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Inspired by the hydrodynamic pilot-wave system and
its successes as a basis for hydrodynamic quantum
analogues, we present the results of a theoretical
investigation of classical pilot-wave dynamics in
three dimensions. We consider a particle emitting
a spherically symmetric monochromatic wave, then
moving in response to the local wave gradient. We
demonstrate that, beyond a critical coupling constant,
the stationary state destabilizes into a self-propelling
state. We compute the quasi-monochromatic form
of the accompanying pilot-wave field, and its
dependence on the relevant control parameters,
specifically the particle inertia and longevity of
the pilot-wave field. The similarities between the
dynamics arising in the three-dimensional system and
its two-dimensional counterpart suggest that many
of the quantum features captured in two dimensions
will be robust to the transition to three dimensions.
We discover a family of dynamical states peculiar to
the three-dimensional geometry considered, including
helical spin states in which the particle velocity
has both angular and rectilinear components. These
helical spin states are found to be quantized in both
radius of curvature and pitch length and illustrate
how classical pilot-wave dynamics may support a
feature reminiscent of quantum spin. More exotic
dynamical states are also explored and detailed.

1. Introduction
The hydrodynamic pilot-wave system discovered by
Yves Couder and Emmanuel Fort in 2005 [1] consists
of a millimetric droplet walking along the surface of
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a vibrating bath, self-propelling through a resonant interaction with its accompanying quasi-
monochromatic ‘pilot’ wave [1]. The walking-droplet system is of notable interest to the scientific
community owing to its ability to capture certain features previously thought to be exclusive
to the microscopic quantum realm [2,3]. A key feature of pilot-wave hydrodynamics is that
the droplet dynamics are non-Markovian: the bath serves as the memory of the droplet, and
the quantum-like features are most pronounced when the pilot wave is most persistent, in
the long-memory limit. The ever-growing list of hydrodynamic quantum analogues achieved
with the walking-droplet system now includes single-particle diffraction and interference [4–6],
quantized orbits [7–10], statistical projection effects [11], Friedel oscillations [12], superradiance
[13], Anderson localization [14], surreal trajectories [15] and interaction-free measurement [16].
The pilot-wave hydrodynamic system has thus extended the range of classical systems and
prompted a revisitation and redefinition of the boundary between classical and quantum.

The hydrodynamic quantum analogue venture has been bolstered by a number of historical
precedents. Specifically, the physical picture engendered in the walking-droplet system, of an
oscillating particle interacting with its own wave field, was originally proposed in the 1920s by
Louis de Broglie in his double-solution pilot-wave theory of quantum dynamics [17]. The same
physical picture also arises in stochastic electrodynamics, according to which quantum particles
oscillating at the Compton frequency interact with the electromagnetic quantum vacuum field
[18]. Finally, this physical picture has provided the basis for an exploration of hydrodynamically
inspired classical field theories of quantum dynamics [19–22].

An often-mentioned shortcoming of the hydrodynamic pilot-wave system is that the droplet
motion is effectively confined to a plane, specifically the vibrating bath surface. The droplet
motion is discontinuous in the sense that the droplet detaches from the free surface after
each bounce. Might this physical picture of classical pilot-wave dynamics be extended to three
dimensions, where the particle cannot detach from its pilot wave? We here answer this question
in the affirmative through consideration of a theoretical model of an oscillating spherical particle
emitting a spherically symmetric wave form.

The walking-droplet system has inspired investigations of other classical pilot-wave systems,
some of which are situated in three spatial dimensions. The first consists of a floating object
submerged in a stratified fluid [23]. Oscillations in the liquid pressure generate vertical
oscillations in the floater that generate internal waves that may propel it forward. It has long been
known that acoustic waves can generate oscillations of bubbles submerged in liquids, which may
in turn lead to irregular bubble motion [24]. Baudoin and co-authors have recently investigated
this acoustic problem theoretically. While they find that spherically symmetric bubble oscillations
give rise to a back-reactive force that resists motion [25], self-propulsion of dipolar sources is
possible. To date, none of these three-dimensional pilot-wave systems has supported steady
rectilinear particle motion, as arises in the walking-droplet system. We here demonstrate that
such a state, the existence of which is required for several hydrodynamic quantum analogues, is
a robust solution in our model.

