis-
placement xp(t):

mẍp + D(t)ẋp = −F(t)∇h(xp, t). (8)

Here, F(t) = m(̈z + g(t)) is the normal force exerted by the
drop on the bath, and D(t) = 6πa0μa + C

√
ρa/σF(t) is the

time-dependent drag coefficient, which accounts for both the
aerodynamic drag imparted during flight and the momentum
transfer from drop to bath during impact. The constant C was
shown to lie in the range 0.17 � C � 0.33 in the parameter
regime of interest, using measurements of the walker’s coeffi-
cient of tangential restitution. The form of the wave field h(x,t)
was deduced using a quasi-potential formulation for the evo-
lution of the free surface, assuming that the bath is forced near
the Faraday threshold, γ � γF, and that the walker’s impact on
the bath is point-like in both space and time:

h(x, t) =
�t/TF�∑
n=−∞

ÃS√
t − nTF

J0(kF|x− xp(tn)|)

× cos
ωt
2

e−(t−tn)/TM . (9)

Here,S is one of two parameters that characterize the droplet’s
impact phase:

S =

∫ TF
0 F(τ ) sin(ωτ/2) dτ∫ TF

0 F(τ ) dτ
, C =

∫ TF
0 F(τ ) cos(ωτ/2) dτ∫ TF

0 F(τ ) dτ
.

(10)
Moláček and Bush [156] derived an expression for Ã in terms
of the fluid parameters, and showed that the memory time
TM is related to the forcing acceleration γ through TM =
Td(1 − γ/γF)−1, where Td ≈ (2k2

Fν)−1 is the viscous decay
time of waves in the absence of vibrational forcing, a scaling
derived previously by Eddi et al [75] using a multiple-scale
perturbation expansion. The dimensionless memory parame-
ter Me = TM/TF prescribes the number of prior bounces that
influence the walker [75]. In typical experiments, Me is in the
range 3–400, and quantum-like features tend to emerge for
Me > 10. The fact that Me diverges as γ → γF simply reflects
the shortcomings of the linear wave approximation in this
limit, where the waves are expected to become nonlinear: the
system behavior is not singular at the Faraday threshold, but
the linear wave models used to describe it are.
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Note that the walker’s vertical and horizontal dynamics are
coupled in equation (8), owing to the dependence of F(t) and
D(t) on the walker’s vertical position z(t). Predictions made
on the basis of the trajectory equation (8) and wave model (9)
exhibited good agreement with experimental data on the walk-
ing threshold, and the dependence of the walking speed on
drop size and forcing acceleration. Moreover, these equations
form the basis for the stroboscopic models to be discussed in
section 4.3. The primary shortcoming of the model is that the
phase parameters S and C were not resolved, so were instead
combined into a single fitting parameter SC constrained by
experiments to lie in the range 0.1–0.3 [50].

An improvement to the wave form (9) was derived by
Tadrist et al [217], whose developments were based on Müller
et al’s [213] linear Faraday wave model:

h(x, t) =
�t/TF�∑
n=−∞

ÃS√
t − nTF

J0(kF|x− xp(tn)|) cos
ωt
2

× exp

[
−α|x− xp(tn)|2

t − tn
− t − tn

TM

]
, (11)

where 1/α ≈ 2c2
g/νk2

F has the units of diffusivity and cg is
the group velocity of waves with wavenumber kF. This wave
form incorporates a Gaussian kernel that accounts for spa-
tial damping, the inclusion of which brings predictions for the
standing wavefield generated by a bouncer in line with exper-
imental measurements [204]. Equation (11) indicates that the
wavefield of a bouncer decays exponentially over a character-
istic lengthscale

√
TM/α [204]; thus, the spatial and temporal

decay rates of sub-threshold Faraday waves are simply related.
Tadrist et al [217] also calculated the wave field generated by
a rectilinear walker, and found that it exhibited a Doppler shift
similar to that reported in experiments [38, 75], a feature not
captured by the waveform (9). Moreover, they found that the
decay length δ of the wavefield in the wake of a rectilinear
walker has an angular dependence, δ → (4αu0(1 + cos θ))−1

in the limit γ → γF, where u0 is the walking speed and θ the
angle with respect to the walking direction.

The bouncing drop models of Terwagne et al [218] and
Blanchette [209] also incorporate the deformation of the
droplet, and reproduce many features of the bouncing drop,
including the period-doubling transition between bouncing
modes as the vibrational acceleration is increased progres-
sively. In a recent study of droplet pairs, Couchman et al [50]
found that when the influence of the relic surface waves gen-
erated by prior impacts is considered, the linear spring model
(7) is preferable to its logarithmic counterpart [156]: not only
can it be solved analytically, but it improves the agreement
between theory and experiment. They thus reverted to the sim-
pler linear spring model (7), but explicitly modeled the influ-
ence of the relic surface waves on the drop’s vertical dynamics.
Their model will be further discussed in section 5.2.

4.3. The stroboscopic model

In the stroboscopic model of Oza et al [205], the drop’s ver-
tical dynamics is eliminated from consideration: the walker
is modeled as a continuous source of standing waves. The

drop is assumed to be in resonance with its Faraday wave-
field, bouncing at the subharmonic frequency ωF = ω/2. Oza
et al [205] approximated the sum in equation (9) by an inte-
gral, an approximation valid provided the timescale of the
walker’s horizontal motion is long relative to the bouncing
period, λF/|ẋp| � TF. Time-averaging equation (9) over the
bouncing period then yields the trajectory equation

mẍp + Dẋp = −2mgASC
TF

∇
(∫ t

−∞
J0(kF|x− xp(s)|)

× e−(t−s)/TM ds
) ∣∣∣∣

x=xp(t)

, (12)

where D = Cmg
√
ρa/σ + 6πaμa is the drag coefficient aver-

aged over the Faraday period and A = Ã/2
√

TF. Note that
the t−1/2-temporal decay evident in equation (9) was removed
from the wave kernel for the sake of analytical expediency, on
the grounds that it is subdominant to the exponential decay
term.

Equation (12) represents an integro-differential equation
for the walker’s horizontal trajectory. The product of phase
parameters SC is again taken to be a constant in the range
0.1–0.3, chosen to best match experimental data on the free
walking speed [156]. The simplicity of the stroboscopic model
(12) makes it amenable to mathematical analysis and numeri-
cal simulation. The authors showed that a bouncer transitions
to a walker via a supercritical pitchfork bifurcation as the forc-
ing acceleration is progressively increased. They concluded
that the walking state is stable to in-line perturbations and neu-
trally stable to lateral perturbations in the parameter regime
accessible in the laboratory. The stroboscopic model has been
used to study the walker’s complex nonlinear dynamics in a
number of settings [17, 27, 31, 32, 34, 36, 45, 46, 48, 205,
219–221] to be detailed in sections 5–8.

4.4. Partial differential equations for the fluid interface

The wave generated by a single impact is dominated by the
Faraday wavelength, which corresponds to the slowest decay-
ing Faraday wave mode [156, 167]. In the models described so
far, the wave field has thus been expressed as a sum (9) or inte-
gral (12) of monochromatic waveforms generated along the
walker’s path. A more sophisticated class of theoretical models
expresses the wave height as the solution to a partial differen-
tial equation describing the free surface evolution. While the
capillary waves generated on the surface of a quiescent bath
by both moving [222–224] and oscillating [225] point sources
have been characterized theoretically, the sub-threshold waves
generated by a small source oscillating in resonance with a
vibrating liquid bath have only been studied recently, in the
context of pilot-wave hydrodynamics.

Milewski et al [44] developed a quasi-potential wave model
consisting of partial differential equations for the velocity
potential φ(x, z, t) and wave height h(x, t). They considered
the linearized Navier–Stokes equations for an incompressible,
weakly viscous fluid, and employed the formulation of Lamb
[226] and Dias et al [227], who derived viscous corrections
to the free surface boundary conditions by accounting for the
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vortical boundary layer at the free surface. Provided the fluid
is irrotational and quiescent at infinity, the velocity potential
satisfies

(Δ+ ∂zz)φ = 0 for z < 0, φ→ 0 as z →−∞, (13)

where Δ = ∂xx + ∂yy is the 2D Laplacian. The boundary con-
ditions applied on the interface z = 0 are

ht = φz + 2νΔh,

φt = −g(t)h +
σ

ρ
Δh + 2νΔφ− 1

ρ
PD(x− xp(t), t). (14)

The pressure force PD exerted by the drop on the bath is
assumed to be nonzero and uniform over an area of radius
R(t):

PD(x, t) =
F(t)
πR(t)2

, where F(t) = max(mz̈ + mg(t), 0) (15)

and R(t) is related to the drop size. The drop’s vertical position
z(t) is assumed to evolve according to the logarithmic spring
model of Moláček and Bush [156]. The model predictions for
a bouncer’s wave field compare well with experimental mea-
surements [204]. The model captures both the Doppler shift in
the walker wavefield [38, 75] and the transient wave propagat-
ing radially outwards following impact [75, 204], features not
captured by the purely monochromatic wave models discussed
in sections 4.1–4.3.

Galeano-Rios et al [193, 195] considered the impact of
a small non-wetting rigid sphere on a quiescent bath, and
demonstrated that the contact force between the sphere and
bath emerges naturally from a kinematic match condition
between the bath and sphere surface. They employed the wave
model (13) and (14), but replaced the ad hoc pressure forc-
ing with two kinematic constraints. First, the free surface was
required to conform to the sphere surface beneath it. Second,
the free surface was required to be tangent to the sphere surface
at their line of convergence. These conditions are sufficient to
determine the air pressure beneath the sphere, without the need
to assume a specific form for either the spatial pressure distri-
bution or the contact area, as was required in equation (15).
Their framework was used to model bouncing drops, walk-
ers and superwalkers, and lead them to conclude that drop
deformation plays a significant role only for superwalkers
[201]. While the model exhibited good agreement with the
bouncing regime diagram reported by Wind-Willassen et al
[168], it predicts the onset of chaotic bouncing at vibrational
accelerations slightly below those reported in experiments,
and wave amplitudes slightly larger than those reported by
Damiano et al [204]. The authors attribute these relatively
minor shortcomings to the limitations of the quasi-potential
wave approximation (13) and (14).

4.5. Discrete-time model

Durey and Milewski [33] employed the wave model in
equations (13) and (14) to simulate the dynamics of a resonant
walker. They neglected consideration of the walker’s vertical

dynamics and instead assumed the walker to execute instan-
taneous point-like impacts at times tn = nTF and positions
xn = xp(tn), so the applied pressure is PD = mgTF

∑
n δ(x−

xn)δ(t − tn). This simplification allowed the wave model to
be solved semi-analytically, through a decomposition of the
wave field into the eigenmodes of the Laplacian, Φm(x; k)
= Jm(kr) cos mθ and Ψm(x; k) = Jm(kr) sin mθ:

h(x, t) =
∞∑

m=0

∫ ∞

0

[
am(t; k)Φm(x; k) + bm(t; k)Ψm(x; k)

]
k dk.

(16)

The authors showed that the mode amplitudes am and bm both
satisfy the Mathieu equation for t �= tn,

äm + 4νk2ȧm +
[
4ν2k4 + ω2

w(k) + kγ sin(ωt + β)
]

am = 0,

(17)

where β is the phase difference between the drop bouncing and
bath vibration. During flight, the drop’s inertia is balanced by
a drag force −Dẋp and any applied force F:

mẍp = −Dẋp + F(xp), t �= tn. (18)

The drop impact results in a force being applied to the bath,
consideration of which yields jump conditions on am and
bm. Similarly, the drop receives a propulsive force from the
bath during impact, −mgTFδ(t − tn)∇h(xn, tn), which yields a
jump condition on its velocity. These jump conditions may be
expressed as

[ȧm(tn; k)]+− = −mgkFTF

ρWm
Φm(xn; k),

[
ḃm(tn; k)

]+
−

= −mgkFTF

ρWm
Ψm(xn; k), (19)

[
ẋp(tn)

]+
− = −

(
1 − e−DTF/m

)(mg
D

∇h(xp(tn), tn) + ẋp(t−n )
)

,

(20)

where [ f (tn)]+− denotes the jump in f at time tn, and Wm = π
for m > 0 and W0 = 2π.

Using fundamental matrices to evolve the system between
successive impacts, the authors recast equations (16)–(20) as
an iterated map that evolves the wave field and walker position
between impacts. By neglecting the details of the drop-bath
impact, this formulation is more computationally efficient than
Milewski et al’s [44] model (equations (13) and (14)) and so
better suited to simulating the walker’s long-time dynamics.
It is also analytically tractable, permitting stability analysis of
both bouncing and walking states. The energy of a walker’s
wave field was shown to be less than that of a bouncer pro-
vided γ > γW, which suggests an energetic rationale for the
transition from bouncing to walking [33].

4.6. Low-memory limits of the trajectory equation

The theoretical models for the walker dynamics may be simpli-
fied substantially in the low-memory limit. Protière et al [38]
proposed a model that only considered the influence of a single
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prior impact, and used it to qualitatively capture the dynamics
of single and interacting walkers near the walking threshold.
Filoux et al [43] and Rahman [228] used similar models to
examine the dynamics of trains of walkers in a circular annulus
(see section 5.1).

