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A new wrinkle on liquid sheets: Turning the
mechanism of viscous bubble collapse upside down

Alexandros T. Oratis!, John W. M. Bush?, Howard A. Stone3, James C. Bird'*

Viscous bubbles are prevalent in both natural and industrial settings. Their rupture and collapse may be
accompanied by features typically associated with elastic sheets, including the development of radial
wrinkles. Previous investigators concluded that the film weight is responsible for both the film collapse
and wrinkling instability. Conversely, we show here experimentally that gravity plays a negligible role:
The same collapse and wrinkling arise independently of the bubble’s orientation. We found that surface
tension drives the collapse and initiates a dynamic buckling instability. Because the film weight is
irrelevant, our results suggest that wrinkling may likewise accompany the breakup of relatively
small-scale, curved viscous and viscoelastic films, including those in the respiratory tract responsible

for aerosol production from exhalation events.

rinkling of thin sheets appears in a

variety of settings across a wide range

of length scales, including those in

neutrophil phagocytosis (), in the

development of the epithelial tissue
responsible for fingerprints (2), and in sub-
duction zones in plate tectonics (3). Generally
speaking, sheets wrinkle because they re-
quire less energy to buckle than to compress
when they are subjected to compressive stresses
(4). Most recent studies have focused on un-
derstanding the bending deformations that
occur when a thin elastic sheet is stretched
(5, 6), poked (7, 8), or wrapped around a curved
object (9, 10); however, viscous liquids can also
buckle (11-13). A visually prominent example
is the “parachute instability” that develops
spontaneously when a bubble rising in a vis-
cous liquid reaches the surface and ruptures
(Fig. 1). Bubbles collect at the surface of vis-
cous liquids during processes including glass
manufacturing, spray painting (74), vitrifica-
tion of radioactive waste (15), and volcanic
eruptions (I6). Having surfaced, the bubble
consists of a thin liquid film in the form of a
spherical cap that is supported by the gas
trapped inside it (Fig. 1A). When the bubble
ruptures, the liquid film develops a growing
hole that allows the trapped gas to escape.
Without the support of this gas, the forces on
the liquid film are unbalanced, causing bub-
ble collapse and the development of radial
wrinkles around the bubble periphery. Pre-
vious investigations have concluded that
the wrinkles develop as a consequence of the
weight of the collapsing thin film and the
geometric constraint imposed by the opening
hole (17, 18). We demonstrate here that the
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wrinkling instability relies on neither gravity
nor the presence of the hole.

The development of wrinkles from a collaps-
ing bubble with radius R = 1 cm on a silicone
oil bath with viscosity u = 10° ¢P is illustrated
in Fig. 1B. The wrinkles emerged in an iso-
lated annular region near the bubble’s edge,
when the bubble height Z reached a distance
of approximately Z/R ~ 0.6 from the bath’s
surface. Before hole formation, the equilib-
rium shape of a bubble at the air-liquid in-
terface is established by the balance between
the pressure excess inside the bubble, AP,
and a combination of gravitational and ca-
pillary forces (19). Because the bubble radius
in this example is much larger than the ca-
pillary length (y/pg)”? = 1 mm, where y is the
surface tension, p the liquid density, and g

the acceleration due to gravity, the bubble
extends substantially beyond the bath sur-
face and forms a hemisphere. Gravity drives
drainage in the thin hemispherical film,
causing the bubble walls to thicken toward
the base (17). Puncturing the film generates a
hole and prompts the film retraction from
the point of rupture, driven by surface ten-
sion and the local curvature of the hole’s rim
(20-22). In addition, puncturing the film
equilibrates the pressure across the inter-
face, causing AP — 0. The presence of the
hole thus leaves the capillary and gravita-
tional forces acting on the film unbalanced,
ultimately causing the bubble collapse. Con-
sidering a surface element dA on the spher-
ical cap, the gravitational force acting on
the film thickness % scales as F, ~ phgdA,
whereas the capillary force pulling the film
inward scales as F, ~ (4y/R)dA (Fig. 1A). For
a centimeter-sized bubble with a character-
istic thickness of 2 ~ 10 um, capillary forces
(F.) dominate gravitational forces (F,) by a
factor of F,/F, ~ 4y/(pgRh) = 80. This scaling
argument indicates that the collapse process
is dominated by surface tension rather than
gravity.