In §2, we define the theoretical model of three-dimensional classical pilot-wave dynamics to
be considered in our study. We assess the stability of both the stationary state and the steady,
self-propelling state, and describe the form of the accompanying pilot-wave field. In §3, we
examine a dynamical state particular to three dimensions, a helical spin state, whose robustness
is rationalized via stability analysis. In §4, we explore more exotic orbital states revealed through
simulation. In §5, we summarize our results by comparing classical pilot-wave dynamics in one,
two and three dimensions.

2. Generalized pilot-wave dynamics
A hierarchy of theoretical models have been developed to describe the dynamics of walking
droplets [3,26], which necessarily require descriptions of the wave-particle coupling. The
bouncing droplet is accelerated by a propulsive force proportional to the local slope of its
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guiding wave and decelerated by the drag induced during impact and flight [27,28]. Each
impact in turn is marked by the generation of a temporally decaying, circularly symmetric
wave form. The global wave form is thus deduced by summing up all such contributions,
which requires integration along the particle path. The stroboscopic approximation [29] is based
on the assumption of resonance between the droplet and its guiding wave, which enables
one to effectively average over the bouncing period and so eliminate the droplet’s vertical
dynamics from consideration. The resulting horizontal droplet dynamics are those apparent
when one strobes the walking-droplet at the Faraday frequency and observes the droplet surfing
horizontally on its pilot wave [30].

Bush [2] proposed a parametric generalization of the stroboscopic model, with a view to
exploring two-dimensional classical pilot-wave dynamics in parameter regimes inaccessible to
experiments, and discovering new quantum features not apparent in the hydrodynamic system.
This generalized framework captures the key features of the hydrodynamic system, including
a transition from a stationary state to a self-propelling state at a critical memory [31,32]. It also
reveals that certain features that are elusive in the hydrodynamic system are robust in different
regions of parameter space. For example, in-line speed oscillations with the Faraday wavelength
have been observed in certain corners of parameter space [33–35] and are known to provide a
robust mechanism for the emergence of quantum-like statistics in several settings [12]. While
not the norm in the walking-droplet system, these speed oscillations are a robust feature in
the generalized framework [31]. Likewise, irregular jittering motion [31,32] is a rarity in the
laboratory but simply found in the generalized framework. The possibility of hydrodynamic
spin states, consisting of a droplet executing a circular orbit, its radial motion confined by its
wave field, was first noted by Oza et al. [36]. While difficult to capture in the laboratory [37],
they too are a robust feature in the generalized framework, arising in the high-memory, low-
particle-inertia limit [38,39]. Finally, the generalized framework has revealed novel dynamics for
interacting particle pairs [40,41] and novel statistics for a particle interacting with an oscillatory
potential [42]. We here extend this generalized pilot-wave framework to three dimensions with a
view to expanding the class of quantum features accessible with classical pilot-wave theory.

(a) Governing equations
The generalized pilot-wave framework in two dimensions describes the evolution of a particle
with position xp(t) at time t that is guided by the slope of its self-generated wave field, h(x, t), and
resisted by drag [2,29]. Time-averaging over the particle’s vibration period, T (corresponding to
the Faraday period in the walking-droplet system), reveals that the particle evolves according to
the trajectory equation [29,31]

mẍp + Dẋp = −F∇h(xp, t), (2.1)

where m is the particle mass, D is the linear drag coefficient and F is the magnitude of the time-
averaged, wave-induced force. The particle generates circularly symmetric Bessel waves along its
path, the superposition of which defines the wave field

h(x, t) = A
T

∫ t

−∞
J0(k|x − xp(s)|)e−(t−s)/τ ds, (2.2)

where A is the amplitude of the wave field generated at each moment in time, τ defines the
characteristic wave decay time and k = 2π/λ is the wavenumber [29]. In the hydrodynamic
experiments, τ is prescribed by the proximity to the Faraday threshold and λ is the Faraday
wavelength. For the dynamics of a single particle, the Bessel wave kernel J0(k|x − xp|) in (2.2)
adequately describes the near-field wave form and so is commonly adopted for its mathematical
convenience. While successful in capturing many features of pilot-wave hydrodynamics,
the stroboscopic model does have its limitations, including instantaneous wave propagation
[26,43–47], which renders it inadequate in modelling droplet–droplet interactions [48,49]. The
defining property of the pilot-wave system (2.1) and (2.2) is a feedback mechanism wherein
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the past locations of the particle affect its future via the wave field, which acts as a guiding
self-potential, the path memory of the system [43].