Starting from the stroboscopic model (section 4.3), Bush
et al [229] derived a trajectory equation valid in the asymptotic
limit of weak acceleration, |ẍp|TM/|ẋp| � 1:

d
dt

(mw(v)v) + Dw(v)v = F. (21)

Here mw(v) and Dw(v) prescribe, respectively, the dependence
of the walker’s effective mass and drag force on its speed
v = |ẋp|, and F is an externally imposed force. The nonlinear
drag force acts always to restore the walker to its free walking
speed, u0. Since mw(v) > m, the wavefield effectively imparts
an added mass to the walker, an effect responsible for the
anomalously large circular orbits observed in a rotating frame
[15, 16] and harmonic potential [29, 220] in the low-memory
regime (see section 6). Equation (21) is referred to as the ‘boost
model’, as it indicates the role of the pilot-wave in increasing
the walker mass relative to the droplet mass by a boost factor
mw(v)/m > 1, a development inspired by those in stochastic
electrodynamics suggesting that interaction with the electro-
magnetic quantum vacuum may alter a microscopic particle’s
inertial mass [230, 231]. Labousse and Perrard [232] proposed
a Rayleigh oscillator-type model for the walker dynamics in
which Dw(v) is proportional to

[
(v/u0)2 − 1

]
, which may be

seen as a special case of equation (21) valid in the low-speed
(λF/u0 � TM), low-memory limit [233].

4.7. Modeling boundary interactions

A number of important hydrodynamic quantum analogs
involve the interaction of walkers with submerged topogra-
phy or boundaries. To address this class of problems, a num-
ber of theoretical models have been developed since that of
Couder and Fort [2, 117]. Nachbin et al [8] introduced a model
allowing for consideration of one-dimensional walker motion
above a two-dimensional fluid region in the (x, z)-plane with
discontinuous bottom topography z = −H(x). The authors
built upon Milewski et al’s [44] quasi-potential wave model
(section 4.4). Specifically, they augmented equations (13) and
(14) with the no-penetration boundary condition ∂φ/∂n = 0
on z = −H(x), n being the unit normal to the boundary, and
used conformal mapping to solve numerically the resulting
elliptic boundary-value problem. The model has been used to
investigate both unpredictable walker tunneling (section 8.1)
and the role of wave-mediated coupling in inducing distant
walker–walker correlations [234]. The approach of Nachbin
et al [8] was extended to two dimensions by Durey et al
[207] using a different computational method based on domain
decomposition.

Faria [22] extended Milewski et al’s [44] quasi-potential
model to simulate the motion of a resonant walker above a bath
with a piecewise-linear depth profile H(x), specifically, deep
and shallow regions separated by discrete steps. The kinematic

boundary condition in equation (14) was approximated by

ht = −∇ · (b(x)∇φ) + 2νΔh, (22)

where b(x) = tanh(k(x)H(x))/k(x), and k(x) satisfies the
water-wave dispersion relation (5) in each region. Changes
in topography were thus modeled through changes in the
local phase speed of the Faraday waves through the func-
tion b(x). As in Durey and Milewski [33], the pressure forc-
ing in equation (14) was assumed to be point-like in both
space and time. Faria’s model [22] has been used success-
fully to rationalize a number of walker-boundary interactions
detailed in section 8, including wall reflection [203], diffrac-
tion by slits [23], and scattering by submerged pillars [172] and
wells [18].

4.8. Summary

The theoretical models for the dynamics of free walking
droplets described in this section are listed in table 1. Some
have been as faithful as possible to the hydrodynamic system;
others have simply captured its essential features. Still others,
developed to elucidate specific walker behavior, will be dis-
cussed in what follows. They can be categorized according
to whether they account for the walker’s vertical dynamics.
Models that neglect the vertical dynamics [33, 205, 235] are
more amenable to mathematical analysis and more numeri-
cally tractable, making them well-suited to characterizing a
walker’s long-time dynamics and emergent statistical behav-
ior. However, these models have the impact phase as a free
parameter, and do not satisfactorily capture the interactions
between walkers. Conversely, models that consider the full
vertical dynamics [44, 156, 193, 195] capture variations in
bouncing phase but are computationally intensive. Couchman
et al’s [50] variable-phase model (see section 5.2) plays an
intermediate role by accounting for slow variations in the
walker’s vertical dynamics while remaining mathematically
and computationally tractable [76].

5. Multiple droplet interactions

Bouncing droplets may interact through their mutual wave
field to form a variety of bound states, either stationary or
dynamic (figure 5). These bound states invariably exhibit a
form of quantization; specifically, there are a finite number of
preferred arrangements whose relative stability is prescribed
by the system parameters. In addition to providing insight into
the manner in which classical resonant wave sources inter-
act [38, 40, 236], characterizing these bound states has lead
to progressive refinement of the theoretical models of pilot-
wave hydrodynamics. Specifically, examining their stability
has elucidated the influence on the drop dynamics of spa-
tial damping and the propagating transient on the pilot-wave
field, and the effects of variations in the vertical bouncing
[45–47, 50].

Protière et al [38] considered the collisions of two walk-
ing droplets, demonstrating that the pair may either scatter
or lock into an orbiting pair [1] (figure 5(a)). For the case of
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Table 1. Summary of theoretical models of walker dynamics. Computational times are given as orders of magnitude of time taken to simulate
the motion of a single (2, 1) droplet on a desktop computer (with a 2.7 GHz Intel Core i5 processor), relative to real time in the experiments.

Model and authors Vertical dynamics Wave model Comp. time/real time

Path-memory model Uncoupled from Bessel functions generated O(1)
(Fort et al [15]) horizontal dynamics by point impacts

Pilot-wave hydrodynamic model Logarithmic spring
(Moláček and Bush [156])

Stroboscopic model Constant bouncing Bessel functions generated
(Oza et al [205]) phase continuously along trajectory

Variable bouncing phase Bessel functions with
(Couchman et al [50]) spatial damping [50, 76, 217]

Rayleigh oscillator model No vertical dynamics Wave effects enter O(10−3)
(Labousse and Perrard [232]) through nonlinear drag

Boost model Wave effects enter through
(Bush et al [229]) nonlinear drag, added mass

Faraday pilot-wave Logarithmic spring Quasi-potential, O(102)
model (Milewski et al [44]) weakly viscous

Discrete Faraday pilot-wave model Discrete, O(10−1)
(Durey and Milewski [33]) instantaneous impacts

Kinematic match pilot-wave model Kinematic match of O(104)
(Rios et al [193, 195]) drop and bath surface

drops of different size, more complex orbital motions arose,
including wobbling circular orbits and epicycles [40, 236]. The
problem of walker collisions was revisited experimentally and
theoretically by Tadrist et al [49]. By resolving the fast dynam-
ics associated with the droplet bouncing, they concluded that,
in the high-memory regime, the outcome of a walker colli-
sion cannot be predicted simply on the basis of the horizontal
impact geometry. Rather, the system is chaotic, the origins of
the unpredictability being uncertainty in the vertical bouncing
dynamics. The validity of this conclusion in other settings is
currently being explored.

5.1. Dynamic bound states: orbiting, promenading and
ratcheting pairs, droplet strings

For identical drops, Protière et al [38] showed that circu-
lar orbits with quantized orbital radii arose, with different
sets of radii accessible to pairs bouncing in-phase and out-
of-phase. The orbital quantization was rationalized in terms
of the assumed undulatory form of the pilot wave field. They
also noted that the speed of the orbiting pairs is generally less
than that of a free walker: the smaller the orbits, the slower
the drops. The problem of identical orbiting droplet pairs was
revisited by Oza et al [45], who characterized the influence
of memory on the stability of the quantized orbital states. By
categorizing the possible orbital states and the dependence of
their stability on memory, their study prompted the refinement
of the stroboscopic model, making clear the importance of spa-
tial damping of the pilot wave field on the stability of orbiting
pairs. The authors incorporated the effects of spatial damping
[217] by replacing the wave kernel J0(kFr) in the stroboscopic

model (12) with that in (11), thereby substantially improving
the agreement between theory and experiment.

Borghesi et al [42] presented a combined experimental and
theoretical study of promenading pairs, the dynamic bound
state arising when two droplets walk side by side with their
separation distance either constant or oscillating periodically
in time (figure 5(b)). They reported quantized interdrop dis-
tances, and demonstrated that such pairs move slower than
their free counterparts. The system behavior was described
theoretically in terms of a wave interaction energy. Arbelaiz
et al [46] revisited the promenade mode in order to charac-
terize the dependence of the stability of these dynamic bound
states on the system memory.

In their studies of orbiting and promenading walker pairs,
respectively, Oza et al [45] and Arbelaiz et al [46] found
that a straightforward generalization of the stroboscopic model
to multiple walkers failed to capture the detailed stability
characteristics of these bound states. Specifically, the model
predicted the onset of instability at forcing accelerations con-
siderably below those observed experimentally. The source of
this discrepancy was deduced to be the assumption of con-
stant impact phase SC; thus, the authors inferred an empirical
functional form for the dependence of the phase on the forcing
acceleration γ and the local wave height at the walker’s posi-
tion. The resulting stroboscopic model with phase adaptation
thus indirectly accounted for slow variations in the walker’s
vertical dynamics without explicitly modeling them. Inclu-
sion of this ad hoc model for phase adaptation substantially
improved the match between theory and experiment. Together,
these studies motivated the development of the variable-phase
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Figure 5. Bound states of bouncing droplets. (a) An orbiting pair [161]. (b) A promenading pair [159]. A superwalking pair in (c) chasing
and (d) orbiting modes [201]. (e) Densely [39] and (f) loosely [165] packed lattices. (g) A square lattice achieved with two square
sub-lattices bouncing out-of-phase [51]. (h) A more exotic Archimedean tiling [51] stabilized by the droplet in the center. (a) Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Journal of Visualization. [161] © 2017. (c), (d) Reprinted figure with
permission from [201], Copyright (2019) by the American Physical Society. (e) Reprinted figure with permission from [39], Copyright
(2007) by the American Physical Society. (f) Reprinted by permission from Springer Nature Customer Service Centre GmbH: Experiments
in Fluids. [165] © 2015. (g), (h) Reproduced from [51]. © IOP Publishing Ltd. All rights reserved.

stroboscopic model of Couchman et al [50], to be described in
section 5.2.

Drafting pairs or strings of walking droplets arise when a
succession of identical droplets walk in the direction of the line
joining them with a fixed distance between successive droplets.
These dynamic bound states were first examined experimen-
tally by Filoux et al [43, 237], who reported that strings con-
fined to a circular annulus may walk at speeds exceeding that of
individual walkers at the same memory. The observed behav-
ior of drafting pairs of walkers was captured by the simulations
of Durey and Milewski [33], who also examined their stability.

Eddi et al [41] demonstrated that when two bouncing drops
of unequal size are placed nearby, they interact through their
common wave field in such a way as to self-propel, with the
inter-drop distance fixed, and assuming one of a discrete set of
values. Owing to the asymmetry in the wave field along their
line of centers, the pair propagates through a ratcheting mech-
anism. Ratcheting pairs of bouncing droplets were examined
by Tang et al [58] using the liquid metal arrangement of Zhao
et al [198]. The authors drew the physical analogy with optical
ratcheting, as arises when dielectric nanoparticles of unequal
size form optically bound states in a highly focused laser beam,
leading to both self-propulsion and a discrete set of separation
distances [238, 239].

Galeano-Rios et al [47] revisited ratcheting droplet pairs
both experimentally and numerically. Their experiments
demonstrate that the quantized inter-drop distances of a ratch-
eting pair depend on the vibrational acceleration, and that as
the memory is increased progressively, the direction of the

ratcheting motion may reverse up to four times. Their simula-
tions, based on the model of Milewski et al [44] (section 4.4),
highlighted the critical influence on the ratcheting motion of
both the variations in the vertical bouncing dynamics and the
traveling wave fronts generated by each impact. The transient
wave generated by the partner drop creates a time-dependent
force that changes from repulsive to attractive as the transient
sweeps past. The reversal in the direction of motion of the
ratcheting pairs may arise due to either changes in bouncing
mode, as hypothesized by Eddi et al [41], or the subtle inter-
play between the traveling wave fronts and the droplet’s ver-
tical dynamics. Valani et al [201] demonstrated that unequal
pairs of superwalkers may give rise to relatively high-speed
ratcheting (figure 5(c)) or a symbiosis in which a small drop
circles a large drop and so prevents the coalescence of its
partner (figure 5(d)).

5.2. Static bound states: identical pairs, rings and crystal
lattices

Crystalline structures may form from aggregates of identical
or nearly identical bouncers (figures 5(e)–(h)). Protière et al
[37], Lieber et al [39] and Eddi et al [41] reported both station-
ary and spontaneously spinning droplet lattices. Eddi et al [51]
achieved eight of the eleven Archimedean tilings of the plane
with static bouncer arrays. Doing so required control of the
droplets’ relative bouncing phase: while some arrangements
were possible with all drops bouncing in phase (figures 5(e)
and (f)), others required that neighboring drops be out of
phase, so could only be achieved with resonant (2, 1) bouncers
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Figure 6. Free and confined rings of bouncing droplets. Free rings exhibit a number of instabilities [240], including: (a) in-phase radial
oscillations, (b) orbital motion, (c) out-of-phase azimuthal oscillations and (d) out-of-phase radial oscillations. (e) 40 identical droplets
confined to a circular annulus [53]. The chain may destabilize to either (f) optical oscillations or (g) a propagating solitary wave. In (f) and
(g), colors denote the droplets’ instantaneous angular velocity in rad s−1 and the inner ring radius is 24 mm. (a)–(d) Adapted with
permission from [240]. © Cambridge University Press. (e) Reprinted figure with permission from [53], Copyright (2020) by the American
Physical Society. (f), (g) Adapted figure with permission from [53], Copyright (2020) by the American Physical Society.