To test this hypothesis, we conducted an
identical experiment after turning the bub-
ble upside down (Fig. 1C). The approach is pos-
sible because the liquid is sufficiently viscous
that the experiments can be conducted before
the silicone oil flows out of the inverted con-
tainer. We first prepared the bubble right-side
up, and then we rapidly rotated the sample
and ruptured the bubble within seconds. When
inverted, the bubble film (thickness & =~ 2.4 um)
maintained its shape and thickened at the

Fig. 1. Collapse of a viscous
bubble film upon rupture. (A) If
a hole develops in the surface of
a bubble resting on a liquid
surface, then the pressurized air
escapes, leaving the gravitational

120 ms

7 August 2020

and surface tension forces
unbalanced. (B) An air bubble
with radius R = 1 ¢cm at the
surface of a viscous silicone oil
bath collapses and its height Z(t)
decreases after rupture. As the
bubble collapses, wrinkles appear
along its periphery. (C) When
the bubble is rapidly turned
upside down and ruptured, it
collapses in a similar fashion.

(D and E) Rotating the sample
such that its base is parallel to
the direction of gravity g results
in a similar collapse (D) and
wrinkles still appear (E).
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apex at a rate of ~10 nm/s; therefore, the film
geometry does not vary appreciably during
either the rotation or inversion (23). If grav-
ity and viscosity were the dominant forces,
then the inverted bubble would elongate down-
ward, as previously demonstrated in simu-
lations (24). Instead, the inverted bubble
retracted upward against the force of gravity,
and wrinkles formed again during the final
stages of bubble collapse (Fig. 1C). The di-
rection of motion clearly demonstrates that
gravity does not drive the collapse; however,
it does not rule out the possibility that it is
involved in the wrinkles. By repeating the
experiment with the bubble on its side (Fig.
1D), we found that wrinkles still appeared
(Fig. 1E). We thus conclude that gravity plays
a negligible role during bubble collapse and
wrinkling instability.

To understand the extent to which surface
tension drives bubble collapse, we measured
the maximum distance of the bubble film Z(t)
from the bath surface. From the evolution of
the bubble height with time, we can extract a
collapse speed V' = dZ/dt that will dictate the
characteristic time scale of collapse. If surface
tension drives the collapse, then it would be
expected that the speed would depend on the
competing capillary and viscous forces. In-
deed, balancing the capillary force yR with
the viscous force iyl yields a characteristic
velocity V' ~ yR/uho, where hy is the initial
film thickness at the apex (23). Therefore, we
expect the evolution of the bubble height Z
and the associated collapse speed V' to de-
pend on both the viscosity and thickness of
the film. We tested this conjecture through
systematic experiments in which we used
silicone oils with viscosities of 100, 800, and
3000 Pa « s and also varied the thickness of
the film at rupture. Once punctured, the bub-
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ble collapsed, decelerating as it reached the
bath surface (Fig. 2A). From the high-speed
images, we calculated a representative veloc-
ity V at the onset of wrinkling by averaging
the downward speed dZ/d¢ over the range
0.6 < Z/R < 1 (23). Increasing the viscosity of
the silicone oil slowed down the collapse. As
expected, the data collapse when the normal-
ized height Z/R is plotted against the dimen-
sionless time VZ/R (Fig. 24, inset).

To gain further insight, we determined the
rupture thickness at the bubble apex, h,, by
combining optical techniques with the grav-
itational drainage theory of Debrégeas et al.
(I7). Under a monochromatic light, concen-
tric interference fringes could be seen to em-
anate from the bubble’s apex (Fig. 2B, inset).
The circles are evidence of axisymmetric drain-
age, and the rate at which they appear can
be measured with thin-film interferometry to
estimate the thickness at the apex (23). Thin-
ner bubbles collapsed faster (Fig. 2B), as ex-
pected from the predicted scaling V'~ yR/uhg
(solid line). We acknowledge sizable devia-
tions of the experimental data from this simple
scaling, especially for the 100 Pa ¢ s silicone oil
bubbles. Nevertheless, the overall trends sup-
port the hypothesis that the bubble collapse
is driven by surface tension, in which case the
characteristic time scale R/V ~ pho/y becomes
independent of the bubble radius.

