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Axial drop motion in rotating fluids 
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A theoretical and experimental investigation of drop motion in rotating fluids is 
presented. The theory describing the vertical on-axis translation of an axisymmetric 
rigid body through a rapidly rotating low-viscosity fluid is extended to the case of a 
buoyant deformable fluid drop of arbitrary viscosity. In the case that inertial and 
viscous effects are negligible within the bulk external flow, motions are constrained to 
be two-dimensional in compliance with the Taylor-Proudman theorem, and the rising 
drop is circumscribed by a Taylor column. Calculations for the drop shape and rise 
speed decouple, so that theoretical predictions for both are obtained analytically. Drop 
shapes are set by a balance between centrifugal and interfacial tension forces, and 
correspond to the family of prolate ellipsoids which would arise in the absence of drop 
translation. In the case of a drop rising through an unbounded fluid, the Taylor column 
is dissipated at a distance determined by the outer fluid viscosity, and the rise speed 
corresponds to that of an identically shaped rigid body. In the case of a drop rising 
through a sufficiently shallow plane layer of fluid, the Taylor column extends to the 
boundaries. In such bounded systems, the rise speed depends further on the fluid and 
drop viscosities, which together prescribe the efficiency of the Ekman transport over 
the drop and container surfaces. 

A set of complementary experiments is also presented, which illustrate the effects of 
drop viscosity on steady drop motion in bounded rotating systems. The experimental 
results provide qualitative agreement with the theoretical predictions ; in particular, the 
poloidal circulation observed inside low-viscosity drops is consistent with the presence 
of a double Ekman layer at the interface, and is opposite to that expected to arise in 
non-rotating systems. The steady rise speeds observed are larger than those predicted 
theoretically owing to the persistence of finite inertial effects. 

1. Introduction 
The problem of particle motion in rapidly rotating low-viscosity fluids was first 

considered by Proudman (19 16) and Taylor (1 9 17). When inertial and viscous forces 
are negligible within a rapidly rotating flow, the fluid motion is governed by a 
' geostrophic' balance between Coriolis forces and pressure gradients. The Taylor- 
Proudman theorem requires that all fluid motions in a geostrophically balanced 
incompressible flow be independent of the spatial coordinate that varies in a direction 
parallel to the axis of rotation. Consequently, when a rigid axisymmetric body 
translates slowly on-axis through a low-viscosity fluid rotating rapidly about a vertical 
axis, a vertical column of fluid accompanies the body. The two-dimensional constraint 
imposed by the fluid's rotation may be relaxed by either inertial or viscous effects. 

In early studies of axial particle motion in rotating fluids, inertial effects were 
f Present address: Department of Applied Mathematics and Theoretical Physics, Silver Street, 

Cambridge, CB4 5HT, UK. 
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introduced through considering the unsteady geostrophic equations (Grace 1926). 
Stewartson (1952, 1953, 1958) considered the time-dependent problem of an 
impulsively started rigid body translating through an inviscid fluid, and thus deduced 
the steady asymptotic behaviour of the flow and the hydrodynamic force on the 
particle at long times. More recently, solutions have been sought to the steady viscous 
equations of motion in which all inertial terms are neglected. This approach was 
introduced by Morrison & Morgan (1956), and will be adopted in the theoretical 
analysis presented herein. 

In the absence of inertial effects, the Taylor column which circumscribes a body 
rising on-axis has a vertical extent determined by the fluid viscosity. In the case of a 
buoyant particle rising on-axis through a sufficiently shallow horizontal fluid layer, the 
Taylor column will span the entire fluid depth, and the body cannot rise unless the 
Taylor-Proudman constraint is released. The body is able to rise only by way of small- 
scale viscous boundary layer motions which arise on the container and body surfaces 
and transport fluid from the fore to the aft regions of the Taylor column. In the case 
of a particle rising axially through an unbounded fluid, the two-dimensional constraint 
imposed by the fluid’s rotation is once again released through viscous effects, which 
permit large-scale streaming past the body in vertical boundary layers. Qualitative 
representations of the flow fields for the bounded and unbounded cases are illustrated 
in figure 1. Figures 2, 3 and 4 (plate 1) illustrate a number of flow features characteristic 
of axial drop motion in rapidly rotating fluids as revealed in our laboratory through 
the use of tracer particles. In particular, the columnar structure accompanying the drop 
motion is clearly evident. Further details are provided in $6. 

A summary of the investigations most relevant to our study of axial particle motion 
in rapidly rotating fluids is presented in table 1. To date, research has focused primarily 
on rigid particle motion. Morrison & Morgan (1956) considered the steady motion of 
a rigid disk in an unbounded viscous fluid. The unbounded problem was generalized 
to the case of an arbitrarily shaped rigid axisymmetric particle by Moore & Saffman 
(1969). Hocking, Moore & Walton (1979) considered the case of a sphere translating 
in a rapidly rotating container in which the flow is only weakly affected by boundaries. 
The problem of particle translation along the length of a vertical Taylor column 
spanning the entire depth of a bounded horizontal fluid layer was first treated by 
Moore & Saffman (1968), who considered the rise of rigid axisymmetric bodies. The 
case of a buoyant bubble rising between rigid horizontal boundaries was treated by 
Bush, Stone & Bloxham (1992), who deduced analytical solutions for both the bubble 
shape and rise speed. In this paper, we generalize previous studies of steady axial 
particle motion in low-viscosity fluids through calculating the shape and rise speed of 
a deformable drop of arbitrary viscosity. 

Since the seminal experiments of Taylor (1921,1922,1923), a number of experimental 
investigations of axial particle motion in rapidly rotating fluids have been undertaken; 
however, the majority have been concerned with the effects of inertia on the particle 
and fluid motion (e.g. Long 1953; Pritchard 1969). The experiments of primary 
relevance to our study are those of Maxworthy (1968, 1970), who studied rigid particle 
motion in both the bounded and unbounded geometries. Maxworthy (1968) first 
considered the axial motion of rigid spheres in the bounded geometry, and 
demonstrated that the theoretical limit in which inertial effects may be safely neglected 
is not easily realized in the laboratory. While the observed rise speeds largely confirmed 
the theoretical predictions of Moore & Saffman (1968), they were typically larger than 
those predicted theoretically owing to inertial relaxation of the Taylor-Proudman 
constraint of two-dimensionality. Maxworthy (1 970) also characterized particle 
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FIGURE 1. Schematic illustrations of the flow induced by the axial translation of buoyant particles 
through rapidly rotating fluids in (a) unbounded and (b) bounded geometries. Swirling motions of 
opposite sense are induced up- and downstream of the particle by the axial translation. 

motion in the unbounded flow geometry, and observed steady rise speeds that were 
typically a factor 7c/2 smaller than those predicted theoretically by Moore & Saffman 
(1969). 

Treatment of the deformable viscous drop problem entails consideration of the drop 
shape and internal flow. A buoyant drop is centrifugally stable on-axis and thus 
assumes the form of an axisymmetric body of revolution. In the rapid rotation limit, 
the dominant pressure in the problem is centrifugal ; consequently, at leading order the 
drop shape is set by a balance between centrifugal and interfacial tension forces, and 
corresponds to the prolate ellipsoidal shape (Vonnegut 1942; Rosenthal 1962) which 
would arise in the absence of drop translation. The internal and external flows couple 
through a boundary layer on the drop's surface. In the bounded problem, the rise speed 
depends explicitly on the details of this boundary layer. Conversely, in the unbounded 
problem, a first approximation to the rise speed depends only on the equatorial radius 
of the drop, which in turn sets the cross-sectional radius of the Taylor column. 

In the bounded geometry, vortex compression and stretching in the boundary layers, 
respectively, up- and downstream of the drop give rise to negative and positive relative 
vorticity, and thus large swirling motions of opposite sense in the fore and aft regions 
of the Taylor column. Ekman suction on the upstream drop and container surfaces and 
Ekman pumping on the downstream surfaces transport fluid from the fore to the aft 
regions of the Taylor column. In the case of rigid container boundaries (as illustrated 
in figure 6), the circuit of fluid transport from the upper to the lower container 
boundaries is completed by viscous internal boundary layers termed Stewartson layers 
(Greenspan 1968; Moore & Saffman 1969), which define the vertical walls of the 
Taylor column. In the case of free-slip (i.e. zero shear stress) container boundaries, 
Ekman transport occurs exclusively over the drop surface, and the drop rises only by 
virtue of its finite viscosity. 
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FIGURE 2. Drop of silicone fluid of radius 1.8 cm rising through water rotating at 56 r.p.m. Tracer 
particles illuminate the external Taylor column and the internal circulation. 