(figures 5(g) and (h)). Eddi et al [52] were the first to examine
the destabilization of crystal lattices in response to increasing
memory, and demonstrated that in both square and triangular
lattices, instability sets in through a small oscillation of the
individual drops that may then propagate through the crystal
lattice like a phonon. As memory is increased progressively,
these oscillations grow until the lattice rearranges and eventu-
ally collapses into an irregular form. An accompanying theo-
retical model of a one-dimensional crystal lattice was used to
examine the onset of instability.

Couchman et al [50] examined the interaction of a pair of
identical bouncing droplets, and characterized the dependence
of the system behavior on memory. At sufficiently low mem-
ory, the inter-pair spacing is arbitrary; however, at a critical
memory, this distance becomes quantized. As the memory is
increased progressively, the interdrop distance changes weakly
until the static state gives way to a dynamic state characterized
by either colinear oscillations, promenading or orbital motion.
The presence of the partner drop can be either stabilizing or
destabilizing, depending on the droplet size. Larger drops went
unstable to collinear oscillations below the walking threshold
for a single drop γW. Smaller drops went unstable above γW

to either orbital motion or side-by-side promenading motion,
depending on the initial interdrop distance.

Attempts to rationalize the behavior of identical pairs
prompted theoretical progress in the form of a variable-phase
stroboscopic model [50]. The predicted pair stability changed
qualitatively through consideration of the variable phase:
constant-phase models always predict the onset of motion for
γ < γW. The authors used a quasi-static approximation of the

wave field of a stationary bouncer to derive a waveform with
a purely spatial damping factor that is consistent with the far-
field behavior of the wavefield defined in (11). They measured
directly the dependence of bouncing phase on forcing acceler-
ation γ, drop radius R and local wave height hp. By measuring
the time-dependent vertical acceleration of a bouncing droplet,
they inferred the contact force F(t) imparted from bath to drop,
and thus the phase parametersS and C defined in equation (10).
They then used Moláček and Bush’s [167] linear spring model
(7), augmented by a term to account for the relic surface waves,
in order to determine the dependence ofS and C on γ, R and hp.
The resulting physical picture is that the bouncing phase varies
weakly with γ and hp so as to maintain a roughly constant
net upwards force, as required for periodic bouncing. Their
study highlights the fact that drops may interact through alter-
ing either the local gradient or amplitude of their neighbor’s
wave field. Through altering the wave amplitude at impact,
they change the impact phase, and so the evolution of both
drop and wave. Consideration of phase modulations is simi-
larly critical in modeling the dynamics of free circular rings of
bouncing droplets, whose rich stability behavior has been
characterized experimentally and theoretically by Couchman
and Bush [240]. In addition to the oscillations shown in
figures 6(a)–(d), they reported rearrangement of the circu-
lar ring into regular polygonal forms, including squares and
pentagons.

Barnes et al [241] examined theoretically the resonant
oscillations excited in a chain of bouncers when the drop at
one end is subjected to periodic forcing in the horizontal direc-
tion. They demonstrated that, at relatively high memory, the
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Figure 7. The hydrodynamic spin lattice [54, 55]. (a) Plan view and schematic cross section of a ring of submerged circular wells, each
containing a single drop executing clockwise (blue) or anti-clockwise (red) motion on the surface of a vibrating fluid bath. A thin fluid layer
between wells enables wave-mediated interactions between neighboring droplets and the emergence of global order. Snapshots showing
collective (b) anti-ferromagnetic and (c) ferromagnetic order for different lattice spacings. (d) Rotating the system about a vertical axis with
angular frequency Ω prompts a transition from antiferromagnetic to ferromagnetic states. Reproduced with permission from [55].

drops may oscillate with an amplitude larger than that pre-
scribed, suggesting that the drops effectively extract energy
from the collective wave field. They also found that dynamic
stabilization of the chain could be achieved by sufficiently
high-frequency forcing.

Thomson et al [53] considered the instability of a ring of
bouncing droplets confined to a circular annulus (figure 6(e)).
Owing to the annular bounding geometry, the drops were
effectively confined to a circle. For 20 drops, the onset of
instability was marked by small-amplitude optical oscillations
of the droplets, wherein adjacent pairs move azimuthally out
of phase (figure 6(f)). For 40 drops, a solitary wave sweeps
through the array (figure 6(g)). At higher memory, counter-
propagating waves arose; as additional wave modes appeared,
the ring packing collapsed and dislocations appeared in the lat-
tice. The observed dependence of the form of instability on the
droplet number was rationalized theoretically [53, 242]. The
annular ring system exhibits several features of the Toda lat-
tice [243], a canonical theoretical model of crystal vibrations
[53], and so forges new links with solid-state physics.

5.3. Coupled oscillators

Confining drops with bottom topography has allowed for the
study of wave-mediated interactions giving rise to synchro-
nization and long-range order in walker lattices. Nachbin
[234] used his two-dimensional, variable-topography model
(section 4.7) to consider theoretically the one-dimensional
motion of a pair of walkers trapped in separate cavities.
Between them, deep empty cavities facilitated wave-mediated
communication between the pair. Depending on the system
memory, geometry and drop size, different correlations could
be induced between the pair. First, as observed in experi-
ments [244], the drops could become perfectly synchronized,
moving horizontally back and forth in tandem, in- or out-of-
phase. A second regime was reported in which the droplets
were not synchronized, but were statistically indistinguish-
able, with virtually identical signatures in position-momentum

space. Finally, Nachbin [234] noted that the wave-mediated
coupling between the droplets is much richer than that posited
in the canonical Kuramoto model for coupled oscillators [245].

Sáenz et al [54, 55] introduced an analog of an electronic
spin system, the hydrodynamic ‘spin lattice’, wherein walking
droplets are confined by an array of circular wells submerged
in a relatively shallow bath (figure 7). Each drop executes
circular motion within its own well, spinning either clock-
wise or counterclockwise with equal probability. When the
vibrational forcing is sufficiently weak, each droplet’s wave
is confined to its own well. At higher memory, however, the
waves extend substantially beyond the well boundaries, result-
ing in wave-mediated interactions between neighboring drops.
To explore whether such wave-mediated spin–spin interac-
tions can induce coherent collective order, Sáenz et al [55]
considered a number of lattice geometries, and demonstrated
that three modes of analog ‘magnetization’ emerged according
to the lattice geometry and memory. Disordered paramagnetic
states arise when the spins of neighboring drops are uncorre-
lated. Antiferromagnetic or ferromagnetic order emerges when
neighboring droplets tend to have, respectively, opposite or
equal spin.

In the ring geometry (figure 7), Sáenz et al [55] found an
optimal parameter regime in which the walker interactions
generate large-scale collective order. At sufficiently low mem-
ory, the walker wave fields were too weak for neighbors to
communicate effectively, corresponding to a disordered para-
magnetic state. As memory was increased, the influence of
the waves from the neighboring wells prompted the devel-
opment of either antiferromagnetic (figure 7(b)) or ferromag-
netic (figure 7(c)) order. Just as an antiferromagnetic material
may be transformed into a ferromagnetic state by imposing
a uniform magnetic field, a global transition from antiferro-
magnetic to ferromagnetic order was induced by applying sys-
tem rotation (figure 7(d)). Consideration of the wave-mediated
inter-drop forces allowed the authors to describe the system
mathematically in terms of a generalized Kuramoto model for
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Figure 8. Orbital quantization [15] and chaotic pilot-wave dynamics [16] in a rotating frame. (a) Dependence of the orbital radius r0 on the
bath’s rotation rate Ω at low memory (γ/γF = 0.822), obtained both experimentally (dots, [16]) and theoretically (curve, [17]). The dotted
curve indicates the standard classical prediction for inertial orbits, r0 = u0/2Ω, the offset from which has been rationalized with the boost
model [229] (section 4.6). (b) At higher memory (γ/γF = 0.971), orbital quantization emerges. The orbits are color-coded according to their
stability, as assessed using the stroboscopic model [17] (section 4.3). Blue indicates stable orbits, green and red indicate orbits that
destabilize via oscillatory and non-oscillatory instabilities, respectively. (c) In the high-memory limit (γ/γF = 0.988), trajectories (inset)
become chaotic and are characterized by intermittent switching between weakly unstable orbits. Colormap: the probability distribution of
the radius of curvature R as a function of the rotation rate Ω. Bright segments indicate radii with high probability. Vertical dashed lines
correspond to the three probability distributions shown at right [16]. (a)–(c) Adapted with permission [16, 17]. © Cambridge University
Press.

coupled oscillators [245]. One thus expects that the hydrody-
namic spin lattice will be a rich analog system capable of cap-
turing many features of electronic spin systems and coupled
oscillators, including spin waves [246].

6. Orbital pilot-wave systems

Studies of the motion of walkers under the influence of exter-
nally imposed forces have allowed for an examination of
orbital pilot-wave dynamics. Such studies have collectively
provided the first established paradigm for the emergence
of quantum-like statistical behavior from classical pilot-wave
dynamics, which is rooted in the chaotic switching between
weakly unstable quantized orbital states [5].

6.1. Analog Landau levels

Fort et al [15] were the first to consider the dynamics of
walkers in a rotating frame (figure 8), a problem that has
subsequently been revisited both experimentally [16] and
theoretically [17, 219, 247]. When an object of mass m moves
at uniform speed u in a horizontal plane in a frame rotating uni-
formly with angular speed Ω about a vertical axis, it executes
an anticyclonic inertial orbit with radius u/2Ω, at which the
radially outwards centripetal force is balanced by the inwards
Coriolis force. So it is for walkers at low memory (figure 8(a)).

However, as the memory is increased, the walker begins to
interact with its own wake, whose time-averaged form corre-
sponds to circularly polarized Faraday waves centered at the
orbital center (figure 8(b)). Fort et al [15] demonstrated both
experimentally and numerically with the path-memory model
(section 4.1) that the result is the emergence of quantized orbits
of radii Rn ∼ nλF/2, where n ∈ N. Owing to the analogous
form of the Coriolis force acting on a mass in a rotating frame
and the Lorentz force acting on a charge in a uniform magnetic
field, the authors drew the physical analogy between the quan-
tized inertial orbits arising in the walker system and Landau
levels. Eddi et al [28] examined the influence of rotation on a
pair of orbiting walkers, showing that the inter-drop distance
was increased or decreased according to their sense of rota-
tion relative to the ambient rotation, a hydrodynamic analog
of Zeeman splitting.

Walkers in a rotating frame were revisited experimentally
by Harris and Bush [16]. In addition to characterizing the
onset of quantization at intermediate memory reported by Fort
et al [15], they examined the onset of instability of the orbital
states, as well as the complex chaotic behavior emerging in the
high-memory limit. Stable circular orbits were seen to give
way to wobbling orbits, then chaotic trajectories. The observed
stability of the circular orbits was rationalized theoretically by
Oza et al [17] via a linear stability analysis based on the stro-
boscopic model (section 4.3). A number of complex periodic
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Figure 9. Double quantization of orbits and chaos in a central spring force F = −kx. (a) The mean radius R̄ and angular momentum L̄z of
periodic orbits captured over a range of γ/γF and k [29]. Data points are color-coded according to the orbits shown in the legend. (b), (c)
Chaotic trajectories observed in experiments [34] at γ/γF = 0.98 with (b)

√
k/m = 4.44 s−1 and (c)

√
k/m = 3.58 s−1. (d) Time-evolution

of L̄z for the chaotic trajectory shown in (c). Colors correspond to sub-trajectories with (R̄/λF, L̄z/mu0λF) ≈ (1, 1) (yellow, clockwise
circular orbit), (1,−1) (green, counterclockwise circular orbit) and (2, 0) (pink, lemniscate). (e) A chaotic trajectory (gray) obtained using
the discrete-time model of Durey et al [33] contains the colored sub-trajectories shown. In (b), (c) and (e), scale bars denote λF. (a) Adapted
by permission from Springer Nature Customer Service Centre GmbH: Nature Communications. [29] © 2014.

and aperiodic dynamical states arising at high memory were
captured by their simulations [219]. In the chaotic regime, the
walker motion is characterized by a chaotic switching between
weakly unstable circular orbits (figure 8(c)). The walker thus
has preferred radii of curvature; consequently, the histogram
of the radius of curvature takes a peaked multimodal form
reminiscent of that arising in the analogous quantum system.
What would be considered a superposition of statistical states
in quantum mechanics may here be viewed, with the added
benefit of observable trajectories, as a superposition of weakly
unstable, quantized periodic orbital states.

