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FLUID MECHANICS

A new wrinkle on liquid sheets: Turning the
mechanism of viscous bubble collapse upside down
Alexandros T. Oratis1, John W. M. Bush2, Howard A. Stone3, James C. Bird1*

Viscous bubbles are prevalent in both natural and industrial settings. Their rupture and collapse may be
accompanied by features typically associated with elastic sheets, including the development of radial
wrinkles. Previous investigators concluded that the film weight is responsible for both the film collapse
and wrinkling instability. Conversely, we show here experimentally that gravity plays a negligible role:
The same collapse and wrinkling arise independently of the bubble’s orientation. We found that surface
tension drives the collapse and initiates a dynamic buckling instability. Because the film weight is
irrelevant, our results suggest that wrinkling may likewise accompany the breakup of relatively
small-scale, curved viscous and viscoelastic films, including those in the respiratory tract responsible
for aerosol production from exhalation events.

W
rinkling of thin sheets appears in a
variety of settings across a wide range
of length scales, including those in
neutrophil phagocytosis (1), in the
development of the epithelial tissue

responsible for fingerprints (2), and in sub-
duction zones in plate tectonics (3). Generally
speaking, sheets wrinkle because they re-
quire less energy to buckle than to compress
when they are subjected to compressive stresses
(4). Most recent studies have focused on un-
derstanding the bending deformations that
occur when a thin elastic sheet is stretched
(5, 6), poked (7, 8), or wrapped around a curved
object (9, 10); however, viscous liquids can also
buckle (11–13). A visually prominent example
is the “parachute instability” that develops
spontaneously when a bubble rising in a vis-
cous liquid reaches the surface and ruptures
(Fig. 1). Bubbles collect at the surface of vis-
cous liquids during processes including glass
manufacturing, spray painting (14), vitrifica-
tion of radioactive waste (15), and volcanic
eruptions (16). Having surfaced, the bubble
consists of a thin liquid film in the form of a
spherical cap that is supported by the gas
trapped inside it (Fig. 1A). When the bubble
ruptures, the liquid film develops a growing
hole that allows the trapped gas to escape.
Without the support of this gas, the forces on
the liquid film are unbalanced, causing bub-
ble collapse and the development of radial
wrinkles around the bubble periphery. Pre-
vious investigations have concluded that
the wrinkles develop as a consequence of the
weight of the collapsing thin film and the
geometric constraint imposed by the opening
hole (17, 18). We demonstrate here that the

wrinkling instability relies on neither gravity
nor the presence of the hole.
The development of wrinkles from a collaps-

ing bubble with radius R = 1 cm on a silicone
oil bath with viscosity m ≈ 106 cP is illustrated
in Fig. 1B. The wrinkles emerged in an iso-
lated annular region near the bubble’s edge,
when the bubble height Z reached a distance
of approximately Z/R ≈ 0.6 from the bath’s
surface. Before hole formation, the equilib-
rium shape of a bubble at the air–liquid in-
terface is established by the balance between
the pressure excess inside the bubble, DP,
and a combination of gravitational and ca-
pillary forces (19). Because the bubble radius
in this example is much larger than the ca-
pillary length (g/rg)1/2 ≈ 1 mm, where g is the
surface tension, r the liquid density, and g

the acceleration due to gravity, the bubble
extends substantially beyond the bath sur-
face and forms a hemisphere. Gravity drives
drainage in the thin hemispherical film,
causing the bubble walls to thicken toward
the base (17). Puncturing the film generates a
hole and prompts the film retraction from
the point of rupture, driven by surface ten-
sion and the local curvature of the hole’s rim
(20–22). In addition, puncturing the film
equilibrates the pressure across the inter-
face, causing DP → 0. The presence of the
hole thus leaves the capillary and gravita-
tional forces acting on the film unbalanced,
ultimately causing the bubble collapse. Con-
sidering a surface element dA on the spher-
ical cap, the gravitational force acting on
the film thickness h scales as Fg ~ rhgdA,
whereas the capillary force pulling the film
inward scales as Fc ~ (4g/R)dA (Fig. 1A). For
a centimeter-sized bubble with a character-
istic thickness of h ≈ 10 mm, capillary forces
(Fc) dominate gravitational forces (Fg) by a
factor of Fc/Fg ~ 4g/(rgRh) ≈ 80. This scaling
argument indicates that the collapse process
is dominated by surface tension rather than
gravity.
To test this hypothesis, we conducted an

identical experiment after turning the bub-
ble upside down (Fig. 1C). The approach is pos-
sible because the liquid is sufficiently viscous
that the experiments can be conducted before
the silicone oil flows out of the inverted con-
tainer. We first prepared the bubble right-side
up, and then we rapidly rotated the sample
and ruptured the bubblewithin seconds.When
inverted, the bubble film (thickness h ≈ 2.4 mm)
maintained its shape and thickened at the
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Fig. 1. Collapse of a viscous
bubble film upon rupture. (A) If
a hole develops in the surface of
a bubble resting on a liquid
surface, then the pressurized air
escapes, leaving the gravitational
and surface tension forces
unbalanced. (B) An air bubble
with radius R = 1 cm at the
surface of a viscous silicone oil
bath collapses and its height Z(t)
decreases after rupture. As the
bubble collapses, wrinkles appear
along its periphery. (C) When
the bubble is rapidly turned
upside down and ruptured, it
collapses in a similar fashion.
(D and E) Rotating the sample
such that its base is parallel to
the direction of gravity g results
in a similar collapse (D) and
wrinkles still appear (E).
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apex at a rate of ~10 nm/s; therefore, the film
geometry does not vary appreciably during
either the rotation or inversion (23). If grav-
ity and viscosity were the dominant forces,
then the inverted bubble would elongate down-
ward, as previously demonstrated in simu-
lations (24). Instead, the inverted bubble
retracted upward against the force of gravity,
and wrinkles formed again during the final
stages of bubble collapse (Fig. 1C). The di-
rection of motion clearly demonstrates that
gravity does not drive the collapse; however,
it does not rule out the possibility that it is
involved in the wrinkles. By repeating the
experiment with the bubble on its side (Fig.
1D), we found that wrinkles still appeared
(Fig. 1E). We thus conclude that gravity plays
a negligible role during bubble collapse and
wrinkling instability.
To understand the extent to which surface

tension drives bubble collapse, we measured
the maximum distance of the bubble film Z(t)
from the bath surface. From the evolution of
the bubble height with time, we can extract a
collapse speed V = dZ/dt that will dictate the
characteristic time scale of collapse. If surface
tension drives the collapse, then it would be
expected that the speed would depend on the
competing capillary and viscous forces. In-
deed, balancing the capillary force gR with
the viscous force mh0V yields a characteristic
velocity V ~ gR/mh0, where h0 is the initial
film thickness at the apex (23). Therefore, we
expect the evolution of the bubble height Z
and the associated collapse speed V to de-
pend on both the viscosity and thickness of
the film. We tested this conjecture through
systematic experiments in which we used
silicone oils with viscosities of 100, 800, and
3000 Pa • s and also varied the thickness of
the film at rupture. Once punctured, the bub-