The nature of the internal circulation depends critically on the viscosity of the drop. 
When the drop viscosity is sufficiently small, a geostrophic flow prevails inside the 
drop, and the boundary layer at the drop surface assumes the form of a double Ekman 
layer (Berman, Bradford & Lundgren 1978; Baker & Israeli 1981). The drop in this 
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FIGURE 3. A drop of silicone fluid of radius 0.5 cm rising beneath a free surface. The rotation speed 
is 56 r.p.m. and the suspending fluid is water. The Taylor column extends to the forward boundary 
which thus has a pronounced influence on the rise speed. 

case will henceforth be referred to as ‘geostrophic’. In the case of a drop of sufficiently 
high viscosity, the internal motion may be described as a Stokes flow forced by Ekman 
stresses on the drop surface. The drop in this case will henceforth be referred to as a 
‘ Stokes’ drop. 
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Rigid boundaries Free-slip boundaries Unbounded 

Rigid particle Moore & Saffman (1968) Moore & Saffman (1968) Morrison & Morgan (1956) 
Hocking et al. (1479) 
Maxworthy (1968) (E) 

Maxworthy (1968) (E) Moore & Saffman (1969) 
Maxworthy (1970) (E) 

Viscous drop Present work Present work Present work 
Bubble Bush et al. (1992) Moore & Saffman (1968) Present work 

TABLE 1. An overview of theoretical and experimental (E) studies of slow steady on-axis particle 
motion in rapidly rotating low-viscosity fluids 

We consider the steady motion of a deformable viscous drop bound by surface 
tension and rising on-axis in both the bounded and unbounded geometries, and give 
particular attention to the bounded problem. In $2, we describe in detail the form of 
the flow induced by the rising drop, and delineate the parameter regime to be 
considered in the theoretical analysis. The governing equations are presented in $2.1. 
Details of the drop shape calculation closely follow Bush et al. (1992) and are presented 
in $2.2. In $2.3, we first deduce an estimate for the rise speed in the bounded geometry 
by way of simple scaling analyses, and proceed by outlining the formal solution 
method. In $3, we obtain detailed solutions for the flow field induced by a geostrophic 
drop, and compute the drop’s steady rise speed for a variety of boundary conditions. 
The case of a Stokes drop rising in the bounded geometry is considered in $4, where 
we demonstrate that the internal circulation is qualitatively different from that in the 
geostrophic drop. In $5 ,  we briefly consider the case of a drop of arbitrary viscosity 
rising on-axis in the unbounded geometry. Finally, we describe a complementary 
experimental study of axial drop motion in bounded rotating fluids in $6. 

2. Physical picture 
Consider an incompressible fluid of density p and kinematic viscosity v rotating 

about a vertical axis with constant angular velocity 52 in the presence of a vertical 
gravitational field g .  The solid-body rotation of the fluid is disrupted by the slow steady 
on-axis rise at speed U of a buoyant drop of volume V, kinematic viscosity fi, and 
density = p - Ap. The drop surface is characterized by a constant interfacial tension 
r. We introduce a cylindrical coordinate system ( r ,  q5, z )  with origin at the drop’s 
centre-of-mass and with the z-axis vertical, so that 51 = 52 2 and g = -gẑ  (see figure 5). 
Henceforth, the superscripts ‘ + ’ and ‘ - ’ denote variables in the upstream ( z  > 0) and 
downstream ( z  < 0) regions of the fluid, respectively. The drop is assumed to be 
axisymmetric, with a steady shape specified by z =f ’ ( r )  for r < R, where R is the 
drop’s ‘equatorial’ (maximum) radius. The detailed shape calculation which justifies 
this assumption is presented in $2.2. 

2.1. Governing equations 
In the rotating frame, the Navier-Stokes equations assume the form 

(1) 
av 1 
---+V-VV+2Q A V = - - V p d + V v 2 V ,  V . V = o ,  
at P 

where V(Y)  = (u, v,  w) is the fluid velocity relative to the rotating frame. The dynamic 
pressure pd is related to the actual fluid pressure p by 

p d  =p+pgz-$&2r2. (2) 
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FIGURE 4. A dyed silicone drop of radius 2 cm rising through water rotating at 56 r.p.m. The aspherical prolate 
distortion is associated with the small air bubbles, visible at the nose of the drop, which generally accompanied 
the injection of the tracer particles (see figure 2 also). 

BUSH, STONE & BLOXHAM (Facingp. 252) 
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FIGURE 5. A drop rising on-axis between rigid horizontal boundaries. 

We consider situations where the bulk external fluid motion is geostrophic, so that 
Coriolis forces are balanced by pressure gradients and the drop is circumscribed by a 
Taylor column. The translation of the drop produces swirling motions within the 
Taylor column of characteristic magnitude U, and associated dynamic pressure 
variations of magnitude pD U, R. Choosing length, velocity, time, and pressure scales 
of, respectively, R, U,, R/U, and p D q  R yields the dimensionless momentum equation 

92; (il: - 4 - V  * V V  4-22 A u = -Vp,+E,V2v. (3) 

The swirl Rossby number, 92; = U,/RO, characterizes the relative importance of 
inertial to Coriolis forces, while the Ekman number, E, = v/DR2, that of viscous to 
Coriolis forces. We consider the limit where the drop’s steady rise speed Uis sufficiently 
slow and the rotation rate of the fluid D sufficiently large that 92; 4 1 and E,  4 1, so 
that inertial and viscous effects may be ignored within the bulk of the external fluid, 
whose motion is governed by the geostrophic equation 

22 A U = -vp,. (4) 
Within the Taylor column, radial pressure gradients are balanced by Coriolis forces 
associated with the swirling motions: 2pDu(r) = dp/dr. Taking the curl of (4) yields the 
familiar Taylor-Proudman constraint of two-dimensionality : av/az = 0. The rising 
drop is circumscribed by a vertical Taylor column or ‘slug’ whose length is of order 
R/E,  in an unbounded fluid (Moore & Saffman 1969). In an experimental investigation 
of the unbounded problem, Maxworthy (1970) observed that the Taylor slug 
accompanying a rising particle is typically O(O.1 RIE,). 

In our analysis, which follows that of Moore & Saffman (1968), inertial effects are 
assumed to be negligible throughout the fluid, and viscous effects important only in 
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thin Ekman layers on the drop and container boundaries and in the Stewartson layers 
which define the walls of the Taylor column. The Ekman layers have characteristic 
thickness 6 = ( v / Q ) ' / ~  and so are thin, O(E:12), relative to the drop's equatorial radius. 

The flow inside the drop may be likewise described; however, as we are to consider 
the limits of both high and low internal viscosity, we allow some freedom in the choice 
of characteristic velocities and pressures for the internal flow. We denote inner 
variables with carats, and write 

where E and c a r e  characteristic internal pressures and velocities, and do = c / R Q  and 
Ek are the internal Rossby and Ekman numbers. In the limit < 1, we choose 
U = U,, so that the appropriate internal pressure scale is P, = $2U, R,  and a 
geostrophic balance exists within the drop : 

22 A 6 = -vPd. (6 )  

In compliance with the Taylor-Proudman theorem, the bulk internal motion must 
correspond to a z-independent swirling motion. Viscous effects are dynamically 
important only within the internal boundary layer (of characteristic thickness 
if = (I?/Q)'/~) required to match the velocities and balance the tangential stresses across 
the drop surface. 

In the limit of a high-viscosity drop (lie = O R / ;  4 1 ,  kk % l), treated in detail in $4, 
the internal flow is characterized by a velocity scale fi= U,/(AE;/2), and a viscous 
pressure scale = ,&/R, where p and I; = Ap denote the viscosities of the external and 
internal fluids. In this limit, the equations (5 )  governing the internal flow reduce to 
Stokes equations: 

For such a high-viscosity drop ( A  B I), the internal and external flows uncouple to 
leading order: the external motion corresponds to flow past a rigid particle, and the 
internal motion to a Stokes flow driven by tangential stresses applied at the drop 
surface. 