The model of da Silveira et al. (18) suggests
that gravity and viscosity lead to wrinkling in
such a way that the number of wrinkles scales
as 1 ~ (pgRy>1./uh®)"?, with Ry being the ra-
dius of the hole and . the time it takes for the
film to collapse. The radius of the hole grows
rapidly at early times but slows down suffi-
ciently to be adequately modeled as a constant
during the instability. This model thus claims
that the number of wrinkles depends strongly
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Fig. 2. Effect of bubble film thickness and viscosity on collapse dynamics. (A) Measured bubble
heights Z versus time t for each orientation and viscosity . Inset: The normalized bubble heights Z/R fall
onto the same curve when plotted against the dimensionless time Vt/R, highlighting the strong dependence
of the collapse speed V on viscosity but not on gravity. (B) The collapse speed V is inversely proportional to
the measured film thickness hg, consistent with the notion that surface tension y drives the collapse. In
particular, the experimental results (symbols) suggest that uV/y = 0.1(ho/R)™ (solid line). Here, ho is the
thickness at the bubble apex, which is estimated using thin-film interferometry (inset).
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on the size of the hole, with no wrinkles pre-
dicted if Ry = 0. To investigate the role of the
hole in the development of wrinkles, we per-
formed experiments by drilling a small open-
ing at the bottom of the petri dish in which the
silicone oil was placed. We inserted a narrow
tube into the opening, injected air to create
the bubble, and then sealed the opening with a
valve. Once the bubble had reached the surface
to create a hemispherical dome, we opened the
valve to allow the pressurized air inside the
bubble to escape. When the air escaped, AP — 0,
causing the capillary force from the curved
surface to be unbalanced and the bubble to
collapse (Fig. 3A). Wrinkles again appeared
at the final stages of the collapse, indicating
that the hole plays a role in wrinkling only
by eliminating the pressure difference across
the bubble surface (Fig. 3B). We thus need to
revisit the wrinkling dynamics to deduce a
consistent physical picture for the wrinkling
mechanism.

We propose a mechanism in which the wrin-
kles result when the crushing dynamics of the
spherical film lead to a hoop compression
that overcomes the smoothing effects of sur-
face tension. Here, the capillary-driven col-
lapse induces a radial velocity in a cylindrical
reference frame that scales as V,. ~ V'~ yR/uho
(Fig. 3A). This radial velocity leads to com-
pression rates €, and €y in the radial and
azimuthal directions, respectively, for the
7,0 coordinate system defined in Fig. 3C. For a
Newtonian fluid, this compression generates
both a radial stress 6, and hoop stress Ggg,
which can be related to the rate of radial com-
pression through a Trouton model (25), yield-
ingG,, ~ Ggg ~ 4uhV,/R for a film with thickness
h. Here, the overbar denotes that the 3D stress
has been integrated over the thickness, lead-
ing to a 2D stress with dimensions of force
per length. It follows from our scaling for V,
that 6, ~ Gee ~ YR/ho When spatial variation
in V. is neglected. Thus, we expect the crush-
ing kinematics to generate larger compres-
sive stresses at an outer annulus (Fig. 3A, red
ring) than at the center because of the larger
local film thickness. Regardless of the source
of these compressive stresses, surface ten-
sion imparts a tensile stress to the liquid sheet
that acts to minimize the surface area (Fig.
3D). We believe that the competition of these
tensile and compressive stresses is respon-
sible for the location of the wrinkling pat-
tern at a distance L from the center (Fig. 3B).
Because the thickness profile is unknown,
it is not possible to make a quantitative
deduction of the stress field, as would be
needed to predict the exact position of the
wrinkling pattern. The sheet should remain
smooth if surface tension exceeds the com-
pressive stresses throughout the sheet. How-
ever, the presence of wrinkles indicates that
at a sufficient distance from the center, the
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compressive stresses dominate those acting
to keep the sheet smooth. This behavior is
analogous to 1D viscous sheets buckling when
the rate of compression is faster than the
smoothing effect of surface tension (71, 13).
To sidestep the theoretical challenges posed
by the thickness variation, we approximate the
wrinkled region as an annulus of constant
thickness A.