ble collapsed, decelerating as it reached the
bath surface (Fig. 2A). From the high-speed
images, we calculated a representative veloc-
ity V at the onset of wrinkling by averaging
the downward speed dZ/dt over the range
0.6 < Z/R < 1 (23). Increasing the viscosity of
the silicone oil slowed down the collapse. As
expected, the data collapse when the normal-
ized height Z/R is plotted against the dimen-
sionless time Vt/R (Fig. 2A, inset).
To gain further insight, we determined the

rupture thickness at the bubble apex, h0, by
combining optical techniques with the grav-
itational drainage theory of Debrégeas et al.
(17). Under a monochromatic light, concen-
tric interference fringes could be seen to em-
anate from the bubble’s apex (Fig. 2B, inset).
The circles are evidence of axisymmetric drain-
age, and the rate at which they appear can
be measured with thin-film interferometry to
estimate the thickness at the apex (23). Thin-
ner bubbles collapsed faster (Fig. 2B), as ex-
pected from the predicted scaling V ~ gR/mh0
(solid line). We acknowledge sizable devia-
tions of the experimental data from this simple
scaling, especially for the 100 Pa • s silicone oil
bubbles. Nevertheless, the overall trends sup-
port the hypothesis that the bubble collapse
is driven by surface tension, in which case the
characteristic time scale R/V ~ mh0/g becomes
independent of the bubble radius.
The model of da Silveira et al. (18) suggests

that gravity and viscosity lead to wrinkling in
such a way that the number of wrinkles scales
as n ~ (rgRH

3tc/mh
2)1/2, with RH being the ra-

dius of the hole and tc the time it takes for the
film to collapse. The radius of the hole grows
rapidly at early times but slows down suffi-
ciently to be adequately modeled as a constant
during the instability. This model thus claims
that the number of wrinkles depends strongly

on the size of the hole, with no wrinkles pre-
dicted if RH = 0. To investigate the role of the
hole in the development of wrinkles, we per-
formed experiments by drilling a small open-
ing at the bottom of the petri dish inwhich the
silicone oil was placed. We inserted a narrow
tube into the opening, injected air to create
the bubble, and then sealed the openingwith a
valve. Once the bubble had reached the surface
to create a hemispherical dome, we opened the
valve to allow the pressurized air inside the
bubble to escape.When the air escaped,DP→0,
causing the capillary force from the curved
surface to be unbalanced and the bubble to
collapse (Fig. 3A). Wrinkles again appeared
at the final stages of the collapse, indicating
that the hole plays a role in wrinkling only
by eliminating the pressure difference across
the bubble surface (Fig. 3B). We thus need to
revisit the wrinkling dynamics to deduce a
consistent physical picture for the wrinkling
mechanism.
We propose amechanism inwhich the wrin-

kles result when the crushing dynamics of the
spherical film lead to a hoop compression
that overcomes the smoothing effects of sur-
face tension. Here, the capillary-driven col-
lapse induces a radial velocity in a cylindrical
reference frame that scales as Vr ~ V ~ gR/mh0
(Fig. 3A). This radial velocity leads to com-
pression rates e

�

rr and e
�

qq in the radial and
azimuthal directions, respectively, for the
r,q coordinate system defined in Fig. 3C. For a
Newtonian fluid, this compression generates
both a radial stress �srr and hoop stress �sqq ,
which can be related to the rate of radial com-
pression through a Trouton model (25), yield-
ing�srr ~ �sqq~4mhVr/R for a filmwith thickness
h. Here, the overbar denotes that the 3D stress
has been integrated over the thickness, lead-
ing to a 2D stress with dimensions of force
per length. It follows from our scaling for Vr

that �srr ~ �sqq ~ gh/h0 when spatial variation
in Vr is neglected. Thus, we expect the crush-
ing kinematics to generate larger compres-
sive stresses at an outer annulus (Fig. 3A, red
ring) than at the center because of the larger
local film thickness. Regardless of the source
of these compressive stresses, surface ten-
sion imparts a tensile stress to the liquid sheet
that acts to minimize the surface area (Fig.
3D). We believe that the competition of these
tensile and compressive stresses is respon-
sible for the location of the wrinkling pat-
tern at a distance L from the center (Fig. 3B).
Because the thickness profile is unknown,
it is not possible to make a quantitative
deduction of the stress field, as would be
needed to predict the exact position of the
wrinkling pattern. The sheet should remain
smooth if surface tension exceeds the com-
pressive stresses throughout the sheet. How-
ever, the presence of wrinkles indicates that
at a sufficient distance from the center, the
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Fig. 2. Effect of bubble film thickness and viscosity on collapse dynamics. (A) Measured bubble
heights Z versus time t for each orientation and viscosity m. Inset: The normalized bubble heights Z/R fall
onto the same curve when plotted against the dimensionless time Vt/R, highlighting the strong dependence
of the collapse speed V on viscosity but not on gravity. (B) The collapse speed V is inversely proportional to
the measured film thickness h0, consistent with the notion that surface tension g drives the collapse. In
particular, the experimental results (symbols) suggest that mV/g = 0.1(h0/R)

–1 (solid line). Here, h0 is the
thickness at the bubble apex, which is estimated using thin-film interferometry (inset).
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compressive stresses dominate those acting
to keep the sheet smooth. This behavior is
analogous to 1D viscous sheets buckling when
the rate of compression is faster than the
smoothing effect of surface tension (11, 13).
To sidestep the theoretical challenges posed
by the thickness variation, we approximate the
wrinkled region as an annulus of constant
thickness h.
To model the development of thewrinkles, we

deduced a dynamic version of the first Föppl–
von Kármán equation (23, 26, 27), which de-
scribes the normal force balance along the
sheet’s center line z(r, q, t) as follows (Fig. 3D):

rh
@2z
@t2

þ mh3

3
∇4 @z

@t

� �
� �srr

@2z
@r2

�

1

r2
�sqq

@2z

@q2
þ r

@z
@r

� �
¼ 2g∇2z ð1Þ

where ∇4 is the biharmonic operator and ∇2

the Laplacian. Motivated by the observation
of multiple radial wrinkles, we sought solu-
tions of the form z(r, q, t) = f (r)exp(wt + inq).
Here, f (r) determines the radial variation of
the wrinkle amplitude, w is the wrinkle growth
rate, and n the number of wrinkles. In terms of
these parameters, Eq. 1 becomes:

½rhw2f � þ wmh3

3
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dr
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� �
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� �
f