2.2. Drop shape calculation 
In this section we consider the shape of a fluid drop rising along the axis of rotation. 
The normal stress jump across the interface is balanced by the curvature force 
associated with the interfacial tension c. Using stress tensors defined in terms of the 
dynamic pressure p d ,  e.g. Td = -pd I+ 2p E, we write the dimensional normal stress 
balance as 

(8) 
where do and po are constant reference pressures inside and outside the drop, and n is 
the unit normal directed outward from the drop. The relative magnitudes of the 
various components of the normal stress at the drop surface are given by 

-v@d+v28 = 0, V.8 = 0. (7) 

(ao -Po)  - Ap;Q2 r2 + Apgz + n. (n - Td - n- Td) = cV,. n, 

geostrophic pQRU, w~--, P 

hydrostatic g - g;-, P 

x 
centrifugal Ap 52' R2 AP 

centrifugal R 0 2  AP 
z-- 

viscous - puU,/S 1 / 2  P 
AP 

x9?;Ek -, 
centrifugal - Ap Q2 R2 

(9) 
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where a typical rise speed in the bounded geometry (e.g. V, defined in (13)) has 
been used to simplify (10). In the dynamic regime of interest < l), and for 
Ap/p M O( l), the geostrophic, hydrostatic, and viscous contributions to the normal 
stress balance are negligible. At leading order, the dimensionless normal stress balance 
( 8 )  thus assumes the form describing the shape of a stationary drop in a rotating fluid, 

P+4Cr2 = V,.n, (12) 

where Z = -52' R3 Ap/8a is the rotational Bond number and P is a constant. The drop 
shape is determined by a balance between the centrifugal force, which acts to drive the 
lighter drop fluid along the axis of rotation, and the force due to interfacial tension and 
curvature, which tends to maintain the sphericity of the drop. For the case of a buoyant 
drop, C < 0, the shape is prolate ellipsoidal, with an ellipticity determined by 2 
(Rosenthal 1962). These prolate figures of revolution have been demonstrated to be 
stable to small disturbances (Ross 1968a, b). 

The contributions to the normal stress balance from the hydrostatic and geostrophic 
components are negligible to leading order, so that the drop assumes a foreaft  
axisymmetric shape. This symmetry will simplify the calculation of the drop's rise 
speed in $3. Detailed knowledge of the flow induced by the drop translation, as will be 
determined in $3, makes it possible to infer the precise form of the dynamic pressure 
in the external fluid and so to determine the small corrections to the drop shape 
necessitated by terms neglected in (12). In Appendix A, we consider the special case of 
a spherical bubble, and illustrate the fore-aft asymmetric distortion associated with the 
hydrostatic and geostrophic pressure fields. A perturbation analysis demonstrates that 
the combined effect of the hydrostatic and geostrophic pressures is to distort a spherical 
bubble into a bullet shape, which is slightly flattened at the back surface and elongated 
at the front. 

2.3. Rise speed calculation 
Since the swirling motions induced by the drop motion are of opposite sense in the fore 
and aft regions of the Taylor column, the concomitant geostrophic pressure defects 
are of opposite sign ; in particular, geostrophic high- and low-pressure regions exist, 
respectively, up- and downstream of the drop. The pressure jump across the 
bubble surface results in a hydrodynamic force, or drag, of characteristic magnitude 
7cpR352U,. In the case of a bounded horizontal plane layer, swirling motions, 
U, = O(U/J!?;/~), are generated within the Taylor column by vortex stretching and 
compression in Ekman layers on the drop and container surfaces. Equating the 
geostrophic drag, xpR2 52U/E;/2, with the buoyancy force, gAp V, yields a characteristic 
rise speed V, given by 

While V, has been deduced from a simple scaling analysis, it corresponds precisely to 
the rise speed of an inviscid drop between rigid horizontal boundaries (Bush et al. 
1992). The fluid viscosity acts to release the constraint imposed by the fluid's rotation 
through generation of Ekman transport from the fore to the aft column regions; 
consequently, the rise speed increases with fluid viscosity as vl/' and decreases with 
rotation rate as 52-3/2. 

In the case of the 'geostrophic' drop, the tangential stress balance at the drop 
interface, namely, j@/6 M indicates the importance of the parameter 
/3 = $/p(C/v)'/', through which the drop's fluid properties enter the analysis. The rise 
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speed further depends on the form of the horizontal boundaries of the fluid domain. 
We characterize the nature of stress transmission at the top and bottom container 
boundaries with the respective parameters ct and cb, which assume the value 1 if the 
appropriate boundary is rigid, and 0 if it is a free-slip (or zero shear stress) surface. We 
thus write the general result for the rise speed of a drop between horizontal boundaries 
as 

J! = B@, c, Ct, C b ) .  (14) u, 
The principal contribution of this paper is the determination of the form of the 
function F. 

The rise speed of the drop is determined by balancing the buoyancy force with the 
drag exerted by the external fluid, which is calculated by integrating the viscous and 
pressure stresses over the drop surface. The magnitude of the viscous stress relative to 
the dynamic pressure contribution is given by pU,/G/@QU, R) z El’’, which is 
necessarily small in the parameter regime of interest. The drag D may thus be expressed 
in dimensionless terms, accurate to O(E;”), as 

The drag may be written in terms of the geostrophic swirl velocities within the Taylor 
column by using the radial component of (4), which yields 

r’[u-(r) - u+(r)] dr. 
7cpR3 4 U, 

In the bounded problem, the swirl velocities u are related to the rise speed U through 
Ekman compatibility conditions, which relate the secondary vertical fluxes into the 
boundary layers on the container and drop boundaries to the primary swirling motions 
within the Taylor column. The Ekman compatibility conditions to be applied at the 
container boundaries are standard (Greenspan 1968). The determination of the 
appropriate Ekman compatibility conditions at the drop surface requires consideration 
of the internal drop dynamics. 

3. Low-viscosity drops in bounded geometries 
In the limit (go, ,$.) < 1, a geostrophic balance exists within the drop. The bulk 

internal motion must correspond to a z-independent swirling motion C(r), and the drop 
surface corresponds to a curved double Ekman layer. The form of the curved double 
Ekman layer and the associated Ekman compatibility conditions have been described 
by Berman et al. (1978), and are briefly summarized in Appendix B. We now apply the 
appropriate Ekman compatibility conditions, equation (B 2) for a stationary horizontal 
boundary and (B 4) for a double Ekman layer. The Ekman compatibility conditions 
take the explicit form: 

upper container surface 

Eii2 d 
2r dr 

w+(r) = -c t - - ( ru+(r) ) ;  
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lower container surface 
E;12 d 
2r dr 

w-(r) = cb--(ru-(r)). 

All velocities in equations (1 7)-(22) have been non-dimensionalized with respect to the 
characteristic swirl, U/E;/' ,  and the vertical velocities are measured relative to the 
stationary container boundaries. The constant term E;I2 appearing in (1 8)-(2 1) thus 
indicates the uniform translation of the drop surface. 

Equations (18)-(21) demonstrate that the swirl velocity within the drop is the 
average of the swirls above and below the drop, 

6(r) = :(u+(r) + u-(r)), (23) 
and also that w+(r) = w-(r). Subtracting (17) from (19) and using (23) yields a relation 
between the dimensionless rise speed and the swirl velocities up- and downstream of the 
drop 

Similarly, (21) and (22) yield 

Comparison of (24) and (25) reveals that the swirl velocities above the below the drop 
are related by 

Substituting (26) into (24) and integrating radially from 0 to r yields the form of the 
upstream swirl velocity : 

cb u-(r) = - ct u+(r). (26) 

" 

Equations (26) and (27) may be substituted directly into (16) in order to deduce the 
dimensional drag D on the drop: 

r3( 1 + c t / cb )  dr 
D = 2J 

npR3 l2 U/  E;I2 ct+;(i +Ct/Cb)[i +y211/4p/(1 +p)' 
which can be integrated provided the detailed drop shape fir) is known. 
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In 

FIGURE 6. A schematic illustration of the flow induced by a low-viscosity (‘geostrophic’) drop rising 
between rigid horizontal boundaries. The drop interface is characterized by a double Ekman layer, 
and the internal flow by a weak downward flow (relative to the drop surface). 