6.2. Walkers in a simple harmonic potential

Perrard et al [29, 248] developed an experimental technique
for encapsulating a drop of ferrofluid within a droplet, which
enabled them to impart external forces to walkers directly. By
applying a vertical magnetic field with a radial gradient, they
were able to examine walker motion in a central harmonic
potential. The system was characterized in terms of the sys-
tem memory and the equivalent spring constant k of the linear
spring force, as determines the effective range of the walker,

L ∼ u0

√
m/k, where u0 is the walker’s free speed. At mod-

erate memory and over a range of spring constants, a variety
of periodic and quasi-periodic states arose, including circles,
lemniscates, trefoils and papillons (figure 9(a)). These periodic
orbits were characterized in terms of their mean radius and
angular momentum, and found to be roughly quantized in both
quantities. In the high-memory regime, the walker was seen to
switch intermittently between a number of these weakly unsta-
ble periodic orbits (figures 9(b)–(e)). At any given point in
parameter space, typically two or three such states would be
accessible: in this sense, the chaotic motion could be consid-
ered as a superposition of periodic states. The physical picture
of a walker carving out then navigating its own slowly varying
topography was developed by Labousse et al [31], and applies
quite generally when the walker motion is confined.

The stability of circular orbits in a central force was treated
theoretically by Labousse et al [220] using the constant-phase
stroboscopic model (section 4.3). While qualitative agree-
ment was obtained, the circular orbits were predicted to be
more unstable than those observed. This observed mismatch
between theory and experiment, also evident in the analysis
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of circular orbits in the rotating frame [17], is now thought to
be associated with the stabilizing influence of bouncing phase
modulations on the wobbling orbits [50]. Durey and Milewski
[33] used their Faraday-wave model (16)–(20) to simulate the
long-time chaotic dynamics of a walker in a harmonic poten-
tial. They found that the walker’s chaotic dynamics resulted
from an intermittent switching between quasiperiodic trajecto-
ries consisting of ovals, lemniscates and trefoils (figure 9(e)),
as in the original experiments [29]. They subdivided the walker
trajectory into segments between successive radial maxima,
then computed the time-averaged mean radius R̄ and angu-
lar momentum L̄z of each sub-trajectory. Using the K-means
method to cluster the resulting data in the (R̄, L̄z) plane, they
obtained a double quantization of R̄ and L̄z similar to that
reported in the experiments of Perrard et al [29]. A similar dou-
ble quantization was evident in the simulations of Kurianski
et al [32], who noted that the double quantization arises
when the crossing time L/u0 is less than the memory time,
and so relies on the walker interacting continuously with its
self-generated potential.

Durey et al [35] used the discrete-time model (section 4.4)
to simulate a walker confined to a line in the presence of a
linear spring force. They showed that the walker’s dynam-
ics become chaotic as the forcing acceleration is progres-
sively increased, and that the route to chaos resembles the
Ruelle–Takens–Newhouse scenario. The authors also investi-
gated the points where the drop reversed direction, and showed
that the statistical distribution of these turning points was
peaked at the minima of J0(kFx). Through a statistical analysis,
the authors showed that the walker’s long-time trajectory may
be interpreted as a random walk between these discrete turning
points. While a multimodal statistical signature reminiscent of
that arising in the one-dimensional quantum harmonic oscil-
lator emerges at intermediate time, the small variability in the
step length of this random walk leads to a smearing of this
signature in the long-time limit.

6.3. Chaos in orbital pilot-wave hydrodynamics

Chaos, specifically, sensitivity to initial conditions and the
resulting lack of predictability, is evident in virtually all orbital
walker systems at high memory [5]. Chaos in hereditary sys-
tems is a subtle concept [249], and its possible significance
to quantum mechanics has been suggested previously [250].
While one usually characterizes chaos in terms of sensitivity
to initial conditions, in order to prescribe the evolution of a
hereditary system, one must specify not only its initial condi-
tions, but its history. In the walker system, one must prescribe
not only the initial conditions of the drop, but those of its spa-
tially extended wave field, the form of which depends on the
drop’s history. While Tadrist et al [49] demonstrate that the
lack of predictability in the walker system may be rooted in
uncertainty of the fast timescale responsible for wave genera-
tion, chaos would seem to be a more generic feature, as it also
appears in stroboscopic models.

Tambasco et al [221] characterized theoretically the onset
of chaos through the destabilization of circular orbits in
orbital pilot-wave dynamics using the stroboscopic model

(section 4.3). The authors considered the dynamics of walk-
ing droplets acted upon by external forces, specifically
Coriolis, Coulomb, and linear spring forces. Initial conditions
for the drop and accompanying waveform were taken as those
arising for steady circular orbits. For each external force con-
sidered, an increase in γ destabilized circular orbits into wob-
bling and eventually chaotic orbits. The authors demonstrated
that the route to chaos following the destabilization of cir-
cular orbits depends on the form of the external force. For
the case of Coulomb and Coriolis forces, chaos sets in via
a classic period-doubling cascade [251]. In the case of a
central harmonic potential, the route to chaos is reminiscent
of the Ruelle–Takens–Newhouse scenario, whereby the tem-
poral power spectrum exhibits the successive appearance of
incommensurate frequencies with increasing memory, lead-
ing to the broadening of the spectrum characteristic of chaos
[252–254].

Using numerical simulations of the stroboscopic model,
Budanur and Fleury [255] characterized the chaotic attrac-
tor of a walker moving in a central harmonic potential and
showed that it is composed of distinct regions corresponding to
different unstable periodic orbits. They also showed that dis-
tinct chaotic attractors merge via a global bifurcation as the
memory is progressively increased. Rahman and Blackmore
[256] review the walking-droplet system from the perspec-
tive of the dynamical-systems-theory community. It is note-
worthy that attempts to characterize transitions to chaos
experimentally face the difficulty that the transition typically
happens abruptly; for example, in the case of a walker in a
simple harmonic potential, over a span of Δγ/γF ∼ 0.004
[221]. Perrard and Labousse [34] drew a distinction between
the chaotic dynamics observed just at the onset of chaos, and
the intermittency observed in the high-memory limit. Specif-
ically, they showed that the former exhibits characteristics of
low-dimensional chaos, as the dominant contributions to the
wave field may be expressed using only a few modes. The latter
exhibits features reminiscent of noise-driven chaos: once the
system departs a stable region of phase space, a rapid transition
drives it to another attractor.

Chaotic pilot-wave dynamics for drop motion in a rotat-
ing frame and a simple harmonic potential have key common
features. The form of fully chaotic walker motion appears
to be new for classical systems, and has provided the first
important paradigm for the emergence of quantum-like statis-
tics in hydrodynamic quantum analogs [5]. At relatively low
memory, the drop executes one of several periodic orbits. At
high memory, these periodic states all destabilize, and the
drop switches between some number of them. One may thus
view the chaotic states observed in orbital pilot-wave dynam-
ics as a superposition of weakly unstable, quantized periodic
orbits. While in quantum mechanics, systems are described in
terms of a superposition of statistical eigenstates, pilot-wave
hydrodynamics suggests that these states are not incompatible
with the notion of particle trajectories in the form of unsta-
ble periodic orbits. Furthermore, the emergent statistics are
a reflection of the relative instability of these weakly unsta-
ble orbits. The system thus has features of the periodic orbit
theory proposed by Gutzwiller [257], who analyzed orbital
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Figure 10. Dynamics and statistics of a drop in a circular corral. (a) In a corral of radius Rc = 10.1 mm = 2λF, double quantization of
angular momentum L̄z and mean orbital radius R̄ emerges in the intermediate memory regime (γ/γF = 0.87–0.95) [14]. Gray circles
indicate sub-trajectories obtained by segmenting long trajectories between successive radial maxima [33], and periodic trajectories are
color-coded according to the legend. The black crosses are the centroids found via K-means clustering. (b) In a corral of radius
Rc = 14.3 mm = 4.5λF, chaos ensues in the high-memory regime (γ/γF = 0.989). Trajectories of increasing length are color-coded
according to droplet speed (in mm s−1) [10]. (c) The corresponding histogram of the walker’s position exhibits a multimodal statistical
pattern reminiscent of the quantum corral [259, 260], with oscillations on the Faraday wavelength λF. (a) Reprinted from [14], with the
permission of AIP Publishing. (b), (c) Reproduced figure with permission from [10], Copyright (2013) by the American Physical Society.

instabilities in the classical electrostatic n-body problem and
used the computed classical trajectories to approximate energy
spectra. Similar approaches have been advanced in attempts
to characterize turbulence in terms of periodic subcomponents
[258].

7. Analog quantum corrals

The quantum corral consists of a number of electrons (typi-
cally 60–80) moving on the surface of a metal, trapped by an
array of positively charged copper ions that serve as the fence
around the corral and discourage the electrons from escap-
ing [259, 260]. Using a scanning tunneling microscope, the
voltage of the system may be measured, serving as a proxy
for the probability distribution function of the electrons. The
corral is appealing in that it represents a quantum system in
which the wave function may thus be directly measured. The
observed statistical behavior is rationalized in terms of solu-
tions of the time-independent Schrödinger equation with suit-
able boundary conditions. The observed wave forms can be
reproduced by superposition of several cavity modes whose
relative magnitudes are treated as fitting parameters [261].

7.1. Circular corrals

Harris et al [10] presented the results of an experimental inves-
tigation of a droplet walking in a circular corral, a deep liquid
region surrounded by a confining shallow layer. At the lowest
memories considered, the drop followed the outer boundary,
executing circular trajectories. As the memory was increased
progressively, the circular orbits began to wobble, then gave
way to more complex periodic or aperiodic orbits such as sta-
tionary or drifting lemniscates or trefoils. This class of periodic
and weakly aperiodic orbits, prevalent in relatively small cor-
rals, was classified in greater detail by Cristea-Platon et al
[14], who noted that they exhibit a double quantization in

mean radius and angular momentum, reminiscent of walkers
in a simple harmonic potential [29] (figure 10(a)). They ratio-
nalized this similarity on the grounds that the boundaries act
effectively as a confining potential. They further examined the
form of the mean wave field, noting that the symmetries of
the periodic orbits were reflected in those of the associated
mean wave fields. The physical picture emerging from these
studies of small corrals is similar to that arising in the orbital
pilot-wave systems discussed in section 6.

The most striking behavior in the hydrodynamic corral
experiments arose in relatively large corrals in the high mem-
ory limit, at memories within 0.2% of the Faraday threshold
[10]. Here, the droplet follows a complex path marked by
frequent changes of direction prompted by interaction with
its pilot-wave field (figure 10(b)). Despite this erratic drop
motion, a robust statistical behavior emerged after approxi-
mately 30 min (figure 10(c)). The histogram of the drop posi-
tion was comparable in form to the magnitude of the cavity’s
most unstable Faraday mode. The roots of this statistical sig-
nature were apparent in the speed map, which showed alter-
nating concentric rings of anomalously high and low speed
(figure 10(b)), which corresponded, respectively, to regions
of low and high probability in the droplet’s position his-
togram. The striking similarities between the quantum and
hydrodynamic corral experiments are remarkable given the
vast disparity of scales between the two (table 2).

The robust statistical forms emerging in the experiments
of Harris et al [10] motivated a number of theoretical stud-
ies of walker dynamics in bounded domains [11, 12, 207,
247]. While certain features of the corral experiments have
been captured, none of the theoretical models has satisfac-
torily captured its emergent dynamics and statistics. Gilet
[11, 12] considered the discrete-time walker dynamics in a cav-
ity with eigenmodesΨk(x) satisfying a Neumann condition on
the boundary of the cavity. He considered the limit of zero drop
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Table 2. The characteristic scales of the quantum and hydrodynamic corral experiments indicate the remarkable range of the physical
analogy.

Particle radius (m) Corral diameter (m) Particle frequency (s−1) Particle speed (m s−1) Statistical wavelength (m)

Quantum 2.80 × 10−18 7.5 × 10−9 ωc = 1.60 × 1021 106 10–9

corral [259, 260]

Hydrodynamic 3 × 10−4 2.86 × 10−2 50 2 × 10−2 4.75 × 10−3

corral [10, 13]

inertia, and proposed the iterated map

xn+1 = xn − K
∑

k

ak,n∇Ψk(xn),

ak,n+1 = μk

[
Ψ∗

k(xn) + ak,n
]

, (23)

where 0 < μk < 1 plays the role of the memory parameter for
mode k, and K > 0 is a constant that prescribes the strength
of the wave–particle coupling. Gilet [11] first restricted his
attention to the 1D motion of a walker in a cavity with a
single mode Ψ(x). At low memory, the walker either settled
into a stable fixed point or executed a periodic orbit about
a fixed point. The periodic orbits destabilized as the mem-
ory was progressively increased, and the resulting chaotic tra-
jectory could be decomposed into a sequence of intermittent
jumps between unstable states. Gilet found that the probabil-
ity distribution of the walker position approximately satisfies
∼ 1/|Ψ′(x)|. Rahman and Blackmore [262] proved that the
fixed points in Gilet’s [11] model destabilized via supercriti-
cal or subcritical Neimark–Sacker (discrete-time Hopf) bifur-
cations as the memory parameter is progressively increased.
They also proved that, as K is increased progressively, a peri-
odic orbit may destabilize due to the appearance of a chaotic
strange attractor [263, 264].