� �
¼ 0

ð2Þ
The three square-bracketed terms in Eq. 2
correspond, respectively, to inertia, bending,
and compression. Given the high viscosity
of the film, one might be tempted to neglect
inertial effects. However, the rate of wrinkle
development, w–1, is ~10 ms (Fig. 3E), suffi-
ciently short for the inertial term to become
non-negligible. Indeed, for a typical thickness
h ≈ 10 mm, we found the ratio of the inertial
and radial compression terms to be of order
rhR2w2/g ~ 1, justifying the inclusion of iner-
tia in Eq. 1.
When considering axisymmetric film effects,

the radial stress �srr can have a pronounced role
in wrinkling caused by the release of azimuthal
stress �sqq as the wrinkles develop (6). As the
dominant stress changes from azimuthal to
radial, the dependence on n in the dominant
terms of Eq. 2 also changes. Scaling relation-
ships for the growth rate w and the number of
wrinkles n can be obtained from a dominant
balance. Specifically, the inertial term scales
as rhw2, the azimuthal bending as wn4mh3/R4,
and the radial stress component as g/R2. The
simultaneous balance of these three dominant
terms yields a growth rate w�1 e ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhR2=g
p

and
the number of wrinkles n ~ (2gR2/wmh3)1/4, or
equivalently:
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Fig. 3. Mechanism for bubble
collapse without rupture.
(A) Schematic illustrating the
experimental setup used to col-
lapse the bubble without rupture.
As the bubble collapses, the vis-
cous film obtains a radial velocity
Vr proportional to the collapse
speed V. (B) Wrinkles can still
appear without the presence of
the hole at a radial distance
L from the center. (C) Near the
periphery of the bubble, the radial
and azimuthal compression rates,
e
�

rr and e
�

qq, respectively, can
be related to the radial velocity Vr.
(D) The azimuthal rate of com-
pression leads to compressive
stresses �srr and �sqq, which tend to
bend the sheet’s centerline z(r, q, t) despite being opposed by surface tension g, which acts to smooth the
surface. (E) As the bubble collapses, the wrinkles grow and develop within ~25 ms.
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Fig. 4. Comparison of data and model predictions. (A) Number of wrinkles n observed on bubbles of various
orientations and viscosities is in satisfactory agreement with the scaling of Eq. 3. Wrinkles on blown glass
(inset) are also consistent with this trend, although the 1D hoop model (dashed line) is expected to be more
appropriate for this nearly cylindrical geometry. (B) Top-view images of wrinkled films for: (i) viscosity
m = 3000 Pa • s and aspect ratio h/R = 1.3 • 10–4, (ii) m = 3000 Pa • s and h/R = 7.3 • 10–4, and (iii) m = 100 Pa • s
and h/R = 7.3 • 10–4. The radial extent of the wrinkles for the thinnest films is limited by the size of the
hole, whereas the location L of wrinkles generally increases as the film viscosity decreases. (C) Our analysis
predicts that inertia is negligible only when m/

ffiffiffiffiffiffiffiffi
rgR

p
≳ (R/h)5/2 (blue region). Because all available data

(symbols) are outside of this regime, we incorporated inertial effects into our model. The analysis predicts that
there is insufficient growth time for wrinkles to develop when m/

ffiffiffiffiffiffiffiffi
rgR

p
≲ (R/h)2 (gray region), consistent

with no wrinkles being observed at the lowest film viscosity (white triangles). Here, the thickness h is computed
using the collapse speed V through the relation h = gR/mV.
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� �" #1=8

ð3Þ

To test the scaling of Eq. 3 for the number
of wrinkles, we conducted systematic experi-
ments in which we varied the bubble viscos-
ity and orientation while keeping the bubble
size confined to the range 0.8 < R < 2 cm.
We also repeated the experiments that in-
volved evacuation rather than puncture of
the bubble. We estimated the wrinkled film
thickness h using the collapse time R/V ≡
mh/g, which yields a result that is approxi-
mately an order of magnitude larger than
the apex thickness h0 (Fig. 2C). Furthermore,
we performed additional experiments with
thicker structures by extracting blown molten
glass from a furnace and allowing the trapped
air to escape through the glass-blowing pipe
(23). As the air escaped, the blown glass col-
lapsed and adopted a wrinkled shape with
thickness h ≈ 200 mm (Fig. 4A, inset).
The experimental results for the number of

wrinkles are illustrated in Fig. 4A. Depending
on the initial radius, thickness, and viscosity,
the number of wrinkles can range between
eight and 96. The experimental results (data
points) are in fair agreement with our theoret-
ical prediction (solid line) from Eq. 3. A lim-
itation of our model applies to the data with
the thinnest films. For these bubbles, the col-
lapse was so abrupt that the wrinkling pattern
lost its symmetry and the wrinkles spanned
the entirety of the bubble (Fig. 4Bi). In addi-
tion, one should be cautious when interpret-
ing the data for the 100 Pa • s bubble films
given the discrepancy evident in Fig. 2B. This
discrepancy may stem in part from variations
in the thickness profile, whichmay explain the
larger hole size and wrinkle location L ob-
served at this lower viscosity (Fig. 4, Bii and
Biii). Note that our analysis is based on the
assumption that the wrinkle location L is pro-
portional to the bubble radius and does not
account for any dependence of L on film thick-
ness or viscosity.
Our model assumes that the wrinkles de-

velop on an axisymmetric portion of a spher-
ical shell, which may be less appropriate
for the blown glass. Specifically, because
the molten glass was constantly rotated as
it was worked into a thin film, the molten
glass bubble (Fig. 4A, inset) assumed the
form of a cylindrical shell with roughly hemi-
spherical caps before collapse, and a wrinkled
cylinder thereafter. For this case, in solving
Eq. 2, we considered a hoop with radius R,
where the amplitude f is approximately con-
stant. This approach yields the 1D dynamic
buckling dispersion relation rhw2 + wmh3n4/
3R4 – �sqqn

2/R2 = 0 (23). Linear stability anal-
ysis revealed that the most unstable wrinkling
pattern is then associated with a growth

rate w(1D) ~ (g2/rmh4)1/3 and a number of wrin-
kles n(1D) ~ [(R/h)5(rgR/m2)]1/6, results analo-
gous to those of Howell (26). Although the
number of experiments performed with
blown glass was insufficient to draw a de-
finitive conclusion, we expect the 1D scaling
(Fig. 4A, dotted line) to be more appropri-
ate for this nearly cylindrical geometry. The
2D disk scaling of Eq. 3 is more convincing
for all of the data involving the spherical cap
bubble geometry.
A prediction of our model is that wrinkling

will not occur for all conditions. In both the 1D
and 2D scaling, inertia played a critical role in
determining the number of wrinkles. Indeed,
in both cases, inertia was relevant when n > 1,
or equivalently h/R < (m/

ffiffiffiffiffiffiffiffi
rgR

p
)–2/5, a criterion

satisfied by all of our data (Fig. 4C). For the 1D
model, had inertia been neglected, the result-
ing buckled profile would be the equivalent of
Euler buckling for a straight beam (23). Inertia
also appears to dominate the instability growth
rate w: We found no evidence that the viscosity
influenced this growth rate time, consistent
with our model (23). For wrinkles to develop,
the time scale for them to grow,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhR2=g

p
, must

be less than that of collapse, mh/g. We thus
predict that nowrinkling will occur when h/R <
(m/

ffiffiffiffiffiffiffiffi
rgR

p
)–2. To test this hypothesis, we ruptured

bubbles formed from a silicone oil with vis-
cosity m = 10 Pa • s (Fig. 4C, white triangles)
and indeed found that they did not support
any wrinkles.
We have demonstrated that surface ten-

sion rather than gravity drives the collapse
of viscous surface bubbles after rupture and
is likewise responsible for the parachute in-
stability. The capillary-driven collapse initiates
a dynamic buckling instability prescribed
by the simultaneous interplay of inertia, com-
pression, and viscous bending of the retract-
ing film. Our results suggest that analogous
wrinkling is likely to arise on relatively small,
curved films, where the effects of gravity are
entirely negligible. Equation 1, governing the
number of wrinkles, is the viscous counter-
part of the elastic Föppl–von Kármán equa-
tions used to study the deformation of elastic
plates and shells. Our system thus presents an
example of viscous sheets exhibiting elastic-
like instabilities when rapidly compressed.
On the basis of the similar roles played by
viscosity and elasticity in these two systems,
we can foresee extending our model to sys-
tems involving viscoelastic films, in which
viscoelastic, capillary, and inertial effects all
contribute to the dynamics. For instance, the
exhalation of potentially pathogen-bearing
aerosols has been linked to the breakup of
thin bubble films in the viscoelastic fluid lining
of the respiratory tract (28, 29). Our deduc-
tion that surface tension alone may prompt
buckling during viscous film rupture and re-
traction suggests the possibility of these films

folding and entrapping air, thereby enriching
the aerosolization process.
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Materials and Methods