Equating the drag D with the buoyancy force, VgAp,  yields the steady rise speed: 

U r3( 1 + c t /cb)  dr 

where V, is the rise speed of a bubble between rigid horizontal boundaries introduced 
in (13). The rise speed depends on both the fluid properties (which enter through the 
single parameter /3) and the drop shape. Equations (17)-(22) also yield the form of the 
flow inside the drop. The swirl along the drop surface, denoted by vint, is determined 
from a detailed analysis of the double Ekman layer (see Appendix B). We thus obtain 

(3 1) 

(32) 

1 
v;nt(r) = 1+/1’~+(1) (1 + N l  -c~/c&), 

1 
v in t (4  = I+pv+(‘) ( H 1  - C t / C b )  - C t / C b ) ) .  

Note that v+( 1) = 0 according to (27) since If’( 1) I +co ; consequently, the surface 
velocity is continuous at the drop equator: ~ ; ~ , ( l )  = u;,Jl) = 0. 

3.1. The eflect of the container boundaries 
Rigid boundaries (ct = cb = 1): A qualitative representation of the flow induced by a 
low-viscosity drop rising between rigid boundaries is illustrated in figure 6. Ekman 
transport occurs over both the drop and container surfaces. Continuity requires that 
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FIGURE 7. A schematic illustration of the flows induced by a geostrophic drop rising between different 
combinations of stress-free (unhatched) and rigid (hatched) boundaries. In each case, Ekman 
transport occurs exclusively over the drop surface, and the drops rise only by virtue of their finite 
viscosity. While the flows are qualitatively different, the drop rise speeds are identical. 

the transport over the container boundaries be completed through vertical transport in 
the Stewartson layers which define the walls of the Taylor column. These internal 
viscous boundary layers assume the classic sandwich structure, with an inner layer of 
0(Ei/4) thickness in which the vertical transport occurs, and outer layers of 0(ELl3) in 
which swirling motions are matched (Greenspan 1968; Moore & Saffman 1969). 
Swirling motions of equal magnitude and opposite sense arise in the fore and aft 
regions of the Taylor column; thus, according to (23), there is no geostrophic swirling 
motion within the drop: 

The top and bottom drop surfaces rotate in the same sense as the fluid in, respectively, 
the up- and downstream regions of the Taylor column, with magnitudes 

The motions on the upper and lower interface correspond to swirling motions of 
opposite sense; consequently, the flow driven within the drop may be likened to that 
driven by counter-rotating spherical caps (Greenspan 1968). The internal flow is 
characterized by an order E;/' downward flow driven by Ekman pumping and suction 
on, respectively, the upper and lower inner drop surfaces : 

r2 $(r) = -;--- 
1 +(1 +f"))'"P/(1 +PI (35) 
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The rise speed of a drop between rigid upper and lower boundaries, V,,, depends on 
the drop’s shape and the viscosity parameter /3 as 

In the limit of an inviscid drop, P + O ,  Ekman transport over the drop surface is 
precluded, the rise speed is a minimum, and (36) yields the rise speed of a bubble: 
U = V, (Bush et al. 1992). For a particular shape, the rise speed increases monotonically 
with P. In the P+cc limit, the rise speed is a maximum, and the rigid particle result of 
Moore & Saffman (1968) obtains. 

Free-slip boundaries (c, = cb = 0). Once again, symmetry in the boundary conditions 
ensures that the swirling motions up- and downstream of the drop be equal and 
opposite, and that there be no geostrophic swirl within the drop (see figure 7): 

Counter-rotating upper and lower drop surfaces once again generate a downward flow 
within the geostrophic drop interior of magnitude $(r) = (p/b) V,, where the rise speed 
of a drop between free-slip boundaries, U,, is given by 

In this case, no Ekman transport occurs over the container boundaries, and the drop 
rises only by virtue of its finite viscosity. Fluid is transported from the fore to the aft 
regions of the Taylor column exclusively through boundary layer transport over the 
drop surface, thereby obviating the need for vertical transport in the Stewartson layers. 
In the limit of an inviscid drop, P + 0, Ekman transport from the fore to the aft regions 
of the Taylor column is precluded entirely, and the bubble cannot rise. This paradoxical 
result indicates the limitations of the geostrophic approximation in describing this flow 
situation. As first discussed by Moore & Saffman (1968), the precise manner in which 
the Taylor-Proudman theorem is relaxed in the limit P = 0 remains an open question. 

Rigid lower and free-slip upper boundaries (ct = 0, cb = 1): The asymmetry in the 
boundary conditions generates an asymmetry in the flow field; in particular, there is a 
swirling motion above but not below the drop, and a non-zero geostrophic swirl arises 
within the bulk of the drop: 

While the flow fields generated by drops rising between free-slip and mixed (free-slip 
upper and rigid lower) container boundaries are thus markedly different, as illustrated 
schematically in figure 7, the rise speeds are identical; consequently, the rise speed 
equation (38) applies also to the case of mixed boundaries. Moreover, the magnitude 
of the vertical velocity generated inside the drop is identical in the case of mixed and 
free boundaries. 

Since the stress-free upper surface cannot support an Ekman layer, there is no 
Ekman suction on the upper container boundary, no vertical transport in the 
Stewartson layers, no Ekman pumping on the lower boundary, and no swirling motion 
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FIGURE 8. The rise speed of geostrophic spherical drops between rigid (solid curve) and stress-free 
(dashed curve) horizontal boundaries, as a function of the viscosity parameter ,8 = @ / p ) ( f i / ~ ) l ’ ~ .  
Rise speeds are normalized with respect to that of a spherical inviscid drop rising between rigid 
boundaries, U,, as defined in (13). 

downstream of the drop. As in the case of stress-free upper and lower boundaries, 
transport from the fore to the aft column regions is confined to the drop surface. 
Finally, since a free surface does not support an Ekman layer, the shape of the upper 
surface (provided it is axisymmetric) is dynamically unimportant; therefore, the rise 
speed result (38) applies equally well to the case of a drop rising on-axis beneath a free 
surface curved arbitrarily by centrifugal effects. 

Likewise in the case of rigid upper and free-slip lower boundaries (ct = 1, cb = 0), 
swirling motions are confined to the Taylor column region adjacent to the free-slip 
surface (below the drop), Ekman transport is confined to the drop surface, and the 
drop rises with speed U,. 

3.2. Spherical drops: the efect  of /3 
When the internal motion may be described as geostrophic, we have demonstrated that 
the rise speed of a drop through a bounded fluid layer depends on its shape in addition 
to its physical properties, and i, which enter the analysis through the single parameter 
/3. We proceed by illustrating the explicit dependence of rise speed on /3 by considering 
the case of spherical drops which arise naturally in the limit of large interfacial tension 
(small rotational Bond number). Figure 8 illustrates the dependence of rise speed on 
/3 for a spherical drop rising between rigid (upper curve) and stress-free (lower curve) 
container boundaries. For a particular value of /I, the rise speed is always larger for the 
rigid than the free-slip boundary case owing to the additional Ekman transport over 
the container boundaries. In both cases, the rise speed is a minimum for the case of a 
bubble v = 0) and a maximum for the case of a rigid sphere @+LO). Between these 
two limits, the rise speed increases monotonically with /3 since increasing the drop 
viscosity serves to enhance the efficiency of Ekman transport over the drop surface, and 
so facilitates the rise of the drop. 

As a caveat, we note that the results presented in figure 8 are based on the 
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FIGURE 9. Rise speed and shape of a fluid drop bound by surface tension and rising on-axis between 
rigid horizontal boundaries, as a function of the rotational Bond number Z. The lower curve 
represents the rise speed of an inviscid drop and the upper curve that of an identically shaped rigid 
body. The result (36) makes it possible to span the intermediate finite-,!? regime. Rise speeds are 
normalized with respect to that of a spherical inviscid drop and deformed shapes are scaled such that 
the volumes correspond to that of the undeformed spherical drop. 

assumption that a geostrophic balance exists inside the drop, and so must eventually 
become invalid when the drop viscosity increases to a value such that = O(1). 
Nonetheless, in the large-P limit, the geostrophic theory predicts that the swirling 
motion at the interface will come to rest, so that the external fluid effectively encounters 
a stationary rigid surface. It is thus that the theory based on the assumption of a 
geostrophic drop interior is capable of reproducing the rigid particle result of Moore 
& Saffman (1968). A consistent model of high-viscosity drop motion will be presented 
in $4. 