Subsequently, Gilet [12] conducted numerical simulations
of equation (23) in a circular domain. Circular orbits stable at
low memory destabilized via a Neimark–Sacker bifurcation
as the memory was progressively increased. At high mem-
ory, there were no stable periodic attractors, and the walker
explored the entire cavity in a chaotic fashion. While the
emergent statistics were qualitatively similar to those reported
by Harris et al [10], they differed quantitatively, presum-
ably owing to the neglect of particle inertia, and differences
between the theoretical and experimental wave forms and
boundary conditions. Gilet’s [12] simulations revealed that
chaotic walker trajectories were ballistic on short timescales
and diffusive on long timescales. The coherence distance, the
length scale beyond which the walker’s behavior was diffu-
sive, was roughlyλF/2. Gilet argued that the walker’s effective
diffusion coefficient then plays the role of �/2m in quantum
mechanics, evoking Nelson’s Stochastic Dynamics [83, 84].
He further compared his model predictions for the momen-
tum and kinetic energy to the analogous quantum observables,
and suggested new links with experiments employing weak
measurement in quantum systems [121].

Durey et al [207] simulated the pilot-wave dynamics of a
resonant walker in a circular corral, using the wave model
in equations (13) and (14) augmented by a no-penetration

boundary condition on the corral’s edge. Building upon their
discrete-time model [33] (section 4.5), the authors derived a
map for the coupled evolution of the wave mode amplitudes,
drop position and velocity. They found that quantized circu-
lar orbits destabilize into precessing loops, rectilinear oscilla-
tions, and off-center lemniscates, comparable to those reported
experimentally in small corrals [10, 14], as the vibrational
acceleration is increased progressively. At high memory, the
drop switches intermittently between these weakly unstable
orbital states. Although their model captured the reported form
of the droplet dynamics at high-memory in relatively large cor-
rals [10, 13], it did not capture the emergent wavelike pattern
in the walker histogram (figure 10(c)). The authors attribute
this shortcoming to their assumption that the walker’s vertical
dynamics is perfectly periodic, and conjecture that a model that
accounts for modulations in vertical phase might better capture
the walker’s observed statistical behavior.

7.2. Elliptical corrals: mode superposition and statistical
projection effects

Our understanding of the hydrodynamic corrals was advanced
considerably by the experimental study of Sáenz et al
[13], who considered walker motion in an elliptical corral
(figure 11). In the high memory limit, a robust statistical form
again emerged (figure 11(d)) from the correlation between
speed and position (figure 11(b)). However, two important new
inferences were made as to its form. First, while the instanta-
neous wave field is relatively complex (figure 11(a)), the mean
pilot-wave field (figure 11(c)) takes a simple form that is strik-
ingly similar to the droplet histogram (figure 11(d)). Second,
the emergent statistical form need not correspond to the most
unstable Faraday mode of the cavity, as was the case in the cir-
cular corral [10]. In the elliptical corral, the walker histogram
was expressible as a linear superposition of a small number
of modes: the presence of the drop could introduce additional
modes that were the most unstable at nearby frequencies.

The study of Sáenz et al [13] was also important in demon-
strating that pilot-wave hydrodynamics was viable in shal-
low water; thus, variations in bottom topography can be used
to influence the walkers. The concurrence of several statisti-
cal modes thus allowed for the possibility of using variations
in bottom topography to induce statistical projection effects.
Figure 11 indicates that the particle histogram (figure 11(d))
and the mean wave field (figure 11(c)) in an elliptical corral
both take a form that may be deduced by superposing two
distinct cavity modes, as is suggestive of a superposition of sta-
tistical states. Adding a well at an arbitrary position only intro-
duced a localized perturbation to the histogram (figure 11(e));
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Figure 11. Walkers in an elliptical corral [13]. (a) The instantaneous wave field excited by the drop’s trajectory (dashed yellow curve).
(b) The chaotic trajectory is colored according to the instantaneous drop speed, revealing a correlation between position and speed. (c) Mean
pilot-wave obtained by time-averaging the wave field over 30 min. The wave field is described by the superposition of two cavity modes,
specifically, the odd (1, 5) and even (4, 4) elliptical eigenfunctions (insets) of the Helmholtz equation with Dirichlet boundary conditions.
(d) Histogram of the walker position, deduced from the trajectory in (b). (e) Placing a submerged circular well at the midpoint of the upper
semi-minor axis leads to a localized disturbance. (f) When the well is placed at the left focus, amplification of the (4, 4) mode leads to the
projection of a high-density region toward the empty focus, an analog of the quantum mirage [265]. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Nature Physics. [13] © 2018.

however, when placed at one focus of the ellipse, it favored
one mode over the other (figure 11(f)), and so induced a sig-
nal at the other focus, a nonlocal statistical projection effect
reminiscent of the quantum mirage [265].

7.3. The nonlocal mean-pilot-wave potential

The observed correlation between the histogram of a droplet
walking in an elliptical corral and the mean wave field [13] led
Durey et al [35] to an important theoretical result. They proved
that, for a walker executing perfectly periodic impacts in an
unbounded domain, the time-averaged pilot-wave field h̄(x)
may be expressed as the convolution of the walker position
probability distribution ρ(x) and the wave field of a bouncer,
hB(x):

h̄(x) = ρ(x)∗hB(x). (24)

This result holds for both periodic and chaotic walker motion.
For circular motion along an orbit of radius r0, the walker
distribution is ρ(x) = δ(|x| − r0)/2πr0, so the mean wave
field is given by h̄(r) = ATM

TF
J0(kFr0)J0(kF|x|) [29, 266]: it has

a Bessel form, and an amplitude prescribed by the orbital
radius. Notably, this result indicates that the mean wave field
vanishes identically when the walker orbits along zeros of

J0(kF|x|). The prevalence of such circular orbits has been
noted in several experimental and theoretical investigations
of orbital pilot-wave dynamics [15–17, 26, 29, 31, 207, 219,
220], and would seem to suggest an energetic rationale for
orbital quantization. The convolution result (24) was general-
ized to the case of variable bottom topography by Durey et al
[207].

Another key insight from the study of Durey et al [35]
was that, in the high-memory limit, the instantaneous wave
field converges to its time-averaged form. This convergence, as
demonstrated in their simulations of one-dimensional walker
motion in a simple harmonic potential, underscores the impor-
tance of the mean wave field in the walker dynamics. In par-
ticular, it indicates that the mean pilot-wave plays the role of
a self-induced nonlocal potential that the walker navigates,
reminiscent of the quantum potential in Bohmian mechanics
(section 2.3). Efforts are currently being made to assess the
extent to which such a physical picture describes the walker
dynamics in other settings. Notably, while the mean-pilot-
wave potential may be simply characterized in two dimen-
sional corrals (e.g. figure 11(c)), the convergence of the
instantaneous pilot-wave field to the mean was not evident,
even at the highest memory, owing to the influence of viscous
wave damping.
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Figure 12. Walker tunneling. (a) The walker approaches a submerged barrier [9]. (b) Experimental trajectories (red) reported by Eddi et al
[52]: the walker crossed the obstacle 14 times in 110 attempts. (c) Simulations of walker tunneling between two cavities when the walker is
confined to a line [8]. A space-time plot of the walker (red) and pilot wave (blue) captures a tunneling event. (d) Trajectories measured in the
experiments of Tadrist et al [9], displayed in position-velocity phase space. Reflected and transmitted trajectories are indicated in black and
red, respectively. Points indicate the location of each impact. Green inset: incoming velocity fluctuations, with a characteristic error bar
shown. Blue inset: the separation point between reflected and transmitted trajectories. (a), (d) Reproduced figure with permission from [9],
Copyright (2020) by the American Physical Society. (b) Reproduced figure with permission from [6], Copyright (2009) by the American
Physical Society. (c) Reproduced figure with permission from [8], Copyright (2017) by the American Physical Society.

8. Walker-boundary interactions

When a walker interacts with submerged topography, its pilot-
wave is altered, its motion disturbed. Recent studies of walker-
boundary interactions have led to a number of intriguing
analogs of optical and quantum systems.

8.1. Tunneling

Eddi et al’s [6] experimental investigation of a walker imping-
ing normal to a submerged barrier demonstrated that walk-
ers exhibit features of quantum tunneling on a macroscopic
scale (figures 12(a) and (b)). The authors demonstrate that the
reflection or transmission of a walker over a submerged barrier
is unpredictable; moreover, the crossing probability decreases
exponentially with increasing barrier width, as in the case of
quantum tunneling [267, 268]. Walker tunneling was revis-
ited theoretically by Hubert et al [7], who used the Rayleigh
oscillator model of Labousse and Perrard [232] (section 4.6)
to capture the observed crossing statistics.

Nachbin et al [8] used their two-dimensional, variable-
topography model (section 4.7) to simulate walker tunneling
across a shallow region separating two relatively deep cavities
(figure 12(c)). Simulation of the chaotic dynamics arising at
high memory showed that the probability of walker tunneling
across a shallow region decreases exponentially with barrier
width, as in the original experiments of Eddi et al [6]. More-
over, for a fixed barrier width, the tunneling probability was a
non-monotonic function of the forcing acceleration, attaining
a maximum for a critical value of γ: the forcing acceleration
needed to be high enough for the local pilot-wave to permit
tunneling, but not so large as to generate large-amplitude
standing waves in the target cavity that prevent it.

Tadrist et al [9] revisited walker tunneling experimen-
tally with a view to assessing whether resolution of the fast
bouncing dynamics would render the apparently unpredictable
behavior predictable. In a parameter regime where there was a

50% chance of tunneling, they determined the conditions for
tunneling. They applied the technique of Tadrist et al [49] for
inferring the precise point and time of drop impact. They thus
deduced that that the spatial dependence of the bouncing phase
is not determinant in walker tunneling. Rather, their study
shows that the tunneling is determined by minute variations
in the drop’s horizontal momentum at a distance of approxi-
mately three barrier widths from the barrier: faster drops cross
the barrier, slower drops do not (figure 12(d)).

8.2. Reflection, refraction and optical analogs

A walker approaching a discrete step in bottom topography
at an angle of incidence θi may either be reflected by the
step, or cross onto the shallow layer above the step and con-
tinue to walk. Pucci et al [203] examined walker reflection
from a submerged planar barrier. Their experiments showed
that droplets exhibit non-specular reflection. A small range of
reflection angles (60◦ < θr < 80◦) arises, and the precise value
of θr depends only weakly on the system parameters, includ-
ing θi, the walker speed and size, the step size and the memory.
The observed behavior was captured theoretically with sim-
ulations based on the model of Faria [22] (section 4.7). The
non-specular reflection indicates that momentum is not con-
served in the direction parallel to the boundary, that a wave-
mediated net tangential force is applied to the drop during its
interaction with the step, an effect rationalized in the theoreti-
cal developments of Turton [233].

Bragg diffraction was first observed in patterns of x-rays
scattered off crystalline solids. The Bragg condition is met for
certain wavelengths and incident angles, and is associated with
a sharp decrease in the reflected radiation [269]. Vandewalle
et al [57] considered walker motion in a circular annular chan-
nel with periodically varying bottom topography consisting of
submerged walls aligned perpendicular to the channel. They
demonstrated that an analog Bragg condition exists: when the
spacing of the walls is λF/2, the time-averaged droplet speed
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Figure 13. Scattering of walkers through single and double slits, as reported in the experiments of Pucci et al [23]. (a) A walker with impact
parameter yi passes through a single slit of width W = 14.7 mm = 3.1λF and is deflected by an angle α. (b) Trajectories in the deterministic
regime, γ/γF = 0.985 ± 0.002. (c) Top panel: the dependence of the deflection angle α on the impact parameter yi for the trajectories in
panel (b). Bottom panel: the corresponding probability density function P(α) of the deflection angle. (d) Trajectories in the chaotic regime,
γ/γF = 0.998 ± 0.002, where the deflection angle α is independent of the impact parameter yi, as evident in (e). (f) Trajectories of a walker
passing through one slit of a double-slit arrangement in the chaotic regime, γ/γF = 0.998 ± 0.002. Note the marked difference from the
trajectories in (d), which indicates the influence of the second slit. Adapted with permission from [23]. © Cambridge University Press.

decreases sharply. Filoux et al [56] investigated the dynamics
of a walker confined to long rectangular corrals of different
widths d. They found that the walker’s longitudinal (vy) and
transverse (vx) velocities both increase with d, with the ratio
〈v2

y 〉/〈v2
x〉 being maximized for d/λF ≈ 1.5–2, as defines the

optimal wave guide.
The Talbot effect arises in optics when monochromatic

light is shone through a diffraction grating [270]. The
intensity pattern of light at the grating recurs at integer
multiples of the Talbot length, as is defined in terms of the
wavelength of incident light, λ, and the spacing of the grating,

d, through ZT = λ
2

(
1 −

√
1 − (λ/d)2

)−1
[271]. Sungar et al

[59] demonstrated an analogous effect with the Faraday sys-
tem excited just above threshold when there is a linear array
of partially submerged pillars spaced at 2λF. The images of
these pillars are projected by distances corresponding to inte-
ger multiples of the Faraday–Talbot length, which has pre-
cisely the form of the Talbot length, but with λF in place of λ.
They further demonstrated that the projected images could trap
bouncers and walkers, thus providing a hydrodynamic analog
of optical trapping with the Talbot effect. Sungar et al [60]

showed that by spacing the pillars a distance 3λF/2 apart, they
could capture effects analogous to those of alternating grating
phase in optics. They also considered circular arrays of pillars,
which allowed for tuning of the magnification of the projected
images.