Silicone oil selection and independent viscosity measurements

Five different viscosity silicone oils were purchased (Clearco Products Co Inc.) to com-

plete the experiments. These were selected based on their labeled kinematic viscosity: ν =

10, 000 cSt, 100,000 cSt, 600,000 cSt, 1,000,000 cSt, and 2,500,000 cSt. As the difference in

these silicone oils is the average chain length of the polymer melt, the density and surface

tension remain constant between the different oils at ρ = 970 kg/m3 and γ = 0.02 N/m, respec-

tively.

Given that precise values of the viscosity are necessary, we performed experiments where

we dropped stainless steel spheres of radius a = 1.5 mm in each silicone oil and measured the

sphere’s terminal velocity U . The spheres were gently dropped at the center of a cylindrical

tank with radius 75 mm and height 12 mm to ensure the side and bottom walls did not affect

the speed measurements. Based on Stokes’ law, the viscous drag should equal FD = 6πµUa,

where µ = ρν is the dynamic viscosity. Balancing the viscous drag with weight of the sphere

FW = 4
3
πa3ρsg and the buoyancy force FB = 4

3
πa3ρg, such that FD = FW − FB, yields

a relation for the dynamic viscosity µ = 2
9
(ρs − ρ)ga2/U . Here, ρs = 8.0 · 103 kg/m3 is the

sphere’s density and g = 9.8 m/s2 the acceleration due to gravity. The experimentally measured

dynamic viscosities are tabulated in Table S1.

Method of bubble creation

We prepare the viscous bubble films by first pouring the silicone oil into a petri dish. Air was

injected into the silicone oil bath, and rose to the surface to form a bubble. The corresponding

bubble radii ranged between 0.8 and 2 cm, thus exceeding the capillary length
√
γ/ρg ≈ 0.1

cm, causing the bubble to protrude substantially beyond the surface and form a hemispheri-

cal dome. After waiting for a sufficiently long time to allow gravitational drainage to thin the
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bubble walls, we puncture the bubble at the top with a sharp needle, and record the subse-

quent collapse at frame rates ranging between 250-1,000 frames per second, depending on the

film’s viscosity. Two high-speed cameras (Photron SA-5 and Photron SA-X2) were used, one

positioned on the side to record the collapse and the other on top of the bubble to record the

wrinkling characteristics.

Method to reorient bubbles

For the experiments where the viscous bubble film is punctured in an upside-down or side-

ways orientation, the petri dish was clamped to a rotatable frame (Fig. S1). Air was first injected

in the upright configuration so that gravity can shape the bubble (Fig. S1A). The petri dish was

then rapidly rotated to the desired orientation (Fig. S1B,C), and the bubble punctured within

seconds. Because the viscosity is sufficiently large, the silicone oil did not flow out of the dish

during reorientation and the bubble could still be punctured.

Method to measure bubble collapse velocity and morphology

To measure the collapse velocity and other morphological features of a bubble, we devel-

oped custom image processing algorithms. We describe these below using a bubble shown in

the main text (Fig. 1C) as a representative example.

The height of bubble film above the flat interface is measured directly from the high-speed

images. For all experiments, we track the height Z of the bubble center (r = 0) over time

t for the duration of the bubble collapse. From this data, we calculate a collapse time and a

characteristic collapse velocity V (Fig. S2). We can also calculate the height of the film at other

radial positions (0 < r < R) for each image during the collapse to map the evolution of the

bubble shape. A collection of these shapes, corresponding to the bubble in Fig. 1C of the main

text, is illustrated in Fig. S2A. Note that the position of the film and growing hole have been
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averaged for a given radius so that the curves are axisymmetric. During the final stages of the

sideways collapse, weak gravitational effects lead to a slight shape asymmetry, highlighting the

requirement for rapid rotation and rupture.

It is difficult to measure the shape of the interface below the bubble, however we can approx-

imate it with theory based on the Bond number Bo = ρgR2/γ = 100 prior to the re-orientation

(19). This theoretical shape is plotted on top of the measurements (dashed lines in Fig. S2A).

The theoretical shape allows us to identify the location and extent of the bubble meniscus, and it

is noteworthy that the rapid change in curvature and wrinkling occurs within the film cap above

this meniscus.

The shapes of the bubble can be used to extract various properties, such as the surface

area and curvature, that will enhance our understanding of the underlying dynamics. However,

measurement noise in the curve positions is accentuated during numerical differentiation, and

therefore we find it advantageous to first smooth these extracted points. Specifically, we fit the

experimental bubble shapes with smooth empirical curves of the form:

z

L
=

[
1−

( r
R

)2]1/N
(S1)

Note that N = 2 corresponds to the shape of a circle. Here, we empirically fit N to the shapes

and find that its value varies between 2.2 and 4. The comparison between the experimental

shapes and the fit curves is illustrated in Fig. S2A. On these curves, we can track the edge of the

growing hole and the height of the apex (dots and triangles in Fig. S2B).

The height at the center of the film can be estimated directly from the shapes and does not

require smoothing. This height Z(t) typically decreases faster at early times and then decel-

erates as it reaches the midpoint of the collapse and then reaches a much slower phase of its

evolution at around 20% of the original height (Fig. S2C). The meniscus may play a role in

setting this height, yet the bubble shape did not change significantly enough to warrant deeper
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exploration at this time. We plot the bubble height against time to extract an average collapse

speed V . Because wrinkling typically occurs when Z/R ≈ 0.6, we use this value to set the

time interval used to compute the collapse speed. Specifically, we use a linear fit for the height

Z with time in the interval 0.6 < Z/R < 1, from which we can compute the collapse speed

through the slope of the fit. With the approximate shape of the collapsing bubble (Eq. (S1)),

we can compute the curvature and the surface area of the bubble film, as well as the rate of

internal volume change. In particular, the surface area S at a point in time can be computed by

numerically evaluating the surface of revolution

S = 2π

∫
r(z)

√(
1 + [dr/dz]2

)
dz, (S2)

and the volume of the air within the bubble can be computed with the solid of revolution

Ω = π

∫
r(z)2dz. (S3)

Meanwhile twice the mean curvature H = κ1 + κ2 can be computed from the two principal

curvatures:

κ1 =
d2z/dr2[

1 + [dz/dr]2
]3/2 , (S4)

κ2 =
dz/dr

r
√

1 + [dz/dr]2
. (S5)

From this analysis, we observe that the overall surface area of the bubble decreases mono-

tonically, consistent with surface-tension driving the collapse (Fig. S2D). The volume of the air

within the bubble is also decreasing with time. Here the collapse is consistent with an exiting

flow rate of Q ≈ 60 mL/s (Fig. S2E). If the collapse were quasi-static so that the surface area

were minimized at each point in time, the shapes in Fig. S2A would form a series of spherical

caps (30). However, we observe that the film curvature varies spatially, resulting in a mean

curvature that increases near the base of the bubble (Fig. S2F). We attribute this variation to the
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film become progressively thicker from the apex to the bubble base. These observations are

consistent with the notion that surface tension is driving the collapse globally, but that varying

viscous stresses, due to variation in thickness, are frustrating the collapse locally.