3.3. Coupling shape and rise speed analyses 
We have demonstrated that to leading order drops rising on axis assume a prolate 
ellipsoidal shape determined by the rotational Bond number C, and further that the 
drop’s rise speed depends only on the drop shapefir) and the viscosity parameter /3. 
For the bounded problem, we may thus uniquely deduce the drop’s velocity as a 
function of two parameters C and p. 

Figure 9 illustrates the shape and rise speed of a drop between rigid boundaries as a 
function of the rotational Bond number. The lower curve indicates the rise speed of a 
bubble (/3 = 0) which, according to (13), is independent of the bubble’s detailed shape 
and depends only on its equatorial radius to the inverse fourth power. In the limit of 
large surface tension (C+ 0), the bubble is spherical, the equatorial radius a maximum, 
and the rise speed a minimum. As rotational effects become more important, and C 
decreases through the range (0, -$), the bubble becomes progressively more prolate, 
the equatorial radius decreases, and the rise speed increases accordingly. In the limit 
of C+ -i, the bubble tends toward a cylindrical thread; thus, according to our theory, 
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the rise speed increases without bound. In this limit, viscous effects are expected to 
dominate the external dynamics (E, > l), so that a geostrophic balance no longer 
adequately describes the external flow. 

The upper curve in figure 9 indicates the rise speed of equivalently shaped rigid 
particles, which rise faster than bubbles due to additional Ekman transport over the 
rigid surface. Finally, the results of $3.1 make it possible to fill in the intervening finite- 

regime for drops of finite viscosity. 

4. High-viscosity drops in bounded geometries 
In the limit of a high-viscosity drop (ke < 1 ,  kk % l), the equations governing the 

internal flow reduce to Stokes equations (7). The dimensional tangential stress balance 
at the drop surface indicates that ,hfi/R z ,uUU,/& where fi and R denote characteristic 
length and velocity scales for the internal flow. The relative magnitudes of the velocities 
associated with the stress-driven internal flow and the external geostrophic flow are 
thus fi/UU, = O(h-' Ei1l2),  where h = b/,u 9 1 denotes the viscosity ratio. Provided 
b / p  = O(l), then kk = (hp/b)E, 9 1 implies that the viscously dominated internal 
motions are very slow relative to the geostrophic swirls: fi/q = O(h-1k;1/2) < 1.  

We proceed by deducing the form of the flow associated with a high-viscosity drop 
rising along the length of a Taylor column. For simplicity, we consider the case of a 
spherical drop, and treat the problem in spherical polar coordinates (F, 19, q5). The 
preceding scaling analysis suggests the utility of a perturbation analysis appropriate for 
very slow internal flows. We expand the internal and external velocities, respectively, 
v(r) and C(r), in powers of the small parameter e = A-' E;'12 which characterizes the 
magnitude of the slow internal motion: 

v(r; E,, A )  = vo(r; E,) + eu1(r; E,) + . . . , 
C(r; E,, A) = eCo(r; E,) + . . . . 

(40) 

(41) 

To zeroth order (e = 0), the external flow vo(r; Ek) corresponds to that past a rigid 
sphere, specifically a geostrophic swirl with a narrow viscous boundary layer. The 
surface stresses associated with the boundary layers on the drop generate an O(e) 
internal flow, io(r), which in turn alters the boundary conditions on the external flow, 
and so necessitates an O(e) adjustment, vl(r), to the external flow. In particular, the 
swirling velocities within the Taylor column increase by an amount of O(e), and the 
Ekman transport over the drop surface decreases accordingly. The drag correction 
associated with the slow internal motion and the associated change in the geostrophic 
pressure field is thus O(e); however, since e 4 Ei/2 ,  this correction is negligible 
compared to the O(Ek/2) viscous drag neglected in the boundary layer approximation 
applied in the derivation of (16). Consequently, the perturbation analysis will not serve 
to illustrate in a self-consistent fashion the dependence of rise speed on drop viscosity 
for a high-viscosity drop. However, the analysis does yield the approximate form of the 
flow induced inside the drop. 

The form of the Ekman layer flow, vo(r), on a rigid sphere is given by 

(Y- 1) r -  1) 
u$(Y,B) = -v'(r) exp [ -T(&cos O)l/'] sin [ ~ ( ~ c o s  O)"'], (42) 
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where r = rsin 8 is the cylindrical radial coordinate, and v*(r) denote the external 
geostrophic swirling motions. This solution breaks down in the neighbourhood of the 
drop equator. For the case of a rigid sphere rising between rigid horizontal boundaries, 
the dimensional geostrophic swirl velocities in the over- and underlying Taylor column 
may be deduced directly from (33) by taking the limit p-00, and may be expressed in 
spherical polar coordinates as 

( f cos 8)ll2 sin 8 
v+(r )  = f r  

1 +COP 8 . (44) 

The associated dimensionless tangential stresses at the upper (+) and lower (-) sphere 
surface are given by 

cos 8 sin 8 
7$(8) = f Ei1I2 

1 + ( f cos 8)l’Z’ 

1 + ( f cos 8)1’2. 

cos 8 sin 8 
T +  (6) = - ~ i 1 / 2  

r# 

(45) 

This stress field drives the O(e) flow inside the drop. The form of the surface-stress- 
driven internal flow is deduced by a standard poloidal-toroidal decomposition, 
followed by a suitable eigenfunction expansion. The techniques employed are standard, 
and are outlined in Appendix C. The internal flow field is given by 

02 

a,(c 8) = - C A ,  f Pi(C0S O), 
1=1 

(49) 

where 4 are the Legendre polynomials, and Pi = - aP,/aO are the associated Legendre 
polynomials of the first order. The coefficients A,,  B, in the eigenfunction expansions 
are defined in terms of the surface stresses as 

A -  21+ 7,@(0) Pi(cos 8) sin 8 d8, , - 21(12- 1) 

21+ 1 
7,&6) Pi(cos 8) sin 8 do. 

BL = 41(1+ 1)(1+ 1)(21+ 3) 1 
Poloidal surface stresses drive purely poloidal internal flows (ti4 = 0), and toroidal 
stresses drive purely toroidal flows (zi ,  = ti, = 0). The form of the internal flow is 
determined by substituting (45) and (46) into (47)-(51) and truncating the series at 
sufficiently large 1, and is illustrated in figure 10. As viewed from above the rising drop, 
the internal flow is characterized by swirling toroidal flows in the clockwise and 
counterclockwise sense, respectively, above and below the drop equator. The poloidal 
flow is characterized by a circulation pattern reminiscent of the Hadamard-Rybczynski 
solution for a high-viscosity drop translating in an unbounded Stokes flow: fluid is 
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FIGURE 10. A single streamline illustrating the form of the flow induced within a high-viscosity 
(‘Stokes’) drop rising along the length of a Taylor column. The internal circulation is driven by the 
tangential stresses associated with the Ekman layer on the drop surface. 

swept around the drop surface, and rises vertically near the drop’s centre. The opposite 
sense of poloidal circulation relative to the geostrophic drop will be discussed in 97. 

5. The unbounded problem 
When a particle rises through an unbounded domain, the nature of the flow induced 

is entirely different from that in the bounded geometry. Fluid transport from the fore 
to the aft column regions occurs by viscous relaxation of the Taylor-Proudman 
constraint in vertical shear layers (figure l), rather than through Ekman transport over 
the particle and container surfaces. The swirl velocities generated within the Taylor 
slug are comparable in magnitude to the rise speed : U, z U. Balancing the characteristic 
geostrophic drag, of order pSZUnR3, with the buoyancy force yields a steady rise speed 
U given by 

The coefficient 3n/16 is included so that U corresponds precisely to the rise speed of 
a rigid axisymmetric body of revolution of equatorial radius R, as calculated by Moore 
& Saffman (1969). The rise speed decreases with increasing rotation rate, but is 
independent of the fluid viscosity. Since the particle’s motion no longer relies explicitly 
on Ekman transport over the drop surface, the drag on the particle is independent of 
the detailed structure of the boundary layer on the drop surface. Consequently, the rise 
speed is independent of the particle’s detailed shape, and depends only on its equatorial 
radius. 