8.3. Diffraction from slits

The possibility of the walking droplet system as a hydrody-
namic quantum analogue was launched by the seminal study of
Couder and Fort [2], who reported that walkers exhibit single-
particle diffraction and interference when passing through
apertures between submerged barriers. They sent single walk-
ers toward a submerged barrier with openings on the scale
of the guiding wavelength (figure 13(a)). As the drop passed
through the slit, its trajectory was deviated owing to the distor-
tion of its pilot wave, a form of macroscopic particle diffrac-
tion. The impact parameter yi, defined as the location of the
incident trajectory of the walker relative to the centreline of
the slit, was varied so as to uniformly span the slit, in order to
best approximate an incident plane wave.

The principal inferences of Couder and Fort’s [2] study
were threefold. First, the deflection angle α was independent
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of the impact parameter yi. Second, the emerging statisti-
cal pattern corresponded roughly to the amplitude of the
Fraunhofer diffraction pattern of a monochromatic plane wave
impinging on the slits. Third, in the double-slit arrangement,
the wave interacts with both slits; thus, the trajectory of the
walker is altered by the presence of the second slit, an indi-
cation of single-particle interference on the macroscale. Their
experimental results in the single-slit geometry were roughly
reproduced by numerical simulations in which the walls were
modeled by periodically spaced secondary wave sources that
locally damp the walker wave field [117].

The results of Couder and Fort [2] were contested on sta-
tistical grounds by Bohr and co-workers [19, 20], who pointed
out that in the double-slit arrangement, the limited amount of
data (75 independent trajectories) was insufficient to conclude
that an interference pattern emerged. Specifically, the fit with
a Gaussian distribution was as good as that with the amplitude
of the inferred Fraunhofer diffraction pattern. The experimen-
tal results of Andersen et al [19] were also at odds with those
of Couder and Fort [2], in that they observed a strong correla-
tion between the diffraction angle and the impact parameter yi.
Moreover, no coherent diffraction pattern was apparent in their
experiments. Subsequently, Rode et al [24] reported direct
measurements of the wave fields in the vicinity of the slits,
which they found were only weakly altered by the presence of
the second slit.

Pucci et al [23] revisited the single and double-slit exper-
iments of Couder and Fort [2] with a refined experimental
set-up that allowed for a systematic characterization of the
dependence of the walker behavior on drop size and memory.
Notably, their study made clear the importance of shielding
the system from air currents, a precaution not taken in previ-
ous experiments [2, 19, 272]. As the drop size and memory
were not reported in the original experiments of Couder and
Fort [2], it was not possible to reexamine the parameter regime
originally considered. In the bulk of the experiments reported
by Pucci et al [23], there was a strong correlation between
deflection angle and impact parameter (figures 13(b) and (c)).
This correlation vanished only at the highest memory consid-
ered, γ/γF = 0.998, in a small-drop parameter regime char-
acterized by chaotic walking and unpredictable trajectories
(figures 13(d) and (e)).

In all cases considered, the system behavior was dominated
by the tendency for a drop to follow a path with a fixed angle
relative to the plane of the slits, the same angle arising in non-
specular reflection from a submerged barrier [203]. The three
dominant central peaks apparent in the diffraction patterns of
Couder and Fort [2] were thus evident in the majority of the
parameter regimes considered by Pucci et al [23]; however,
the dependence of the number of peaks on the slit width appar-
ent in Fraunhofer diffraction was not evident. Nevertheless, in
the double-slit geometry, a key quantum feature contested by
Bohr and co-workers [19, 20, 24] was recovered: the droplet
is influenced by both slits by virtue of the spatial extent and
persistence of its guiding wave field (figure 13(f)). The exper-
imental behavior was well captured by the model of Faria [22]
(section 4.7): discrepancy between simulation and experiment
arose only at the very highest memories, where the droplet

bouncing becomes chaotic, so the walker dynamics cannot be
expected to be adequately described by a model based on the
assumption of periodic bouncing. Walker diffraction by sin-
gle and double slits was recently revisited by Ellegaard and
Levinsen [25], who undertook the most comprehensive explo-
ration of parameter space to date. Their experimental results
were largely consistent with those reported by Pucci et al [23],
but also revealed new, relatively rich diffraction behavior in the
double-slit arrangement.

Diffraction is a feature of waves, both on macroscopic
and microscopic scales. Due to the association of a particle
with a wave in quantum mechanics, single-particle diffraction
has generally been thought to be exclusive to the quantum
realm. However, diffraction may also be a feature of classi-
cal objects, provided they have an associated wave component.
For example, Schiebel et al [273] have shown that snakes slith-
ering through an array of posts exhibit a form of diffraction.
One should not find it surprising that the walker diffraction
pattern is different from that arising in single-electron diffrac-
tion. First, there is little reason to believe that the walker’s
pilot wave has a form similar to that of an electron. Second,
the geometries are markedly different: in electron diffraction,
the characteristic gap width is typically a thousand de Broglie
wavelengths, while in the walker system, the gap width is com-
parable to a single Faraday wavelength. Third, the influence of
the hydrodynamic pilot wave is limited by viscous damping.

Nevertheless, the mechanisms for both single-particle
diffraction and interference in the hydrodynamic system are
clear. Diffraction arises owing to the distortion of the drop’s
guiding wave by the slit arrangement. Interference by the
second slit may arise through its acting to alter the global
wave field, specifically that beneath the walker. Both mech-
anisms rely explicitly on the hereditary nature of the walker
system and the spatial delocalization of the walker associ-
ated with its pilot-wave field; moreover, both are limited by
viscous wave damping. Recent developments in pilot-wave
hydrodynamics suggest the manner in which one might find
richer diffraction behavior in a generalized pilot-wave frame-
work (see section 9). Notably, in the special case considered
in hydrodynamic quantum field theory (HQFT) [88], to be
detailed in section 9.3, the pilot-wave field in the vicinity of
the particle takes the form of a plane wave with the de Broglie
wavelength [89].

8.4. Walker scattering from pillars and wells

Harris et al [172] examined the interaction of walking droplets
with a submerged circular pillar. At low memory, simple scat-
tering events, characterized by a relatively rapid deflection
by some angle, are the norm. However, at high memory the
drop departs the pillar along a path corresponding to a log-
arithmic spiral (figures 14(a)–(d)). The form of the spiral is
independent of the droplet’s impact parameter: there is a uni-
versal spiral emerging for a given drop size, pillar size and
memory. The pitch angle increases with vibrational forcing:
the trajectory approached but never reached a circular orbit in
the high-memory limit (figure 14(e)). Because the drop speed
remains equal to the free walking speed along the spiral, and
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Figure 14. Walker scattering [172]. (a)–(d) Surface topography measurements of a walker interacting with a submerged pillar of radius
5 mm (black circle) [204]. The white curve indicates the walker’s trajectory: a rectilinear approach path transitions to an outgoing
logarithmic spiral. The color bar indicates the wave amplitude in microns. (e) A droplet spirals about a pillar with radius 2.5 mm. As γ/γF
increases from 0.97 to 0.99, the drop spends more time on a spiral path. Adapted from [172], with the permission of AIP Publishing.

the drop accelerates slowly along the spiral, the system was
ideally suited to application of the boost model (equation (21),
[229]). An effective force due to the presence of the pillar was
inferred, and found to be a lift force, Fp = mw Ω× ẋp, propor-
tional to the boosted walker mass, mw and the cross product
of the drop’s velocity ẋp and instantaneous angular velocity
about the post, Ω. When the equivalent form of the Corio-
lis and Lorentz forces is considered, this memory-induced lift
force is seen to be suggestive of self-induction: the drop moves
as would an electric charge in the magnetic field generated
by its own current. This system presents a clear macroscopic
example of pilot-wave-mediated forces giving rise to apparent
action at a distance.

Sáenz et al [18] considered a droplet walking in a shallow
bath, interacting with a deep circular well (figure 15). Here,
the walker was drawn inwards along an Archimedean spiral
toward the well center. At high memory, the inferred well-
induced force once again takes the form of a non-local lift
force. After the drop crosses the well center, it moves radially
outwards, with speed oscillations arising over a lengthscale
corresponding to the Faraday wavelength. A superposition of
an ensemble of incident trajectories (figure 15(b)) reveals that
these speed oscillations leave a circularly symmetric statisti-
cal signature with the Faraday wavelength (figure 15(c)). This
arrangement provides a hydrodynamic analog of Friedel oscil-
lations, the statistical signature of electrons on a metallic sur-
face scattering off an impurity [274, 275]. While walker speed
oscillations have been reported elsewhere in both experiments
[10, 13, 168, 215] and simulations [215, 276], their role in
the emergent statistical behavior of walking droplets had not
previously been noted and may be more prevalent than pre-
viously believed. Indeed, the origins of the statistical form
emerging in the large corrals [10, 13] may be rooted in such
speed oscillations induced by boundary collisions [208], in
conjunction with the walker reflection laws [203]. These
in-line speed oscillations represent a new paradigm for the
emergence of a statistical signature with the wavelength of the
pilot wave, one that does not rely on the presence of chaos.

9. Generalized pilot-wave framework

We have detailed the three key features responsible for emer-
gent quantum-like behavior in the hydrodynamic pilot-wave
system. First, the pilot-wave must be generated by the parti-
cle; a free particle thus responds only to its own field. Second,
there must be a memory of the particle path recorded in the
pilot-wave field, which renders the particle dynamics heredi-
tary. Third, there must be resonance between the particle and
wave field, which ensures that the pilot wave field be quasi-
monochromatic. Having established these essential features of
the hydrodynamic pilot-wave system, one may define a new
class of dynamical systems with these features, and dispense
with other nonessential details, including peculiarities of the
hydrodynamic pilot-wave system, with a view to broadening
the range of classical pilot-wave dynamics and to capturing
new quantum analogs.

9.1. Parametric generalizations

The exploration of a simple parametric generalization of the
hydrodynamic pilot-wave system was proposed by Bush [3],
and has been profitably explored by a number of investigators
[27, 36, 48, 266, 276]. The constant-phase stroboscopic model
(12) discussed in section 4.3 may be non-dimensionalized to
yield

κ0(1 − Γ)ẍp + ẋp = − 2
(1 − Γ)2

∇h̃(xp, t),

h̃(x, t) =
∫ t

−∞
J0(|x− xp(s)|)e−(t−s) ds, (25)

where κ0 = kF

√
m3gA/2D3TF is the dimensionless mass and

Γ = (γ − γW)/(γF − γW) the dimensionless forcing acceler-
ation, that assumes the value Γ = 0 at the walking threshold
γ = γW and Γ = 1 at the Faraday threshold γ = γF [3].
The dimensionless mass κ0 varies over the limited range
0.9–2.2 for the parameter regimes explored to date in the
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Figure 15. Hydrodynamic analogue of Friedel oscillations [18]. (a) Oblique view of a droplet trajectory (yellow dots) passing over a
submerged circular well (dashed white circle). (b) The drop spirals inward toward the well along an Archimedean spiral, then exits the well
radially. Color coding the trajectories according to the drop speed, u/u0, indicates speed oscillations in the outgoing phase. The right panel
shows an ensemble of 449 droplet trajectories in the high-memory limit, γ/γF = 0.99. (c) The radial speed modulations give rise to a
Friedel-like signature in the histogram of the droplet position. From [18]. Adapted with permission from AAAS.

hydrodynamic pilot-wave system, but may be assigned any
value in this generalized framework.

Oza et al [17] and Labousse et al [26] explored theoretically
the possibility of hydrodynamicspin states, wherein the walker
executes a circular orbit despite the absence of an external
force. While it was previously shown [17] that, without exter-
nal confinement [26], spin states are unstable in the laboratory,
Oza et al [27] assessed the stability of spin state solutions to
equation (25) for all values of κ0 and Γ. They showed that the
spin states of radius r0 ≈ λF/2 could be stabilized for suffi-
ciently small values of the dimensionless mass, 0 � κ0 � 0.2,
for a range of forcing accelerations.

Tambasco and Bush [266] examined a walker interacting
with a spatially oscillating radial potential of Bessel form using
numerical simulations of equation (25). By suitable choice of
κ0 and Γ, they were able to find a parameter regime in which
the walker switched intermittently between weakly unstable
circular orbits, and settled into a statistically steady state but
never a stable orbit. They also deduced that, in this setting,
the timescale of statistical convergence was an order of magni-
tude greater than the memory time. Valani and Slim [48] used
a variant of equation (25) as the basis for numerical simula-
tions of two identical in-phase walkers. In addition to the orbit-
ing and promenading modes observed in walker experiments
(section 5.1), they discovered a variety of exotic trajectories
(figure 16).

In the Hong–Ou–Mandel (HOM) interference experiment
[277], two photons arrive at a beam splitter, and two detec-
tors far from the splitter record the arrival of the photons. As
the distance between the photon source and detectors is varied
continuously, the probability that a photon is detected by both
detectors exhibits a dip and eventually vanishes, which is the
so-called HOM effect. Valani et al [36] conducted a numeri-
cal study of two walkers launched toward a common point of
intersection. For a parameter regime (κ0,Γ) comparable to that
of the walkers, they deduced the probability that the pair forms
bound states (either orbiting, promenading or drafting). Such
binding events correspond to a dip in the probability of the pair
continuing unperturbed, so give rise to a statistical signature
akin to the HOM effect.