To extend the generalized pilot-wave framework to three dimensions, we follow its adaptation
to one dimension, a theoretical abstraction that necessitated a concomitant change in the wave
kernel [32,50]. As J0(kr) is the bounded circularly symmetric solution of the two-dimensional
Helmholtz equation, (∇2 + k2)J0(kr) = 0, the analogous wave kernel in one dimension was
defined as cos(k(x − xp)) [32,50], with cos(kx) being the symmetric solution to the Helmholtz
equation (∂xx + k2) cos(kx) = 0. Similarly, we here define the stroboscopic pilot wave in three
dimensions in terms of the spherically symmetric wave kernel j0(k|x − xp|), where j0(kr) is
the spherical Bessel function of the first kind with order zero, the bounded axisymmetric
solution to the three-dimensional Helmholtz equation, (∇2 + k2)j0(kr) = 0. The particle position,
xp(t) = (xp(t), yp(t), zp(t)), thus evolves according to (2.1) and the wave field is defined as

h(x, t) = A
T

∫ t

−∞
j0(k|x − xp(s)|)e−(t−s)/τ ds. (2.3)

The three-dimensional extension of the stroboscopic model, comprising (2.1) and (2.3), contains
the minimal features necessary to produce quantum-like behaviour in a classical pilot-wave
system, namely path memory (as prescribed by the time scale τ ) and a monochromatic wave
field.

(b) Dimensionless trajectory equation
We characterize the dynamics of the free particle in terms of dimensionless variables. Specifically,
we scale lengths with the inverse pilot-wavenumber, so x̂ = kx, time with the memory time at the
onset of self-propulsion, t = τ0 t̂ (where τ0 =

√
3DT/FAk2 [50]), and the pilot wave by its amplitude

at the propulsion threshold, h = ĥAτ0/T. By substituting this rescaling into the pilot-wave system
((2.1) and (2.3)), eliminating the wave field by substituting (2.3) into (2.1) and dropping the
overhead carets, we deduce that

κ0ẍp + ẋp = 3
∫ t

−∞
j1(|xp(t) − xp(s)|)

|xp(t) − xp(s)| (xp(t) − xp(s))e−μ(t−s) ds, (2.4)

which represents the integro-differential trajectory equation governing three-dimensional particle
motion. The particle motion is governed by the dimensionless mass κ0 = m/τ0D and the
dissipation rate μ = τ0/τ , which is inversely proportional to the time scale over which the
particle appreciably interacts with its prior trajectory via the wave field. We define Γ = 1 − μ

to capture this notion of path memory, where Γ = 0 at the onset of particle self-propulsion
and Γ = 1 in the zero-wave-damping, infinite-memory limit. We note that the parameter Γ is
analogous to the normalized vibrational forcing in the related hydrodynamic system, with Γ = 1
corresponding to the Faraday threshold [2,38]. By recasting the pilot-wave system in terms of just
two dimensionless parameters, we may characterize all of the various dynamical states arising in
the three spatial dimensions through consideration of a two-dimensional parameter space.

(c) Steady propulsion
Beyond the threshold at which the stationary state destabilizes (Γ > 0), the particle propels in a
straight line at a constant speed, guided by the slope of the waves generated along its path. The
walking speed, u > 0, depends on the path memory parameter, Γ = 1 − μ, as may be established
by substituting the ansatz xp(t) = ute into the trajectory equation (2.4), where e is the unit vector
in the direction of particle motion. Specifically, we find that u and μ are related by

u = 3
∫∞

0
j1(ut)e−μt dt, (2.5)
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Figure 1. Dependence of the three-dimensional pilot-wave field and particle speed, u, on the dimensionless path memory,
Γ . (a) Cross-section of j0(r), the dimensionless wave field of a stationary bouncer at the walking threshold (Γ = 0). (b) The
particle moves at a constant speed for Γ = 0.5. (c) The high-memory regime (Γ = 0.9), where the wave field exhibits an
interference pattern downstream of the particle. (d) The dependence of the walking speed (solid curve) on the path memory
parameter,Γ (see (2.6)), as initiates from a supercritical pitchfork bifurcation atΓ = 0 [29,50]. Diamonds correspond to the
wave fields in (a)–(c). The dashed line at u= 0 represents the unstable stationary particle.