The physical picture of drop motion through an unbounded flow is changed very 
little by the presence of finite drop viscosity. We have demonstrated that in general the 
fluid viscosity prescribes the efficiency of Ekman transport over the drop surface, and 
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FIGURE 11. Rise speed and shape of a fluid drop bound by surface tension and rising on-axis through 
an unbounded flow, as a function of the rotational Bond number Z. The rise speeds are normalized 
with respect to that of a spherical drop, U, = $(Ap/p)(g/Q), and deformed shapes are scaled such 
that the volumes correspond to that of the undeformed spherical drop. 

that this transport is always less than that over an equivalently shaped rigid particle. 
We thus conclude that, as in the rigid particle case, Ekman transport over a viscous 
drop rising through an unbounded fluid is negligible. The drop's rise speed corresponds 
to U, which depends only on the equatorial radius of the drop, which sets the maximum 
radius of the associated Taylor slug. We thus deduce the rise speed of a drop of known 
volume as a function of the rotational Bond number, which uniquely prescribes the 
drop's equatorial radius. The result is illustrated in figure 11. 

6. Experiments 
We proceed by presenting results of an experimental study of axial drop motion 

through a rapidly rotating plane layer of fluid bounded above and below by rigid 
horizontal boundaries. In addition to describing a number of qualitative features of the 
flow field, we quantify the dependence of rise speed on fluid depth and drop viscosity. 
Further details regarding these experiments, in addition to an experimental study of the 
effectively unbounded geometry, may be found in Bush (1993). 

6.1. Experimental technique 
Figure 12 illustrates the rotating tank apparatus and drop release mechanism designed 
and constructed for the experimental component of our study. The tank is rotated by 
a direct-drive system capable of sustaining angular speeds of 60 r.p.m. The rotating 
frame is coupled electrically to the laboratory frame through eight brush contacts 
mounted on the rotating axle. The tank consists of a 90 cm long Plexiglas cylinder of 
inner diameter 30.5 cm. A false lid is attached with a threaded screw so that its height 
can be adjusted, and the rise distance of the drops may thus be varied from 8 to 80 cm. 
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FIGURE 12. The rotating tank apparatus: (a) Plexiglas tank, (b) false lid, ( c )  free surface, ( d )  threaded 
screw, (e)  video camera, (j) tank support frame, (g) release mechanism, (h)  rotating base plate, ( i )  
bearing, ( j )  axle, (k)  brush contacts, ( I )  support structure, (m) gear box, (n) motor, (0) base plate, ( p )  
levelling screws. 

Drops of typical volume 35 ml are released from a 60 ml syringe driven by a linear 
actuator with a variable speed control. 

A number of practical difficulties arose from the fact that the drop fluid has to be 
injected into the tank. The injection of drop fluid on-axis necessitates the ejection of 
water through the circular collar around the false lid; consequently, a source-sink flow 
corresponding to a geostrophic l / r  vortex (Hide 1968) is generated within the bulk of 
the fluid. Moreover, the inability to close the system enabled communication between 
the upper free surface and the fluid bulk; more specifically, the generation of inertial 
waves by surface waves. The false lid was designed with the intention of shielding the 
surface waves from the tank interior by viscous damping in the thin (1 mm) gap 
separating the lid from the tank walls. Finally, the on-axis release of the drop fluid 
alters the lower boundary condition on the flow. In particular, the lower surface does 
not correspond to a rigid horizontal boundary, but rather to an axisymmetric curved 
fluid-fluid interface. 
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Requirement Ensures that Reference 

E, < 1 
go < 1 

L < &R/E, 
$/E:’* < 1 

94?0/Ei3/7 < 1 

viscous effects are confined to thin boundary layers 
inertial effects associated with vertical motion are 

Taylor column spans entire fluid depth 
inertial effects associated with geostrophic 

inertial effects in Stewartson layers are negligible 

e.g. Greenspan (1968) 
Moore & Saffman (1968) 

Maxworthy (1968) 
Moore & Saffman (1969) 

Moore & Saffman (1969) 

negligible 

swirling motions are negligible 

TABLE 2. Summary of the desired parameter regime 

Table 2 summarizes the restrictions which must be met in order to achieve the 
desired geostrophic parameter regime. The inertial effects associated with the vertical 
drop motion are typically small in our experiments (Se, -g 1); however, the inertial 
influences associated with the swirling motions within the Taylor column are not so 
easily neglected. In order to achieve swirl Rossby numbers ,%: < 1 in the laboratory, 
the normalized density defect, Ap/p, of the drop has to be less than 1 %. Furthermore, 
if the density defect of the drop is less than 0.3Y0, the drop tends to wander 
off-axis. Consequently, the desired parameter regime can be achieved only with 
0.3 YO < Ap/p < 1 .O %. Finally, the most stringent requirement, 90/EIc3/7 << 1 (Moore & 
Saffman 1969), is seldom met in the laboratory experiments ; consequently, wave-like 
disturbances are often observed in the Stewartson layers. 

Various Dow Corning silicone oils are used as the drop fluid, while the suspending 
fluid is either water or a water-ethanol solution. The interfacial tension of the 
silicone oil in water, typically 30 dyne cm-l (Rumscheidt & Mason 1961), is sufficiently 
high that the drops are nearly spherical (with length to diameter ratio of less than 1.1). 
We denote the spherical drop radius by a. The observed rise speeds may thus be 
compared directly to the theoretical results for spherical drops summarized in figure 8. 
The principal source of error in the reported values of the normalized rise speed is the 
indeterminacy in the density defect, Ap/p, which arises from the necessity of matching 
very closely the densities of the drop and suspending fluids. 

The density and viscosity of both the drop and suspending fluids are measured using 
standard hydrometers and glass capillary viscometers. A video image of a reference 
grid submerged in the tank is captured before each run. The tank is set in motion and 
the suspending fluid left to spin up. The drop fluid is injected slowly so as to minimize 
the excitation of inertial waves and pronounced source-sink flows. The drop’s 
subsequent rise is recorded on video along with a time code image. The drop’s motion 
is reviewed on video over the captured background of the reference grid, so that both 
the steady shape and rise speed can be calculated. The drops typically assume near- 
spherical shapes and steady rise speeds after rising only a few drop diameters. 

A number of standard visualization techniques were used to observe the qualitative 
features of the flow. The nature of the source-sink flow associated with the injection 
of the drop, and the time required for the fluid to spin up, were visualized with the 
Thymol Blue technique of Baker (1966). The nature of the wake and Taylor column 
could be observed in an unobtrusive fashion by injecting in advance of the drop a small 
volume of white tracer fluid (Kalliroscope). Finally, the presence of small air bubbles 
or other visible impurities (refer to figure 2) often made it possible to deduce the sense 
of bulk circulation within the drop. 
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FIGURE 13. A schematic illustration of the flow observed within a spherical drop of viscosity 50 CS and 
radius 1.7 cm rising through water. The corresponding internal Ekman number is 3 x and 
p = 7.2. The flow is characterized by regions of (a) slow downflow in the drop interior, (b)  vigorous 
recirculation near the drop equator, and ( c )  instability of the recirculation eddies. 

6.2. Flow field observations, endwall and inertial efects 
Figure 13 illustrates the form of the flow observed inside the drop for /3 = 7.2, which 
is in qualitative agreement with that predicted by the geostrophic theory presented in 
$3. The internal motion is characterized by a bulk downward flow (relative to the drop 
surface), which is consistent with the presence of Ekman pumping and suction on, 
respectively, the upper and lower drop surfaces. The region of recirculation is confined 
to a thin region near the drop equator. The vigour of the recirculation was evident in 
an instability of the flow. It was impossible to observe the sense of internal circulation 
of the more sluggish flows induced inside the high-viscosity drops, as the convective 
timescale of the internal circulation was considerably greater than the rise time. 

Figure 4 (plate 1) illustrates a drop rising in the bounded geometry (refer also to 
figures 2 and 3). The external flow structure is rendered visible by Kalliroscope, which 
is concentrated in the wake of the drop. The helical structure characteristic of the 
downstream Taylor column is also clearly visible. The corkscrew streamlines indicate 
the path followed by fluid as it is ejected from an Ekman layer then advected by the 
geostrophic swirl within the Taylor column. Indeed, the pitch of the helix gives an 
indication of the relative magnitudes of the vertical and swirling motions within the 
Taylor column (Maxworthy 1968). 