Methods to estimate thickness

A crucial variable for the collapse dynamics is the thickness of the film surrounding bubble,

which we are unable to measure during the collapse. However, we can estimate the thickness at

the apex h0 prior to the collapse by using a combination of interferometry and drainage theory.

Note that this thickness is significantly less than the thickness where the wrinkling instability

occurs; however, there is precedent to believe that the drainage-profile is self-similar such that

the thickness at a particular distance from the top is proportional to the instantaneous apex

thickness (17).

Rate of drainage from interferometry

We use thin-film interferometry to measure the drainage rate at the top of the bubble. Specif-

ically, we shine monochromatic light (SugarCUBE LED Illuminator) of known wavelength

λ = 458 nm on the bubble at a shallow angle and record the reflection with a camera (Fig. S3A).

The light reflects from both the top and bottom of the film and, depending on the film thickness,

these two reflections can constructively or destructively interfere. Although we focus on the

thickness at the top, interference fringes propagate from the bubble’s apex, causing the inten-

sity to vary (Fig. S3B). Here we assume that the index of refraction of the silicone oil (nf=1.4)

exactly balances out the effect of the internal angle, which corresponds to the light shining on

the film at an oblique angle between 10 to 20 degrees from the horizontal. With this simplifying

assumption, the light constructively interferes whenever the film thickness is a multiple of λ/2.

A snapshot of the bubble under the glancing blue light reveals concentric blue rings centered
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from the bubble apex (Fig. S3B), highlighting that the film thickness is axisymmetric as it varies

between the top and base of the bubble. Focusing just at the top of the bubble, we find that the

light intensity oscillates with time until the bubble is ruptured at time t0 (Fig. S3C). From the

time series, we assume that each of the peaks corresponds to constructive interference and each

of the valleys corresponds to destructive interference, from which we can estimate the time rate

of change in thickness dh/dt ≈ ∆h/(∆t) = λ/(2∆t) (Fig. S3D). If we repeat this process

for an upside-down bubble, we get similar interference patterns, although the amplitude of the

intensity decreases with time, which is consistent with the film thickness increasing rather than

decreasing (Fig. S3E). From the time between successive peaks (circles) and successive valleys

(exes), we conclude that the film thickens at a similar rate to which it drains under the influ-

ence of gravity (Fig. S3F). This rate is on the order of tens of nanometers per second for the

representative bubbles illustrated here.

Combining interferometry and drainage theory

Debregeas et. al. (17) also measured thickness at the top of draining silicone oil bubbles

using thin-film interferometry. However in their study, they were not rupturing the films and

therefore could collect interferometry data to the point of a black film, which provided an ab-

solute reference point. They found that the thickness at the top of the bubble followed an

exponential decay with timescale τd ∼ µ/ρgR, as predicted by their drainage model (17). Thus

we can write an expression for the film thickness as

htop = h0 exp

(
−t− t0

τd

)
, (S6)

where h0 is the thickness at the point of rupture t0.

Because we do not have an absolute thickness to reference our film measurements, our

approach is to consider the rate of drainage. Differentiating Eq. (S6) with respect to time, the
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drainage rate follows
dhtop
dt

= −h0
τd

exp

(
t0 − t
τd

)
. (S7)

This exponential decrease in drainage rate is consistent with our interferometry results (Fig. S3D).

By fitting an exponential to these data points, we can calculate both τd and h0. The exponen-

tial fit for the particular data in Fig. S3D corresponds to a time constant τ = 74.8 s and a top

thickness h0 = 0.88 µm at rupture. In this particular case, the bubble radius was R = 15.7 mm

and the viscosity µ = 3000 Pa s. Therefore the value of τ obtained from the fit is consistent to

the value that would be predicted from the measurements and theory of Debregeas et. al. (17),

noting a scaling prefactor of approximately 17 that can be observed in their data.

Method to collapse bubbles without rupture

For the experiments involving the bubble collapse without puncture, a small opening was

created at the bottom of the petri dish. A long steel needle connected to a syringe through a

valve was inserted into the opening to insert air. The size of the opening was set to match the

needle diameter. As the air rose to the surface to form the dome, the needle followed the bubble

in order to create a channel with the sealed valve. When the dome walls were sufficiently thin,

the valve was quickly opened, allowing the pressurized air beneath the bubble cap to escape.

The normalized bubble height Z against time scaled by the collapse speed V for the bubble

without a hole is illustrated in Fig. S4, and follows a similar collapse with a punctured bubble

of the same viscosity.

Extension to molten blown glass

The molten glass experiments were conducted at the Glass Lab at MIT. Soda-lime glass

was melted inside a main furnace, heated at approximately 900◦ C. A blob of the molten glass

was attached to a blowpipe, through which air was blown to develop a cylindrical structure. The
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molten glass structure was worked into thin walls by repeatedly blowing, working and reheating

in a secondary furnace heated at the same temperature as the first. Once the walls were deemed

sufficiently thin, the blowpipe exit hole was closed and the glass cylinder brought into a furnace

to reheat. At this point, the exit hole of the blowpipe was released, allowing the pressurized

air to escape. Wrinkles developed on the blown glass, which was then placed inside a third

chamber, allowing it to gradually cool and stiffen.

The resulting wrinkled blown glass is illustrated in Fig. S5. The remaining structures used in

Fig. 4 of the main text, are shown in Fig. S6. Based on the furnace temperature of approximately

900◦ C, the molten soda-lime glass viscosity, surface tension and density used in our analysis

were µ ≈ 10, 000 cP, γ ≈ 0.37 N/m and ρ ≈ 2.7 g/cm3 respectively (31, 32).

Theory and Scaling

Theoretical rationale for velocity scaling

In this section, we obtain a characteristic velocity γR
µh0

by modeling the speed that a spherical

viscous film would collapse driven by surface tension and regulated by viscosity. As modeled

by van der Fliert et al. (30), a free-surface spherical shell with with radius r and thickness h

will contract when an external pressure ∆P is exerted upon it. In particular, the conservation

of mass and momentum can be described by the following equations:

d

dt
(r2h) = 0, (S8)

dr

dt
=
r2∆P

12µh
. (S9)

Because surface tension is the force driving the collapse of the spherical shell, the external

pressure can be related to the Laplace pressure ∆P = −4γ/r. Substituting the Laplace pressure

into Eqs. (S8)-(S9) and combining the initial conditions r(0) = R and h(0) = h0, we obtain the
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following equations for the behavior of the contracting spherical shell:

r

R
=

(
1 +

2γt

3µh0

)−1/2

, (S10)

h

h0
= 1 +

2γt

3µh0
. (S11)

Therefore the velocity that the sphere collapses inward is

−dr
dt

=
Vc
3

(
1 +

2γt

3µh0

)−3/2

, (S12)

where the characteristic velocity is Vc = γR
µh0

. In our system, both the downward velocity V and

the resulting radial velocity Vr are expected to scale as this characteristic velocity Vc.