To model the development of the wrinkles, we
deduced a dynamic version of the first Foppl-
von Karman equation (23, 26, 27), which de-
scribes the normal force balance along the
sheet’s center line (r, 6, t) as follows (Fig. 3D):

phaic + —V‘*(m) G A

ot? ot ™ or?
1_ [0 0
Loo(Z54r%) ame

where V* is the biharmonic operator and V?
the Laplacian. Motivated by the observation
of multiple radial wrinkles, we sought solu-
tions of the form {(7, 6, £) = f(r)exp(wt + in0O).
Here, f(r) determines the radial variation of
the wrinkle amplitude, o is the wrinkle growth
rate, and n the number of wrinkles. In terms of
these parameters, Eq. 1 becomes:

2

d 2
[((m + 27)% + (G0 + 27( — = Z—Q)f 0

[pho?’f] +

The three square-bracketed terms in Eq. 2
correspond, respectively, to inertia, bending,
and compression. Given the high viscosity
of the film, one might be tempted to neglect
inertial effects. However, the rate of wrinkle
development, %, is ~10 ms (Fig. 3E), suffi-
ciently short for the inertial term to become
non-negligible. Indeed, for a typical thickness
h = 10 pym, we found the ratio of the inertial
and radial compression terms to be of order
phR?w?/y ~ 1, justifying the inclusion of iner-
tia in Eq. 1.

‘When considering axisymmetric film effects,
the radial stress G,,- can have a pronounced role
in wrinkling caused by the release of azimuthal
stress Gy as the wrinkles develop (6). As the
dominant stress changes from azimuthal to
radial, the dependence on 7 in the dominant
terms of Eq. 2 also changes. Scaling relation-
ships for the growth rate ® and the number of
wrinkles 7 can be obtained from a dominant
balance. Specifically, the inertial term scales
as phw?, the azimuthal bending as wn*uk®/R*,
and the radial stress component as y/Rz. The
simultaneous balance of these three dominant
terms yields a growth rate ! ~/phR? /y and
the number of wrinkles 7 ~ (2yR*/ouh®)"*, or
equivalently:

Fig. 3. Mechanism for bubble
collapse without rupture.

(A) Schematic illustrating the
experimental setup used to col-
lapse the bubble without rupture.
As the bubble collapses, the vis-
cous film obtains a radial velocity
V. proportional to the collapse
speed V. (B) Wrinkles can still
appear without the presence of
the hole at a radial distance

L from the center. (C) Near the
periphery of the bubble, the radial
and azimuthal compression rates,
€, and €gp, respectively, can

be related to the radial velocity V..
(D) The azimuthal rate of com-
pression leads to compressive
stresses &, and Gge, Which tend to
bend the sheet's centerline (r, 8, t) despite being opposed by surface tension vy, which acts to smooth the
surface. (E) As the bubble collapses, the wrinkles grow and develop within ~25 ms.
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Fig. 4. Comparison of data and model predictions. (A) Number of wrinkles n observed on bubbles of various
orientations and viscosities is in satisfactory agreement with the scaling of Eq. 3. Wrinkles on blown glass
(inset) are also consistent with this trend, although the 1D hoop model (dashed line) is expected to be more
appropriate for this nearly cylindrical geometry. (B) Top-view images of wrinkled films for: (i) viscosity

1 = 3000 Pa « s and aspect ratio h/R = 1.3 « 107, (ji) u = 3000 Pa * s and h/R = 7.3 « 107 and (jii) u = 100 Pa = s
and h/R = 7.3 « 107*. The radial extent of the wrinkles for the thinnest films is limited by the size of the
hole, whereas the location L of wrinkles generally increases as the film viscosity decreases. (C) Our analysis
predicts that inertia is negligible only when p/+/pyR > (R/h)*? (blue region). Because all available data

(symbols) are outside of this regime, we incorporated inertial effects into our model. The analysis predicts that
there is insufficient growth time for wrinkles to develop when p/+/pyR < (R/hY? (gray region), consistent
with no wrinkles being observed at the lowest film viscosity (white triangles). Here, the thickness h is computed
using the collapse speed V through the relation h = yR/uV.
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To test the scaling of Eq. 3 for the number
of wrinkles, we conducted systematic experi-
ments in which we varied the bubble viscos-
ity and orientation while keeping the bubble
size confined to the range 0.8 < R < 2 cm.
We also repeated the experiments that in-
volved evacuation rather than puncture of
the bubble. We estimated the wrinkled film
thickness & using the collapse time R/V =
uh/y, which yields a result that is approxi-
mately an order of magnitude larger than
the apex thickness A, (Fig. 2C). Furthermore,
we performed additional experiments with
thicker structures by extracting blown molten
glass from a furnace and allowing the trapped
air to escape through the glass-blowing pipe
(23). As the air escaped, the blown glass col-
lapsed and adopted a wrinkled shape with
thickness 2 = 200 um (Fig. 44, inset).