Figure 14 illustrates the dependence of the normalized rise speed on a/L,  the ratio 
of drop radius to rise distance. For this set of experiments, the drop radii were 
approximately 2 cm, and the height of the false lid was raised on successive runs. For 
a / L  2 0.08, the rise speeds are constant; however, for small values of a/L ,  the speeds 
are seen to increase with rise distance. This observation indicates that the bounded 
results may be expected to obtain only for a / L  > 200Ek, which is clearly a more 
stringent constraint than that proposed by Maxworthy (1968) and listed in table 2. This 
discrepancy is likely due to the persistence of inertial effects associated with the swirling 
motions within the column and the motions in the Stewartson layers. 

Figure 15 illustrates the observed dependence of rise speed on the swirl Rossby 



270 J. W. M .  Bush, H.  A .  Stone and J .  Bloxham 

4.2 

3.8 

3.4 

3.0 

0.08 0.12 
a lL 

FIGURE 14. Data illustrating the dependence of rise speed on the ratio a/L,  where a is the drop radius, 
and L is the depth of the fluid layer. Rise speeds are normalized with respect to the predicted value 
for a spherical bubble of the same size. For this set of experiments, /3 = 10. 
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FIGURE 15. Data illustrating the dependence of rise speed on the swirl Rossby number, 9;, for a series 
of runs with both /3= 23.3 and a / L  = 0.1 held constant. The solid line indicates the theoretically 
predicted value of 2.38 valid in the 9; < 1 limit. 

number for a series of runs made with = 23.3. For this set of experiments, through 
blending silicone oils, we produced a series of drops with identical viscosities but 
varying densities. As the drop buoyancy decreases, and 9; decreases from a maximum 
of 2.1, the observed rise speeds steadily approach that predicted by theory. For %?: < 0.5, 
the observed rise speeds were within roughly 25 % of the value predicted on the basis 
of the geostrophic theory. 
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FIGURE 16. Experimental data illustrating the dependence of drop rise speed on p =  @ / p ) ( C / ~ ) l ’ ~ .  The 
rise speeds are normalized with respect to that of a spherical bubble between rigid boundaries. The 
solid curve indicates the theoretically predicted dependence of rise speed of a spherical drop between 
rigid horizontal boundaries, and corresponds to the upper curve of figure 8. 

6.3. The efSects of drop viscosity 
Figure 16 illustrates the observed dependence of steady rise speed on the viscosity 
parameter p, along with the theoretically predicted dependence based on the 
assumption of a geostrophic spherical drop. Data for 9: < 0.5 are presented. Runs for 
p > 7 were made using water as the suspending fluid, while the small-p regime was 
examined with ethanol-water suspending solutions. The errors in U/U,  are larger at 
small p owing to the indeterminacies in the densities of the ethanol solutions, which 
arise from the development of weak stratification and preferential evaporation of the 
ethanol. 

The ratio of internal to external fluid viscosities is seen to span four orders of 
magnitude. The internal Ekman number is small (& < l), so that the internal flow is 
expected to be geostrophic provided p < 34. In this range, roughly speaking, the 
normalized rise speeds increase monotonically with /3 in accordance with theory, but 
exceed the theoretically predicted values by up to 33 %. For > 34, the normalized rise 
speeds decrease, and so approach the rigid particle result, V/V, = 105/43, to within 
10%. 

The data presented in figure 16 all lie above the theoretical curve, and so indicate the 
importance of the inertial effects ignored in the theoretical development. The 
anomalously large rise speeds were likely associated with our inability to strictly satisfy 
the requirements (9:, 9 0 / E ~ / ’ )  + 1.  In accord with the observations of Maxworthy 
(1968), weak radial outflow driven by the inertia of the swirling fluid within the Taylor 
column may have facilitated the rise of the drop. Moreover, the observed inertial 
instabilities in the Stewartson layers may have contributed to the vertical transport in 
the Stewartson layers and so facilitated the rise of the drop. 

Maxworthy (1968) noted that the observed rise speeds for rigid spheres between two 
rigid boundaries were in better agreement with theory than those of rigid spheres rising 
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beneath a free upper surface. This observation suggests that in the absence of an 
Ekman transport mechanism through which to efficiently transport fluid from the fore 
to the aft regions of the Taylor column, an alternative inertially dependent mechanism 
is favoured. Thus, as the drop viscosity decreases and the Ekman transport over the 
drop surface becomes less efficient, this boundary layer transport is obviated in favour 
of weak radial motions within the Taylor column. This reasoning might provide a 
possible explanation for the relative constancy of the rise speed over the wide range of 
/3 considered. An alternative explanation is that impurities in the base fluid aggregate 
on the drop surface in the form of surfactants and so act to rigidify the drop (e.g. 
Levich 1962). However, the observation of circulation within the drops in our 
experiments suggests that the effects of surfactants were not significant. 

7. Discussion 
Our theoretical analysis has yielded solutions for the steady shape and rise speed of 

a drop rising on-axis through a rapidly rotating fluid. The solutions for a variety of 
circumstances are summarized in table 3. While the rise speed is determined by a 
balance between hydrostatic and geostrophic pressures acting on the drop surface, the 
normal stress balance is to leading order independent of these pressure components, 
and the drop shape is set by a balance between centrifugal pressures and interfacial 
tension. Drop shapes correspond to prolate ellipsoids whose degree of distortion is 
determined by the rotational Bond number L'. In the case of a drop rising through an 
unbounded fluid, the rise speed is independent of the fluid viscosities, and is uniquely 
prescribed by the rotational Bond number. In the bounded case, the rise speed further 
depends on the fluid viscosities, which prescribe the efficiency of Ekman transport over 
the drop and container boundaries. 

The limits of high- and low-viscosity drops have been considered, and the forms of 
the internal flows demonstrated to be qualitatively different. Figure 17 illustrates 
schematically the form of the poloidal components of the flows induced inside spherical 
drops in which geostrophic and Stokes flows obtain. The flow within a Stokes drop is 
driven by tangential stresses associated with the Ekman layer on the drop surface. The 
poloidal flow is reminiscent of the Hadamard-Rybczynski solution for a Stokes drop 
translating in an unbounded fluid. As is evident in figure 10, however, the complete 
picture of the internal flow is complicated by a toroidal component corresponding to 
a swirling motion which reverses sense above and below the drop equator. The form 
of the flow induced inside a geostrophic drop is less intuitively obvious, but follows 
naturally from the Ekman pumping and suction induced by boundary layer flows in the 
curved double Ekman layer. It is interesting to speculate how the poloidal flow reverses 
sense as the internal Ekman number is increased and the internal flow changes from 
a geostrophic flow to a Stokes flow. 

Our analysis of low-viscosity drops in bounded geometries may be applied to any 
possible combination of rigid or stress-free container boundaries. Moreover, we may 
extend our analysis to any problem in which geostrophic flows predominate and which 
is symmetric about the rotation axis; for example, the on-axis rise of n drops through 
a bounded fluid layer, and the on-axis motion of a drop through a system of n 
immiscible fluids whose interfaces are arbitrarily curved by centrifugal effects. The 
result of the calculation for the n-drop problem is listed in table 3. 

Our experimental investigation has succeeded in demonstrating a number of the 
physical phenomena predicted to exist on the basis of theoretical considerations : 
Taylor slugs, Taylor columns, vigorous geostrophic swirling motions up- and 
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FIGURE 17. A schematic illustration of the poloidal flow components induced within (a) ‘geostrophic’ 
and (b)  ‘Stokes’ drops rising along the length of a bounded Taylor column. Arrows within the Ekman 
layers denote the directions of net boundary layer transport. Note the opposite sense of circulation 
in the two cases. 

Geometry Rise speed Prescribed by 

Bounded (rigid boundaries) z 

Bounded (free-slip or mixed 

Unbounded 3 V A P g  

Bounded (n drops between rigid r3 dr p, c, fl 

P, z 
boundaries) 

z _-__ 
16R3 p 52 

boundaries) 

TABLE 3. A summary of theoretical predictions. U, is defined in equation (13) 

downstream of the drop, Stewartson layers and Ekman layers. Most significantly, we 
have observed an internal circulation (illustrated in figure 13) consistent with the 
theoretically predicted planform (illustrated in figure 17) deduced on the assumption 
that the internal flow is geostrophic. The observed internal flow was characterized by 
a bulk downflow within the drop, and vigorous recirculation eddies in the vicinity of 
the drop equator. These observations are consistent with the theoretical description of 
the geostrophic drop presented in Q 3. 