Föppl-von-Kármán equations for a viscous disk

We develop here a basic theoretical framework that allows us to analyze the stress distribu-

tion on thin viscous sheets, drawing from established analogies with thin elastic sheets (6, 9, 26).

A key difference between elastic and viscous sheets, is that elastic sheets are described in terms

of strains, while viscous sheets in terms of the rate of strain. Because the viscous bubble in

our experiments is most easily described in terms of a circular geometry, we use a set of polar

coordinates r, θ (Fig. S7). The components of the rate of strain tensor ε̇rr, ε̇θθ and ε̇rθ are related

to the radial and azimuthal velocities vr and vθ, as well as the centerline of the sheet ζ(r, θ, t):

ε̇rr =
∂vr
∂r

+
∂ζ

∂r

∂2ζ

∂r∂t
, (S13a)

ε̇θθ =
vr
r

+
1

r

∂vθ
∂θ

+
1

r2
∂ζ

∂θ

∂2ζ

∂θ∂t
, (S13b)

ε̇rθ =
1

r

∂vr
∂θ

+
∂vθ
∂r

+
1

r

∂ζ

∂r

∂2ζ

∂θ∂t
+

1

r

∂ζ

∂θ

∂2ζ

∂r∂t
. (S13c)
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The rates of strain are related to the components of the 2D stress tensor σ̄ through constitutive

relations based on a Trouton model (25, 26) and analogous to Hooke’s law:

σ̄rr = 2µh (2ε̇rr + ε̇θθ) , (S14a)

σ̄θθ = 2µh (ε̇rr + 2ε̇θθ) , (S14b)

σ̄rθ = µhε̇rθ, (S14c)

where µ is the viscosity of the fluid, h its thickness, and the overbar over the stress is to highlight

that the 3D stress has been integrated over the thickness. The system is fully characterized by

the force balance in the radial and azimuthal direction through ∇ · σ̄ = PRr̂ + Pθθ̂ and in

the normal direction by (µh3/3)∇2Tr(κ̇) + σ̄ · κ = PN . Here Tr(κ̇) is the trace of the time

rate of change of the curvature tensor κ and PN the external normal force per area exerted on

the viscous sheet. The importance of the rate compression rather than mere compression for

viscous bending, is exemplified by the analogy in the bending term between elastic and viscous

sheets Eκ⇔ µκ̇, where E is the Young’s modulus (13). Thus, these equations are analogous to

the Föppl-von-Kármán equations in elasticity theory and can be expressed in polar coordinates

as:

r̂ :
∂σ̄rr
∂r

+
1

r

(
∂

∂θ
σ̄rθ + σ̄rr − σ̄θθ

)
= PR, (S15a)

θ̂ :
∂σ̄rθ
∂r

+
1

r

(
∂

∂θ
σ̄θθ + 2σ̄rθ

)
= Pθ, (S15b)

µh3

3
∇4

(
∂ζ

∂t

)
− σ̄rr

∂2ζ

∂r2
− 2

r
σ̄rθ

(
∂

∂r
− 1

r

)
∂ζ

∂θ
− 1

r2
σ̄θθ

(
∂2ζ

∂θ2
+ r

∂ζ

∂r

)
= PN , (S15c)

where the 2D Laplacian is given by ∇2 =
(
∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2

)
, the biharmonic by ∇4 =(

∂4

∂r4
+ 2

r
∂3

∂r3
− 1

r2
∂2

∂r2
+ 1

r3
∂
∂r

+ 2
r2

∂4

∂θ2∂r2
− 2

r3
∂3

∂θ2∂r
+ 4

r4
∂2

∂θ2
+ 1

r4
∂4

∂θ4

)
and PR and Pθ are typi-

cally zero. We can further simplify Eq. (S15c) by assuming axisymmetry, so that vθ = ε̇rθ = 0,

ε̇rr = ∂vr/∂r and ε̇θθ = vr/r. In addition, the externally applied normal force PN in our sys-

tem is due to surface tension and can be expressed as 2γ∇2ζ , where the 2 arises because surface
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tension acts on both sides of the sheet. Finally, we consider the inertia of the sheet to play an

important role, which when included in Eq. (S15c) reduces to:

ρh
∂2ζ

∂t2
+
µh3

3
∇4

(
∂ζ

∂t

)
− σ̄rr

∂2ζ

∂r2
− 1

r2
σ̄θθ

(
∂2ζ

∂θ2
+ r

∂ζ

∂r

)
= 2γ∇2ζ, (S16)

where ρ is the density of the fluid. Note that in the theory of wrinkling of elastic solids, inertia

does not traditionally play a role since the systems considered are typically quasi-static (6, 7, 9).

However for rapid compression, inertia can excite higher-order modes, a phenomenon often

referred to as dynamic buckling.

In the subsections below, we aim to describe the wrinkling of our viscous film in terms of

analysis developed for static elastic disks and rapidly deformed slender objects, for which iner-

tia can play a role. We conclude by suggesting that both confinement and inertia are important

in setting the number of wrinkles for the collapsing viscous bubbles. A key point in our in-

terpretation is that the extent of wrinkles L is connected to the variation in the film thickness:

the wrinkles closer to the center smooth out faster than wrinkles further from the center. The

contribution of surface tension in Eq. (S16) can be rearranged with each stress component to

highlight that importance of net stresses (−σ̄rr − 2γ) and (−σ̄θθ − 2γ). Based on our scaling

for the radial speed Vr ∼ V ∼ γR/µh0, the stresses simplify to σ̄rr ∼ σ̄θθ ∼ γh/h0. Therefore,

for the same inward velocity, the thickness-integrated stress increases as film get thicker toward

the periphery of the bubble, and reaches a point L where they overcome the smoothing effects

of surface tension. Provided that the thickness in this region h scales with h0, the net stress

components, (σ̄rr + 2γ) and (σ̄θθ + 2γ) scale as γ, with a prefactor that depends on the local

thickness and inward velocity.

At first glance, it may seem that the shape of the film should be determined from the inte-

grated stress from the kinematics without also considering the counteracting smoothing effects

of surface tension. This perspective is supported by recent observations that the integrated stress
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across a floating elastic sheet is equal to the liquid-vapor surface tension pulling on its bound-

ary and independent of the interfacial tensions of the elastic sheet (33). However, we do not

believe that these results for elastic films directly carry over to the liquid films, as the stress-free

state of the film is fundamentally different. Indeed, the paper by Le Merrer et al. (13) provides

experimental evidence that the curvature of a viscous liquid film depends on both an integrated

stress applied at the boundary and the interfacial tension on the film. Furthermore, this paper

highlights two criteria for buckling for viscous liquids: first, the aspect ratio has to be suffi-

ciently thin and, second, the timescale of compression has to be short relative to the timescale

required for surface tension to smooth the surface. In all of our films, h << R and the first

criterion is met. It is the second criteria that we believe is responsible for the thinner center of

our films (r < L) remaining smooth while the thicker annular region (L < r < R) wrinkles. To

illustrate this point, we consider what happens to the wrinkles after the film collapse (Fig. S8).