The experimental results for the number of
wrinkles are illustrated in Fig. 4A. Depending
on the initial radius, thickness, and viscosity,
the number of wrinkles can range between
eight and 96. The experimental results (data
points) are in fair agreement with our theoret-
ical prediction (solid line) from Eq. 3. A lim-
itation of our model applies to the data with
the thinnest films. For these bubbles, the col-
lapse was so abrupt that the wrinkling pattern
lost its symmetry and the wrinkles spanned
the entirety of the bubble (Fig. 4Bi). In addi-
tion, one should be cautious when interpret-
ing the data for the 100 Pa « s bubble films
given the discrepancy evident in Fig. 2B. This
discrepancy may stem in part from variations
in the thickness profile, which may explain the
larger hole size and wrinkle location L ob-
served at this lower viscosity (Fig. 4, Bii and
Biii). Note that our analysis is based on the
assumption that the wrinkle location L is pro-
portional to the bubble radius and does not
account for any dependence of L on film thick-
ness or viscosity.

Our model assumes that the wrinkles de-
velop on an axisymmetric portion of a spher-
ical shell, which may be less appropriate
for the blown glass. Specifically, because
the molten glass was constantly rotated as
it was worked into a thin film, the molten
glass bubble (Fig. 4A, inset) assumed the
form of a cylindrical shell with roughly hemi-
spherical caps before collapse, and a wrinkled
cylinder thereafter. For this case, in solving
Eq. 2, we considered a hoop with radius R,
where the amplitude f is approximately con-
stant. This approach yields the 1D dynamic
buckling dispersion relation pho® + auk’n®/
3R* - Gogn*/R? = 0 (23). Linear stability anal-
ysis revealed that the most unstable wrinkling
pattern is then associated with a growth

(3)
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rate 0™ ~ (y*/puh®)”® and a number of wrin-
Kles n™ ~ [(R/R)Y’(pyR/u>]1YS, results analo-
gous to those of Howell (26). Although the
number of experiments performed with
blown glass was insufficient to draw a de-
finitive conclusion, we expect the 1D scaling
(Fig. 4A, dotted line) to be more appropri-
ate for this nearly cylindrical geometry. The
2D disk scaling of Eq. 3 is more convincing
for all of the data involving the spherical cap
bubble geometry.

A prediction of our model is that wrinkling
will not occur for all conditions. In both the 1D
and 2D scaling, inertia played a critical role in
determining the number of wrinkles. Indeed,
in both cases, inertia was relevant when n > 1,
or equivalently /R < (u/+/pyR) *°, a criterion
satisfied by all of our data (Fig. 4C). For the 1D
model, had inertia been neglected, the result-
ing buckled profile would be the equivalent of
Euler buckling for a straight beam (23). Inertia
also appears to dominate the instability growth
rate : We found no evidence that the viscosity
influenced this growth rate time, consistent
with our model (23). For wrinkles to develop,
the time scale for them to grow, y/phR? /vy, must
be less than that of collapse, ui/y. We thus
predict that no wrinkling will occur when A/R <
(u/v/pYR) 2 To test this hypothesis, we ruptured
bubbles formed from a silicone oil with vis-
cosity u = 10 Pa « s (Fig. 4C, white triangles)
and indeed found that they did not support
any wrinkles.

We have demonstrated that surface ten-
sion rather than gravity drives the collapse
of viscous surface bubbles after rupture and
is likewise responsible for the parachute in-
stability. The capillary-driven collapse initiates
a dynamic buckling instability prescribed
by the simultaneous interplay of inertia, com-
pression, and viscous bending of the retract-
ing film. Our results suggest that analogous
wrinkling is likely to arise on relatively small,
curved films, where the effects of gravity are
entirely negligible. Equation 1, governing the
number of wrinkles, is the viscous counter-
part of the elastic Foppl-von Kirman equa-
tions used to study the deformation of elastic
plates and shells. Our system thus presents an
example of viscous sheets exhibiting elastic-
like instabilities when rapidly compressed.
On the basis of the similar roles played by
viscosity and elasticity in these two systems,
we can foresee extending our model to sys-
tems involving viscoelastic films, in which
viscoelastic, capillary, and inertial effects all
contribute to the dynamics. For instance, the
exhalation of potentially pathogen-bearing
aerosols has been linked to the breakup of
thin bubble films in the viscoelastic fluid lining
of the respiratory tract (28, 29). Our deduc-
tion that surface tension alone may prompt
buckling during viscous film rupture and re-
traction suggests the possibility of these films

7 August 2020

folding and entrapping air, thereby enriching
the aerosolization process.
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