Finally, equation (25) was adapted by Durey et al [276]
to examine the prevalence of in-line oscillations for one-
dimensional motion in this generalized pilot-wave framework.
They delineated distinct parameter regimes characterized by
underdamped oscillations, of the form reported by Sáenz et al
[18] in their study of analog Friedel oscillations, periodic speed
oscillations of the form reported by Wind-Willassen et al [168]
and Bacot et al [215], and periodic and aperiodic jittering
modes. In the jittering modes, the droplet bounces in place
until its pilot wave grows sufficiently to propel it into a nearby
wave trough. The process may result in either rectilinear peri-
odic motion, or aperiodic motion characterized by irregular
reversals in direction. The latter results in a random-walk-like
dynamics and emergent quantum-like statistics reminiscent of
those reported for particle motion along a line in the presence
of a spring force [35]. Moreover, it leads to a characteristic
diffusivity D ∼ u0λF, a result that evokes Nelson’s stochas-
tic dynamics [83, 84] (section 2.5). A similar random-walk-
like behavior was observed theoretically in simulations of the
path-memory model (6) by Hubert et al [216], who found
that, at high memory, a walker’s motion is ballistic over short
timescales, sub-diffusive over intermediate timescales and dif-
fusive over long timescales. Finally, in-line oscillations were
also prevalent in the simulations of Durey [278], who reduced
the equations for one-dimensional pilot-wave dynamics to a
form similar to the Lorenz system [279].

9.2. Further generalizations

Further generalizations of the pilot-wave framework (25)
will yield additional insights into the viability of pilot-wave
mechanics as a classical dynamical underpinning of quan-
tum statistics. An obvious possibility is altering the kernel
in the wave force, as prescribes both the wave form and its
spatio-temporal damping. One could also relax the assumption
of perfect particle-wave resonance, and so include a richer
dynamics of the form explored in the variable-phase strobo-
scopic model [50]. Another possibility is the inclusion of a
stochastic background field, which would in principle allow
for one to encompass pilot-wave dynamics and stochastic
mechanics in a single theoretical framework. Extensions to
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Figure 16. Simulations indicate the rich behavior of identical in-phase particle pairs accessible within the generalized pilot-wave framework
(section 9.1) [48]. In gray regions, the pair becomes unbound. Colored regions correspond to the bound states depicted in the legend.
Adapted from [48], with the permission of AIP Publishing.

three-dimensions, while not difficult conceptually, have thus
far met with limited success.

There is little reason to believe that walker-boundary inter-
actions are closely related to those arising at a microscopic
scale; thus, various possibilities for boundary conditions in
pilot-wave dynamics should also be explored. Dubertrand
et al [21] presented a model of single-slit diffraction [2,
19, 20, 23, 24] in which walkers are scattered by a pair of
nearby submerged barriers. They time-averaged the trajectory
equation (8) over the bouncing period, and considered a wave
field h of the form

h(x, tn) = −A
n−1∑

k=−∞
Im[G(x, xk)]e−(n−k)TF/TM . (26)

Here, G is the Green’s function for the Helmholtz equation
(Δ+ k2

F)G(x, x0) = δ(x− x0) with Neumann boundary condi-
tions on the obstacles and outgoing radiation boundary con-
ditions at infinity. Their numerical simulations show that,
while the walker does indeed scatter when passing through the
slit, the deflection angles are substantially smaller than those
reported in the walker system [2, 19, 20, 23, 24].

Devauchelle et al [280] developed a similar pilot-wave
model, but replaced the δ-function in the Helmholtz equation
by different functional forms to account for the particle’s
finite size. They neglected the particle inertia, and posited
that the particle’s velocity is proportional to the local sur-
face wave gradient. Their combined analytical and numeri-
cal approach enabled them to demonstrate the existence of a
self-propelling state resembling rectilinear walking; moreover,
particle interaction with boundaries lead to in-line oscillations.

Broadening the scope of pilot-wave dynamics even further,
Fort and Couder [281] proposed a theoretical model for a so-
called ‘inertial walker’ which consists of a self-propelling par-
ticle that generates waves that continue to propagate in the

particle’s inertial frame at the time of emission, the result being
an interference pattern different from that in the walker sys-
tem. The authors show that the wave field generated by the
circular motion of an inertial walker along an orbit of radius
r0 admits resonant wave modes when the orbital perimeter
2πr0 is an integer multiple of the Faraday wavelength λF,
a condition analogous to the Bohr–Sommerfeld quantization
rule [282].

9.3. Hydrodynamically-inspired quantum field theory

Several authors have attempted to formulate a form of quan-
tum dynamics based on insights gained from the walker
system. Andersen et al [19] explored the behavior of a dynam-
ical system in which a particle locally excites a waveform
satisfying Schrödinger’s equation, then moves in response
to gradients of the phase of that field. Orbital quantization
was shown to arise naturally, along with an analog to the
Bohr–Sommerfeld quantization rule; however, they concluded
that their model was not capable of giving rise to behavior anal-
ogous to that arising in the quantum double-slit experiment.
Borghesi [87] proposed an elastic pilot-wave model wherein a
point particle moves within a non-dissipative elastic substrate.
The coupled dynamics of the particle and elastic medium are
governed by a modified Klein–Gordon equation. When the
particle speed is small relative to the elastic wave speed, it
is proportional to the gradient of the phase of the wave, a
result that evokes de Broglie’s guidance equation. Shinbrot
[283] examined the Klein–Gordon equation with an oscilla-
tory potential as a model for a quantum particle emitting and
absorbing pilot waves. He concluded that bound state solu-
tions with half-integer spin exist provided the particle rest
mass oscillates in time, another result evocative of de Broglie’s
physical picture [130]. Most recently, Drezet et al [284] pre-
sented a mechanical analog of quantum bradyons and tachyons
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Table 3. Different pilot-wave theories put into the general framework of equations (27) and (28). The pilot-wave phase S is defined through
the equation u = |u|eiS/�, where u is φ (for de Broglie’s double-solution theory [80]) or ψ (for Andersen et al [19]).

Model Trajectory equation u L f(x, t)

Stroboscopic (12) mẍp + Dẋp = −F∇h(xp, t) h −1/TM J0(kF|x|)
Oza et al [205]

Faraday waves (13)–(15) mẍp + Dẋp = −F(t)∇h(xp, t)

(
h
φ

) (
2νΔ D

σ

ρ
Δ− g(t) 2νΔ

) (
0

−PD(|x|, t)/ρ

)
Milewski et al [44]

Bohmian mechanics [81, 82] mẍp = −∇
(
− �

2

2m
Δ|ψ(xp,t)|
|ψ(xp,t)|

)
ψ Schrödinger equation i�

2mΔ 0

Schrödinger particle ẋp =
∇S(xp,t)

m ψ Schrödinger equation − i
�

A(t)δ(x)
Andersen et al [19]

de Broglie’s double ẋp = −c2 ∇S
∂S/∂t

(
φ
φt

)
Klein–Gordon equation

(
0 1

c2Δ− ω2
c 0

)
Unspecified

solution [80]

Hydrodynamic QFT [88] ẋp = −α∇φ(xp, t)

(
φ
φt

)
Klein–Gordon equation −εp sin(2ωct)δa(x)

through consideration of a vibrating particle propelling itself
along a frictionless string.

Dagan and Bush [88] have extended de Broglie’s double-
solution mathematical program through positing the form of
the dynamic interactions of waves and particles on the Comp-
ton scale, including the mechanism for particle-induced wave
generation. They model the particle as a localized periodic
disturbance in the Klein–Gordon field at twice the Compton
frequency (table 3). As in pilot-wave hydrodynamics, the par-
ticle is propelled by gradients in the amplitude of its pilot-wave
field. Resonance is achieved between the particle and its pilot
wave, leading to self-excited motion of the particle. Like the
hydrodynamic bouncing state above the walking threshold, the
stationary state gives way to a dynamic state characterized
by quasi-steady self-propulsion of the particle. Notably, the
mean speed rapidly converges to a value consistent with the
de Broglie relation, p = γLm0v = �kB. Moreover, the parti-
cle motion is characterized by relativistic in-line oscillations
with frequency ckB and wavelength λB, reminiscent of the
Zitterbewegung featured in early models of quantum dynamics
[143, 145]. Their results suggest a new trajectory-based inter-
pretation of the quantum dispersion relation, ω2 = ω2

c + c2k2
B:

the first term corresponds to the energy of internal vibration
and wave generation, the second to the kinetic energy asso-
ciated with in-line oscillations. The hydrodynamic pilot-wave
system has made clear that in-line oscillations provide a mech-
anism for a statistical signature with the oscillation wavelength
[18]. One can thus readily imagine how statistical signatures
with the de Broglie wavelength might emerge on the quantum
scale.

Analysis of this HQFT [89] has revealed that there is a
critical wave–particle coupling constant beyond which self-
propulsion ensues, the analog of the walking threshold. In two
dimensions, when strobed at the Compton frequency, the pilot-
wave form in the vicinity of the particle takes the form of a
plane wave with the de Broglie wavelength. Consequently, the
local gradient of the wave amplitude is proportional to that

of the wave phase, indicating that the wave–particle coupling
considered in HQFT is consistent with that proposed by de
Broglie [80] (table 3). In the relativistic limit, the de Broglie
wavelength approaches the Compton wavelength, suggesting
the possibility of quantization and structure on the Compton
scale. For example, spin states in HQFT might correspond to
the classical model of the electron [144]. HQFT thus promises
the possibility of accounting for the emergence of quantiza-
tion and a statistical signature on the de Broglie wavelength
for non-relativistic mechanics, and structure on the Comp-
ton scale for relativistic mechanics. Further explorations of
two-dimensional HQFT, extensions to three-dimensions, and
coupling to the ensemble interpretation of quantum mechan-
ics [103], will determine its viability as a trajectory-based
description of quantum systems.

9.4. General particle-wave framework

The bulk of the pilot-wave models reviewed herein, both
hydrodynamic and quantum, have the form

Dt[xp] = G
(
u(xp, t), ut(xp, t),∇u(xp, t),Δu(xp, t), . . .

)
,

(27)

ut = Lu + f (x− xp, t), u = (h,φ, . . . ). (28)

The particle trajectory is described by equation (27), the pilot-
wave evolution by (28). In the trajectory equation, the time-
derivative operator Dt acts on the particle position xp, giving
rise to time-derivative terms that must be balanced by some
function G of the set of variables u characterizing the pilot-
wave field, evaluated at the particle position. For hydrody-
namic pilot-wave theory, these variables u include the wave
height h and possibly other quantities, for example the veloc-
ity potentialφ of the liquid bath in the formulation of Milewski
et al [44]. In the evolution equation (28) for u, the wave vari-
ables, f denotes the localized particle-induced forcing and L
is a linear differential operator. We note that Duhamel’s princi-
ple, which states that the solution to an inhomogeneous linear
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evolution equation such as equation (28) may be expressed as
a time-integral over the history of the forcing f , necessarily
implies that the memory of the particle’s trajectory xp(t) is
encoded in the wave variables u.

Table 3 shows how several of the hydrodynamic and quan-
tum pilot-wave models may be put into this general pilot-wave
framework. The hydrodynamic pilot-wave theories describe
a balance between particle inertia, drag and the propul-
sive wave force, so Dt[xp] = mẍp + Dẋp. In the stroboscopic
model (12), u = h, f (x, t) = J0(kF|x|) and L = −1/TM. In
the Faraday pilot-wave model, (13)–(15), u = (h,φ) and
f(r, t) = (0,−PD(r, t)/ρ) is the localized particle-induced
forcing. The linear operator L contains the Dirichlet-to-
Neumann map for the velocity potential φ, D[φ|z=0] = φz|z=0,
which reduces the partial differential equations (13)–(15) on
the domain z � 0 to the free surface z = 0.

In Bohmian mechanics [81, 82], there is no drag: the par-
ticle inertia is balanced by the gradient of the quantum poten-
tial, whose form depends on the wave function ψ that evolves
according to Schrödinger’s equation. Notably, the Schrödinger
equation is not forced by the particle, so f = 0; that is, parti-
cles are driven by the wave function, but the origins of this
wave function are not specified [284]. This deficit was also a
feature of de Broglie’s double solution theory [80], where the
functional form of the particle-induced wave forcing f was
not specified. HQFT [88, 89] specifies this wave forcing in a
manner informed by the hydrodynamic system.

10. Discussion and future directions

The walking droplets represent a macroscopic example of a
particle moving in synchrony with its own wave field, one in
which the particle-wave interaction is both visible and resolved
theoretically. Growing evidence suggests that its range as a
quantum analog is limited by the viscous damping of the pilot-
wave field, and by the influence of drop inertia, features of
the walker system that may be sidestepped within a general-
ized pilot-wave framework. If microscopic particles are indeed
characterized by a high-frequency vibration at the Compton
frequency, the theoretical description of walking droplets may
yield insight into their dynamics. For example, it raises the
possibility that the runaway solutions in the Lorentz-Abraham-
Dirac equation may result from an unresolved dynamics on the
Compton scale [233, 286, 287].