Once collapsed, there is no longer a downward or inward velocity, and therefore there are no

longer viscous stresses associated with the film motion. Thus, surface tension acts unopposed,

removing excess surface area and relaxing the wrinkles. The length of the smooth inner-circle

L increases with time, as is consistent with wrinkles of thinner film smoothening faster than

wrinkles of thicker film.

Inertia-free wrinkle analysis

Recognizing some similarities between the viscous film and wrinkles in stretched, elastic

axisymmetric films, we follow a similar approach to model the wrinkling. We first neglect

inertial effects. The film centerline takes the form ζ(r, θ, t) = f(r) exp (ωt+ inθ), so the

general equation (S16) reduces to the viscous Föppl-von-Kármán equation:

ωµh3

3

{
1

r

d

dr

(
r

d

dr

)
− n2

r2

}2

f − (σ̄rr + 2γ)
d2f

dr2
− (σ̄θθ + 2γ)

(
1

r

d

dr
− n2

r2

)
f = 0. (S17)
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Here, n represents the number of wrinkles and ω the growth rate. To initiate radial wrinkles,

we anticipate the azimuthal stress to exceed the radial stress at the onset of wrinkling (6). Yet,

far from this instability threshold, the buckling allows the azimuthal stress to relax and decrease

significantly. Therefore, the dominant terms in Eq. (S17) are the viscous bending and the radial

stress, which scale µh3ω/R4 and γ/R2 respectively. Balancing these dominant terms does not

immediately provide an expression for the number of wrinkles, since there are two unknowns:

n and ω. This challenge does not appear in the corresponding analysis for elastic sheets, due to

the absence of the growth rate in the associated bending stiffness. If the only natural timescale

within the system is the collapse time, then the growth rate ω would be expected to scale as

γ/µh. Combining this assumption with the balance of bending and radial stress, yields the

following result for the number of wrinkles:

n ∼
(
R

h

)1/2

(S18)

It is noteworthy that the result for the number of wrinkles n depends purely on geometry and

not on any material properties. Yet, this result is obtained based on the assumption that the

growth rate occurs at a similar time scale to the bubble collapse. Careful inspection of wrinkling

instability (Fig. 3E), suggests that the wrinkles develop at a time scale on the order of 10 ms,

which is an order of magnitude smaller than the assumed growth rate. We believe that this

discrepancy is due to another timescale entering into the problem, specifically inertia.

Dynamic viscous buckling

To illustrate why we believe it necessary to account for inertia in Eq. (S16), we consider a

slightly simplified scenario. Specifically, in the middle of the wrinkling region, we assume that

the deformation ζ does not vary with r so that ζ = ζ(θ, t) and Eq. (S16) reduces to

ρh
∂2ζ

∂t2
+

(−σ̄θθ − 2γ)

r2
∂2ζ

∂θ2
+
µh3

3r4

[
∂5ζ

∂t∂4θ

]
= 0. (S19)
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Equation (S19) bears similarities with the dynamic buckling equation for elastic beams and

rods (34-37). In particular, if r∂θ is replaced by ∂x and µ ∂
∂t

is replaced by E/4, where E is the

Young’s modulus, one obtains the dynamic buckling equation ρhζtt+Fζxx+(Eh3/12)ζxxxx =

0.

The solution of Eq. (S19) depends strongly on the sign of the second term, which is pre-

scribed by the relative magnitude of the compressive stress and surface tension. In our system,

the compressive stress is also driven by surface tension through the bubble collapse, so it is

expected that the collective contribution scales as the surface tension. Seeking solutions to

Eq. (S19) of the form ζ = ζ0 exp(ωt + inθ), linear stability analysis for (−σ̄θθ − 2γ) ∼ γ > 0

then yields scaling relations for the number of wrinkles n and associated growth rate ω of the

most unstable mode:

n ∼
(
R

h

)5/6(
ργR

µ2

)1/6

and ω ∼
(

γ2

h4µρ

)1/3

. (S20)

Here, for simplicity, we are assuming that the radius r for which the wrinkles develop isR. Had

inertia been neglected, there would be only one buckle; a result equivalent to Euler-Buckling

for a straight beam. Inertia becomes relevant as soon as n > 1, or when

h/R <
(
µ/
√
ργR

)−2/5

. (S21)

This relationship defines the boundary between Dynamic Buckling and Inertia-free Buckling

in Fig. 4A of the main text. There are immediate parallels with this analysis and that carried

out for 1-D planar viscous sheets by Howell (26). In particular, the analysis could be viewed

as indicating that a characteristic velocity V ∼ γR/µh reduces the perimeter of the wrinkled

hoop. Thus the number of wrinkles in Eq. (S20) is equivalent to n ∼ (R/h)2/3Re1/6, where

Re ≡ ρV R/µ is the Reynolds number. Similarly the condition for inertia to be relevant to the

number of wrinkles (Eq. (S21)), can be expressed as:

h

R
<

(
ρV R

µ

)1/4

, (S22)
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a relationship pointed out by Howell (26). Typical values for the Reynolds number in our

experiments span the range 10−6 . Re . 10−1, which is large enough to justify the inclusion

of inertial effects given the typical aspect ratio h/R ∼ 10−3 in our experiments. This criterion

provides a context to relate our experiments to those in which a viscous thread is subjected to

an imposed external velocity. Figure S9 highlights the fact that the experiments by Le Merrer

et. al. (13) were performed in a predominantly inertia-free regime; whereas, our experiments are

in the regime where inertia is relevant.

Scaling for film disk with inertia

Returning to the viscous disk geometry, we now consider the role of inertia in the wrinkle

dynamics. We again assume a wrinkled profile ζ(r, θ, t) = f(r) exp (ωt+ inθ), where ω is the

instability growth rate and n the number of wrinkles, and express Eq. (S15c) in terms of these

variables.

ρhω2f +
ωµh3

3

{
1

r

d

dr

(
r

d

dr

)
− n2

r2

}2

f−

(σ̄rr + 2γ)
d2f

dr2
− (σ̄θθ + 2γ)

(
1

r

d

dr
− n2

r2

)
f = 0

(S23)

Therefore, the inertial term will scale as ∼ ρhω2, the bending term ∼ µh3n4ω/R4 and the

radial stress (σ̄rr + 2γ)/R2. Because the azimuthal stress relaxes at the onset of wrinkling, we

again neglect it for this 2D analysis. Balancing these three terms yields a growth rate ω−1 ∼√
ρhR2/γ, and number of wrinkles n ∼ (2γR2/ωµh3)1/4. Combining these two results yields

a scaling for the number of wrinkles:

n ∼
(
h

R

)−5/8(
µ√
ργR

)−1/4

(S24)

This analysis predicts that wrinkles should develop quite quickly relative the collapse time.

More specifically, for a bubble in silicone oil with R ≈ 1 cm and h ≈ 10µm, the time for
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wrinkles to develop should be on the order of ω−1 ∼
√
ρhR2/γ ∼10 ms. Figure S10 shows

snapshots of the bubble collapse, which indicate the relevance of this timescale in the wrinkling

process. Furthermore when higher-speed images were collected for silicone oils of different

viscosity, there was no evidence that viscosity influenced the wrinkle-development time, con-

sistent with the model scaling for ω. Finally, for wrinkles to develop, they must have enough

time to develop before the film fully collapses. Based on our model, wrinkles should only be

observed if ω−1 < R/V , which is equivalent to
√
ρhR2/γ < µh/γ or

h/R >
(
µ/
√
ργR

)−2

. (S25)

This relationship defines the boundary between No Wrinkling and Dynamic Buckling in Fig. 4A

of the main text. Notably, no wrinkling is observed for any of the experiments conducted in this

regime.
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Table S1: For each labeled kinematic viscosity in cSt (1 cSt = 10−5 m2/s), we measure the solid
sphere’s terminal velocity U and the corresponding computed dynamic viscosity µ.