We have also observed a rich variety of phenomena neglected in the theoretical 
treatment of the problem : pronounced wall effects, fore-aft asymmetry in the flow 
associated with instabilities in the wake, helical wave-like instabilities in the Stewartson 
layers, and even instabilities in the internal motion. Most of these phenomena were 
manifestations of inertial effects within the flow, whose persistence was the principal 
source of difficulty in our experimental investigation. 
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Appendix A. Near sphere distortions of a bubble 
In this section, we illustrate the first effects of the hydrostatic and geostrophic 

pressures on the drop shape through a perturbation analysis for a nearly spherical 
bubble. For the case of a spherical bubble rising between rigid horizontal boundaries, 
the swirling motions within the Taylor column take a particularly simple form, 
&(r) = T Ur/6  in dimensional variables, and (8) reduces to the form 

(A 1) (@o-po)-Ap#2 1 2 2  r + A p g z f p O U r 2 / 6  = crV,.n. 

Both the third and fourth terms on the left-hand side of (A l), which correspond to the 
contributions of, respectively, the hydrostatic and geostrophic pressures, reverse sign 
at the equatorial plane z = 0. These pressures act to destroy the fore-aft symmetry of 
the bubble. Non-dimensionalizing all lengths with respect to the equatorial radius R (r 
and z henceforth denote dimensionless distances) and using (36) for the appropriate 
rise speed U(p = 0) reduces (A 1) to the dimensionless form 

P + 4 Z r 2 + 9 z T $ 9 ( a / R ) 3 r 2  = V;n, (A 2) 
where 9 = R2gAp/cr and Z = - R3 Q2 A p / &  are, respectively, the gravitational and 
rotational Bond numbers, P = (fro -p,)  R / r ,  and a is the undeformed bubble radius. 
In the limit of 9 / Z  4 1, the bubble again assumes the form of a prolate ellipsoid; 
however, in general both hydrostatic and geostrophic pressures must be considered. 

We proceed by transforming into spherical coordinates (F, 8, $), and writing (A 2) as 

P + 4 Z P  sin2 B+9Fcos 8 f $ 9 ( a / R ) 3 P  sin2 8 = V,.n. (A 3 )  

In the limit of Z = 9 = 0, the bubble assumes a spherical form. We seek the form of 
the first aspherical perturbations, and so expand : 

F = 1 + ZA8) + 9g(8) + O ( P ,  9 ', 29,. . .), 
P = Po + cp, + 3P2 + O(C2, 92, c9, . . .), 

V,.n = 2-Z9A8)-99g(8)+0(Z2,92,Z9 ,... ), 

(A 4) 
(A 5 )  

(A 6)  

where (C, 9) 4 1, and the operator 9 = d/d@ +cot 8 d/d8+ 2. Equating terms of like 
powers yields 

O(1): po =2,  (A 7 )  

O ( q :  9A8)+4 sin28+p, = 0, (A 8) 

O ( 9 ) :  9g(8)+cos @+$sin2 8+P2 = 0. (A 9) 
Solving the ordinary differential equations forA8) and g(8) and requiring that the drop 
volume be conserved yields Pl = -2, P2 = 0, and solutions for the drop shape: 

upper surface (0 < 8 < 7c/2): 

<8) = 1 +Z($-COS~ 8) + ~ ( $ o s  8 log (1 +COS 8) +$os~ 8) + .. . ; (A 10) 
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. - _ _ _ - *  
FIGURE 18. Results of a perturbation analysis of a nearly spherical bubble rising along the length of 
a Taylor column bounded above and below by rigid horizontal boundaries. (a) The first effects of 
rotation on a bubble when Q is set to zero, and C decreases through the range (0, -0.1, -0.2, -0.4). 
(6) The first effects of geostrophic and hydrostatic pressures for C = 0 when Q increases through the 
range (0, 0.2, 0.5, 1.0). 

lower surface ( x / 2  < 8 < x): 

$6) = i + ~ ~ ~ - ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ i ~ g ~ i - ~ ~ ~  ~ ) - + S V ) +  .... (A 11) 

As illustrated in figure 18, the first effect of rotation (finite c> is once again to distort 
the bubble into a prolate ellipsoid. The first effect of the combined hydrostatic and 
geostrophic pressures (finite 9) is to break the bubble’s fore-aft symmetry through 
distorting it into a bullet shape. 

Appendix B. Ekman compatibility conditions : a review 
When an O(1) geostrophic swirling flow u(r) is disrupted from below by a rigid 

axisymmetric boundary with a shape prescribed by z = f l y ) ,  radial gradients in the 
radial Ekman layer flux necessitate a weak O(E:12) vertical flow into or out of the 
boundary layer of magnitude 

EiI2 d 
2r dr 

w(r) = -- (ru(r) [ 1 +f’2]i/4), 

where f’ = df/dr and all variables are dimensionless. In $3, Ekman compatibility 
conditions are required at rigid (c = 1) and stress-free (c = 0) horizontal boundaries 
(f’ = 0). In this case, (B 1) reduces to the form 

E;I2 d 
w(r) = c--(ru(r)). 

2r dr 

A stress-free surface (c = 0) does not disrupt the overlying swirling flow; consequently, 
no Ekman layer need exist at the boundary, and no Ekman pumping or suction is 
generated by the presence of the boundary. 

When geostrophic swirling motions occur in immiscible fluids adjoined by an 
axisymmetric interface with a shape prescribed by z =AT), the boundary layer at the 
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1. 

FIGURE 19. A schematic illustration of a double Ekman layer. Arrows in the boundary layers 
denote the directions of net boundary layer flux for the case of u(r)  > e(r).  

fluid-fluid interface assumes the form of a curved double Ekman layer (illustrated in 
figure 19). The geostrophic swirling flows above and below the interface, respectively 
u(r) and 6(r), are disrupted by viscous effects in the neighbourhood of the interface. 
Matching tangential velocities and stresses at the interface and applying the appropriate 
far-field boundary conditions yields a solution for the boundary layer flows which 
correspond to modified Ekman spirals. The interface has a swirling velocity uint(r) 
whose magnitude is between u(r) and S(r): 

where p = @ / P ) ( ; / V ) ' / ~  is the viscosity ratio parameter characterizing the two fluids. 
The detailed solution indicates that, while the interface has a swirling component to its 
motion, there is no meridional motion along the interface. This feature reflects that the 
Ekman boundary layer flows are driven by pressure gradients of opposite sense above 
and below the interface. Tangential gradients in the tangential boundary layer fluxes 
necessitate weak vertical fluxes into or out of the boundary layer of magnitude 

This result is valid only for smoothly varying functionsflr), and breaks down if the 
variations of the interface occur over lengthscales comparable to the boundary layer 
thickness, or if the interface becomes vertical. 

Appendix C. Surface-stress-driven motions in a Stokes sphere 
We derive herein the form of the flow induced within a spherical fluid drop by 

axisymmetric tangential stresses 7,&0) and 7,&0) applied at its surface, when the drop 
dynamics may be described with Stokes equations. We express the axisymmetric 
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internal flow in spherical coordinates (r,0) in terms of poloidal and toroidal scalar 
functions (e.g. Backus 1986), respectively T(r, 0) and P(r, 0) : 

where the vector operator A = r A V and 2’ = -(l/sin O)(a/aO)(sin Oa/a0). 
Substituting into Stokes equations (7) yields 

AV4P+V A A V 2 T = 0 .  (C 2) 

The radial component of (C2) indicates that the toroidal scalar function T is 
harmonic, and the radial component of its curl that the poloidal scalar function P is 
biharmonic : 

The toroidal and poloidal scalars may thus be expanded in terms of Legendre 
polynomials of order 1: 

V ~ T = O ,  V ~ P = O .  (C 3) 

where A ,  to 4 are constants. Application of the appropriate boundary conditions (ri  
finite at r = 0, u, = 0 at r = 1, and the surface stress conditions) yields the form of the 
internal flow given in equations (47E(51). 
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