10.1. The emerging physical picture

Three features of pilot-wave hydrodynamics are critical to
the emergence of its quantum-like features. The first is the
association of the particle with a self-propelling wave source.
The second is the resonance between the particle and wave,
which results in the highly structured wave field whose form
is responsible for the emergence of quantum-like features. The
third is path memory, the ability of the drop to store informa-
tion on the bath surface, the feature responsible for the tem-
poral non-locality of the drop dynamics that may result in the
misinference of spatial nonlocality. The first two are explic-
itly features of de Broglie’s double solution theory: the droplet

bouncing plays the role of the particle vibration in de Broglie’s
theory, and the wave-droplet resonance that of the harmony of
phases in de Broglie’s mechanics [3]. The third is not explicit
in de Broglie’s mechanics, but is a feature of the hereditary
particle-wave interactions considered by Brillouin [288], who
showed that for the case of a particle moving faster than its
wave field, orbital quantization may naturally emerge.

Three paradigms have now been established for the emer-
gence of quantum-like statistics from pilot-wave dynamics of
the form engendered in the walker system. The first relies on
the chaotic switching between weakly unstable quantized peri-
odic dynamical states, the second on in-line oscillations of
the walker speed, the third on the droplet’s random-walk-like
motion across its pilot-wave field. The first two are evident in
the walker system, the third in theoretical models thereof. All
three rely on the highly structured, quasi-monochromatic form
of the pilot-wave field, and so depend critically on the resonant
interaction between the droplet and its guiding wave.

The first paradigm arose from studies of walkers in closed
environments, their motion confined by either boundaries or
imposed forces. Examples include the small corral experi-
ments [10, 14], where the walker range is prescribed by the
corral radius; walker motion in a simple harmonic potential
[29, 30, 32, 33, 220], where the drop range is prescribed by the
effective applied spring constant, L ∼ u0

√
m/k; and walker

motion in a rotating frame [15–17, 219], where the effec-
tive range is prescribed by the radius of the inertial orbit,
L ∼ u0/2Ω. The quantized orbital states emerge in these sys-
tems owing to the dynamic constraint imposed on the droplet
by its pilot wave, when the crossing time, TC ∼ L/u0, is less
than the memory time, TM ∼ Td/(1 − γ/γF) [32]. This crite-
rion implies that in crossing its domain, a walker is always
navigating a background potential of its own making. In the
high-memory limit, the quantized periodic orbital states desta-
bilize, and chaotic switching between these weakly unstable
states leads to the emergence of multimodal, quantum-like
statistics.

The second paradigm for the emergence of quantum-like
statistics was identified in the hydrodynamic quantum ana-
log of Friedel oscillations [18]. A number of prior stud-
ies identified the walkers’ tendency to execute in-line speed
oscillations with a wavelength comparable to the Faraday
wavelength. Specifically, such oscillations were first reported
in the experiments of Wind-Willassen et al [168], and are also
apparent in the drop speed maps reported in the corral exper-
iments [10, 13] (figures 10(b) and 11(b)). In-line speed oscil-
lations were characterized experimentally and numerically by
Bacot et al [215], whose simulations suggest that they arise in a
relatively broad region of parameter space. The statistical sig-
nature associated with such oscillations is readily apparent in
the analog Friedel oscillations [18], but may also play a role in
other settings, including wall reflection [203, 208], tunneling
[9] and large corrals [10, 13]. The prevalence of in-line oscil-
lations in the context of a generalized pilot-wave theory has
recently been examined by Durey et al [276]. Finally, in-line
oscillations with the de Broglie wavelength and the Compton
frequency, reminiscent of the Zitterbewegung motion of early
models of quantum dynamics [143, 145] are a robust feature

32



Rep. Prog. Phys. 84 (2020) 017001 Review

of HQFT [88, 89], suggesting the possibility of an analogous
dynamical feature on the microscopic scale.

The third such paradigm relies on the droplet interacting
with its wave field in such a way as to execute a random walk
with a step length comparable to λF, resulting in an effec-
tive diffusivity D ∼ UλF, where U is the mean walker speed.
This type of diffusive motion was first identified, in simula-
tions of walkers in a corral, by Gilet [11, 12], who noted the
similarity to the behavior of quantum particles in Nelson’s
stochastic mechanics [83]. Such motion has since been cap-
tured in high-memory simulations of free walkers [216] and
one-dimensional walker motion in the presence of a confin-
ing spring force [35]. Such episodic motion has also been
reported in experimental investigations of walkers above the
Faraday threshold [157], and for subcritical two-frequency
vibrational forcing [200]. The emergent diffusive behavior
was also seen to accompany the chaotic ‘jittering’ mode cap-
tured theoretically by Durey et al [276] in their exploration of
the generalized pilot-wave framework, and similar dynamics
were reported by Dagan and Bush [88] in their simulations of
HQFT.

The hydrodynamic pilot-wave system is extraordinarily
rich, characterized by many disparate timescales ranging from
a fraction of a second to hours, all of them accessible in the
laboratory. First, the Faraday period TF is the timescale of
wave generation, twice the bath’s driving period. Second, the
memory time TM prescribes the longevity of the pilot wave.
Third, there is the translation timescale, TH = λF/u0; fourth,
that of the drop’s horizontal acceleration, TA. For closed sys-
tems of extent L, there are three additional timescales: the
crossing time TC = L/u0, the timescale of establishment of
the mean pilot-wave field, and the timescale of statistical
relaxation, beyond which the system has converged to a sta-
tistically steady state. These last two both scale with the
memory time, but the latter is typically an order of mag-
nitude larger than the former [266]. One can also define a
recurrence time TR, the time taken for a particle to cross its
own path. While TR/TC = 1 for one-dimensional motion, it
will increase dramatically in two and three dimensions. One
can well imagine that TR � TM is a requirement for quan-
tum behavior, one that will be progressively more difficult
to satisfy in higher dimensions. Note that various theoretical
models have emerged in the limits where there is a dispar-
ity between these various timescales. For example, the stro-
boscopic model (12) [205] is based on the assumption that
TF � TH, the boost equation (21) [229] that TM � TA and the
Rayleigh oscillator model [232] that TM � (TA, TH). Notably,
the great majority of these timescales are absent from the stan-
dard quantum mechanical description of microscopic systems,
where particle dynamics is not described. The exploration
of the various asymptotic limits in the context of a general-
ized pilot-wave framework poses a substantial mathematical
challenge.

The limitations of the hydrodynamic system are associated
with two physical effects that are not features of de Broglie’s
pilot-wave theory, specifically, pilot-wave damping and parti-
cle inertia. The limiting influence of viscosity is immediately
clear from the fact that the quantum phenomena invariably

arise in the high-memory limit, when the pilot wave is most
persistent. The limitation imposed by finite droplet inertia is
suggested by the stability of spin states [27] and the instability
to in-line oscillations [276] being enhanced in the small-inertia
limit. The inviscid, low inertia limit is currently being explored
in the walker-inspired HQFT [88, 89].

10.2. Reinterpretation

Hydrodynamic quantum analogs has provided a perspective
that allows for a classical reinterpretation of at least some
of the quantum language. The walker system represents a
classical realization of wave–particle duality as envisaged by
de Broglie, wherein a real object has both wave and par-
ticle components. In the walker system, this duality is the
root of both the emergent quantized dynamical states and
the structured statistical forms. The superposition of statis-
tical states reflects the coexistence of several weakly unsta-
ble periodic dynamical states [16, 29], a notion that is also
prevalent in periodic orbit theory [257, 258]. Statistical pro-
jection effects may be induced by favoring one dynamical state
over another [13].

There is no intrinsic uncertainty in the walker system: it
is a classical system that evolves according to deterministic
laws. Nevertheless, in many settings, the dynamics is chaotic,
so predictability is lost. de Broglie’s interpretation of the quan-
tum uncertainty relations is that they are an expression of an
unresolved dynamics on the Compton scale [138]. Tadrist et al
[49] proposed that the lack of predictability in the walker sys-
tem may likewise be rooted in uncertainty in the fast timescale
of droplet bouncing. However, such indeterminacy is not a pre-
requisite for chaos, which is also apparent in simulations of the
stroboscopic model [219, 221, 255], where vertical dynamics
are not explicitly treated. We note further that uncertainty in
the walker system can be introduced artificially through suit-
ably intrusive measurement. Couder and Fort [2] pointed out
that the deflection of a walker passing through a slit could
be interpreted in terms of an effective position–momentum
uncertainty relation for the walkers: when a walker is con-
fined spatially, the momentum in the direction of confinement
becomes uncertain due to walker deflection prompted by the
distortion of its pilot wave. The emergent physical picture is
thus that uncertainty is not intrinsic to the walker system, but
may emerge as an expression of its chaotic dynamics, or in
response to intrusive measurement. In the absence of intrinsic
uncertainty in this coupled wave–particle system, the notion
of complementarity may be seen as an unnecessary conceit.

The corral studies place in stark relief the non-problem of
wave-function collapse as it pertains to the walker system. If
the histogram presented in figure 10(c) were indeed a complete
description of the system, then the act of observation revealing
the droplet to be at a specific point would cause the spatially
extended wave function to collapse instantaneously to a point.
Acknowledgmentof an underlying dynamics obviates the need
to fret over the superluminal nature of wave-function collapse.
Indeed, in this particular instance, the analog of quantum non-
locality might more sensibly be termed statistical nonlocality
[289].
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The walker system has also provided a number of exam-
ples where wave-mediated forces give rise to apparent action
at a distance. Through their subtle influence on the pilot wave
field, topographic anomalies such as submerged circular pil-
lars [172] and wells [18] were seen in section 8.4 to give rise
to nonlocal lift forces that caused the drops to follow spiral
paths. In the walker double-slit experiment [2], the presence of
the second slit was seen to have an influence on droplets pass-
ing through the first [23]. Without awareness of the dynamical
significance of the pilot-wave field and the itinerant hereditary
droplet dynamics, such forces appear to be spatially nonlocal.
Richard Feynman insisted on the impossibility of understand-
ing how an electron’s path can be altered by the presence of
a slit through which it does not pass [289]. The plausibility of
the answer proposed some 60 years earlier by de Broglie has
received support from the bouncing droplet system. The elec-
tron would interact with both slits if it were dressed by a wave
field that spans and is influenced by both slits.

Another means of misinferring a spatially nonlocal dynam-
ics in the walker system was illustrated by Durey et al [35],
who demonstrated the nonlocal form of the mean-pilot-wave
potential. Specifically, they showed that for 1D walker motion
in the presence of a central spring force, in the high-memory
limit the instantaneous pilot-wave field converges to its mean,
whose form depends on the walker’s statistical distribution.
Thus, in this instance, local wave-mediated forces engender
an effect on the walking droplets analogous to the quantum
potential in Bohmian mechanics. However, because the instan-
taneous wave-field differs from the mean, the drop is also
subjected to an additional force that sidesteps the nonlocal-
ity of Bohmian mechanics while simultaneously precluding
the need to invoke a stochastic background forcing. This rea-
soning would seem to lend further credence to the view that
Bohmian mechanics describes a mean quantum dynamics,
an inference supported by the agreement between Bohmian
descriptions of slit diffraction [120] and recent experiments on
weak measurement [121].

Taken as a collective, studies of bouncer and walker lattices
[38, 39, 50–55, 234, 240, 242] forge new connections between
the walker system and the field of crystal vibrations, connec-
tions to be clarified and deepened through analysis of differ-
ent crystal arrangements. Studies of one-dimensional coupled
walker oscillators [234] and two-dimensional spin lattices [55]
have revealed the possibility of wave-mediated forces giving
rise to long-range synchronization and collective order. The
precise relation between classical correlation, statistical indis-
tinguishability [234] and entanglement in the walker system is
the subject of ongoing investigation. Particular attention will
be given to the notion that, just as nonlocality may be an
expression of hereditary pilot-wave dynamics, entanglement
may result from two particles having a common memory of
a wave-mediated interaction that synchronized their internal
clocks.

10.3. Philosophy

The walker system reminds us that much of the inscrutabil-
ity of quantum mechanics and its paradoxes are forced upon

us only if we insist that the statistical description of quantum
particles is complete. The walker system suggests a physi-
cal picture that is compatible with the ensemble interpreta-
tions of quantum mechanics [102, 103]; however, it extends
beyond the realm of interpretation in suggesting a form for the
underlying dynamics of individual particles. Comparison of
the walker system with Bohmian mechanics and de Broglie’s
original mechanics indicates that its dynamical richness ren-
ders it closer to the latter than the former. However, pilot-wave
hydrodynamics has buttressed de Broglie’s conception by pro-
viding a tangible example of a vibrating particle creating a
quasi-monochromatic pilot-wave field, and being guided by
that wave in such a way as to generate quantum-like statistics.
The physical picture suggested by pilot-wave hydrodynamics,
as engendered in HQFT [88, 89], comes replete with a mecha-
nism for particle-induced wave generation, and sidesteps the
need to invoke either a nonlocal potential or a stochastic
background field.

While one remains free to consider the statistical descrip-
tion of quantum mechanics to be sufficient, it is becoming
increasingly evident that this description is not incompatible
with the notion of microscopic particles following trajectories.
An argument against the development of a complex theory of
quantum dynamics of the form suggested by the walker sys-
tem is that it is not worth the effort. Occam’s razor is often
invoked: Why complicate the simple statistical theory of quan-
tum mechanics with a dynamical theory that will undoubtedly
be complicated and difficult to implement? One does well to
remember that such an effort would be supported by an analo-
gous philosophical Occam’s razor: the development of a ratio-
nal quantum dynamics would allow us to dispense with the
very notion of quantum interpretation, and restore a rational
view of the microscopic world.
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Thesis Migration—université en cours d’affectation
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