Labeled ν (cSt) U (µm/s) Computed µ (Pa·s)
104 2,640 ± 200 12.6 ± 0.9
105 245 ± 2 136 ± 2

6 · 105 43.2 ± 0.1 770 ± 1
106 10.5 ± 0.1 3,170 ± 12

2.5 · 106 10.7 ± 0.3 3,090 ± 100
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Figure S1: The experimental setup used to rotate the viscous liquid bath. (A) Once the air is
injected into the petri dish, the upright position of the dish allows gravity to shape the bubble.
(B) The stage can be rotated within seconds such that the silicone oil does not flow out of the
dish, owing to its very high viscosity. (C) The dish can thus be rotated 180◦ with the bubble
upside down before puncture.
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Figure S2: Collapse of a bubble with radius R = 1.8 cm. (A) Experimental bubble shape
(circles) as it collapses and the associated empirical fits (solid lines). The theoretical shape
of a bubble with Bond Number Bo = 100 is overlaid on top (dashed line). (B) The shape
of the collapsing bubble, oriented on its side, plotted in spatial coordinates (r, z), for various
times t. The triangles at the apex of the bubble indicate the height Z(t), while the dots on the
experimental shapes indicate the position of the growing hole. (C) The measured bubble height
Z(t) plotted against time, is used to extract the collapse velocity V . (D) The surface area of
the bubble S decreases with time. (E) The volume of the air trapped inside the bubble also
decreases with time, yielding a flow rate of air of approximately Q = 60 mL/s. (F) Scaling the
mean curvature H by the radius of the bubble R, illustrates that the curvature increases locally
near the edge of the bubble.
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Figure S3: Computing film thickness using interferometry. (A) Schematic of the interferometry
setup used to estimate the film thickness at the bubble apex h0. Blue light with wavelength
λ = 458 nm is emitted from a light source and its reflection from the bubble cap is recorded
by a camera. (B) Experimental image highlighting the fringes propagating from the bubble’s
apex. (C) The intensity extracted by the propagating fringes can be plotted against reverse time
t − t0, where t0 is the time of rupture. D The peaks (circles) and valleys of the intensity can
be used to determine the thinning rate dh0/dt. (E) When the bubble is turned upside-down, the
process is reversed and the fringes start propagating towards the apex. (F) Upside-down, the
film thickness grows at approximately the same speed that it drains, initially on the order of 10
nanometers per second.
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Figure S4: Scaled bubble heights Z/R for experiments involving puncture and evacuation fall
onto the same curve when plotted against dimensionless time V t/R.
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Figure S5: Wrinkling of a molten glass structure. (A) Front view of the solidified blown
glass. (B) The thickness of the blown glass is approximately 200 µm. (C) The wrinkles ex-
tend throughout the length of the structure.
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Figure S6: (A) Front view of the additional blown glass structures. (B) Side view of the addi-
tional blown glass structures.
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Figure S7: Schematic illustrating the distribution of radial stress σ̄rr and azimuthal stress σ̄θθ
leading to a wrinkled centerline ζ(r, θ, t), while being resisted by surface tension γ.
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Figure S8: Allowing the air inside the bubble to escape without rupture leads to a wrinkled
pattern. Once the bubble has collapsed, the radial extent decreases.
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Figure S9: Plotting the aspect ratio h/R against the Reynolds number ρV R/µ, we observe that
the data reported by Le Merrer et al. (13) (dark dots) fall fairly consistent within the inertia-free
buckling regime, while our data falls (colored symbols) in the dynamic buckling regime.
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Figure S10: (A) Side-view images of the bubble collapse when the viscosity is µ = 800 Pa·s
reveals that the collapse occurs within 0.5 s. (B) During this collapse, the wrinkles develop over
a timescale between 20 and 30 ms. (C) At a higher viscosity (µ = 3, 000 Pa·s) similar images
show that the collapse time increases to 2.3 s. (D) Yet the growth of the wrinkles show less
dependence on viscosity and continue to develop over a timescale of approximately 30 ms.
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Captions for Movies S1 to S8

Movie S1

Collapse of a bubble at the surface of a 1,000 Pa·s silicone oil bath after rupture. The bubble

radius is R = 1 cm and the total elapsed time is 1.1 seconds. The movie was recorded using a

high-speed camera with a frame rate of 200 frames per second.

Movie S2

Collapse of a bubble at the surface of a 1,000 Pa·s silicone oil bath after rupture in an upside

down orientation. The bubble radius is R = 1.8 cm and the total elapsed time is 0.4 seconds.

The movie was recorded using a high-speed camera with a frame rate of 250 frames per second.

Movie S3

Collapse of a bubble at the surface of a 1,000 Pa·s silicone oil bath after rupture in a sideways

orientation. The bubble radius is R = 1.8 cm and the total elapsed time is 0.5 seconds. The

movie was recorded using a high-speed camera with a frame rate of 250 frames per second.

Movie S4

Collapse of a bubble at the surface of a 1,000 Pa·s silicone oil bath without rupture. The bubble

radius is R = 1.2 cm and the total elapsed time is 0.7 seconds. The movie was recorded using

a high-speed camera with a frame rate of 100 frames per second.

Movie S5

Top view of the wrinkling instability for a bubble film with viscosity 3,000 Pa·s in the upright

configuration. The bubble radius is R = 1.5 cm and the total elapsed time is 2.65 seconds. The

movie was recorded using a high-speed camera with a frame rate of 125 frames per second.
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Movie S6

Top view of the wrinkling instability for a very thin bubble film with viscosity 3,000 Pa·s in

the upright configuration. The bubble radius is R = 1.5 cm and the total elapsed time is 0.56

seconds. The movie was recorded using a high-speed camera with a frame rate of 250 frames

per second.

Movie S7

Top view of the wrinkling instability for a bubble film with viscosity 100 Pa·s in the upright

configuration. The bubble radius is R = 1.5 cm and the total elapsed time is 0.19 seconds. The

movie was recorded using a high-speed camera with a frame rate of 1,000 frames per second.

Movie S8

Top view for a collapsing bubble film with viscosity 10 Pa·s in the upright configuration where

no wrinkling occurs. The bubble radius is R = 1 cm and the total elapsed time is 0.02 seconds.

The movie was recorded using a high-speed camera with a frame rate of 8,000 frames per

second.

Descriptions of Experimental Data Files

Data S1: Experimental Interferometry Data

Collapse speed V for bubbles of viscosity µ = 100, 800 and 3000 Pa·s, for varying initial

thickness at the bubble’s apex h0 and bubble radius R.

Data S2: Experimental Wrinkling Data

Number of wrinkles n for collapsing bubbles of viscosity µ = 100, 800 and 3000 Pa·s, for

varying collapse speed V , bubble radius R and different bubble orientations.

Data S3: Experimental Blown Data

Number of wrinkles n for the blown glass configurations.
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