whereupon evaluating the integral (the Laplace transform of j1(ut)) determines that u > 0 satisfies

u = u3

3
+ μ arctan

u
μ

. (2.6)

By solving (2.6) numerically, we deduce that the walking speed, u, increases monotonically with
Γ = 1 − μ, vanishing at the self-propulsion threshold and approaching the upper bounded u = √

3
in the infinite-memory limit (figure 1). Moreover, the corresponding wave field, h(x, t), exhibits a
hemispherical form ahead of the particle with interference in its wake, as is reminiscent of the
hydrodynamic system [29,43]. Both of these features are enhanced as the particle speed increases.

Consistent with prior studies of pilot-wave dynamics in two spatial dimensions [29], we find
that the particle is neutrally stable to perturbations perpendicular to the line of motion, with the
particle returning to steady walking in a new direction after an initial transient (see appendix A
for details). It is the perturbations parallel to the direction of motion that yield the richest particle
response, with overdamped and underdamped oscillations prevalent as memory increases,
analogous to the one- and two-dimensional counterparts of the pilot-wave system [31,32]. At
long path memory, the droplet motion destabilizes for 0 < κ0 < κc (where κc = π/(2

√
3) ∼ 0.907),

corresponding to the upper curve in figure 2a. Beyond this critical threshold, perturbations grow
exponentially in time, oscillating over a length scale comparable to the wavelength of the pilot
wave [31]. The result is an erratic walking regime (figure 2b), as previously reported in the
two-dimensional setting [35,39], with similar features such as in-line speed oscillations over the
pilot-wavelength and diffusive behaviour over long times.

Numerical exploration of erratic walking reveals a rich and surprising dynamics beyond the
in-line speed oscillations and diffusion seen in two dimensions. For example, the erratic walking
can adopt unpredictable, intermittent spiralling motion (figure 3a). The spirals have a diameter
close to the pilot-wavelength and persist over a range of times before returning to the less
structured erratic state, which can include intervals of rectilinear walking. The coexistence of
rectilinear motion and tangled spirals is reminiscent of the ‘run and tumble’ regime reported for
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Figure 2. Stability of rectilinear self-propelling states in three-dimensional pilot-wave dynamics. (a) Regime diagram
demarcating the stability of the free walker for different values of the dimensionless mass, κ0, and memory parameter,Γ . At
lowmemory, the steady walking is stable to overdamped in-line perturbations that decrease monotonically in time (turquoise
region). As the memory is increased, the response to in-line perturbations changes from overdamped to underdamped
oscillations, leading to damped speed oscillations (light blue region). At high memory and for 0< κ0 � 0.907 (dark blue
region), the rectilinear walking state is unstable, leading to an erratic trajectory. (b) Erratic self-propulsion in the high-memory
limit (Γ = 1) for κ0 = 0.2. The trajectory is colour-coded according to the dimensionless particle speed. The simulation was
performed using a fourth-order Adams–Bashforth time-stepping scheme [9].

Figure 3. Emergence of helical spin states in three-dimensional pilot-wave dynamics. (a) Transient coiling trajectory in the
erratic regime for κ0 = 0.45 and Γ = 0.97588. (b) Spontaneous formation of a stable helical spin state for Γ = 1 and
κ0 = 0.2. The simulations were performed using a fourth-order Adams–Bashforth time-stepping scheme [9].

two-dimensional pilot-wave systems [35,39]. These spirals mark a transition between an unstable,
erratic self-propelling state and a stable helical spin state. As shown in figure 3b, the erratic state
can spontaneously transition to a helical state, particular to three dimensions.

3. Helical spin states
Our analysis in §2 demonstrates that the dynamics of a stationary or steadily propelling particle
is in many respects analogous to that in the hydrodynamic system [29,31], in which a particle
navigates its two-dimensional pilot-wave field in a plane. Peculiar to three dimensions is the
steady helical motion (§3(a)), which may be thought of as a three-dimensional extension of planar
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spin states [38]. We proceed by presenting a systematic study of the existence and stability of these
steady helical states, as illustrated by numerical simulations in §4.

(a) Steady helical motion
We consider the steady helical motion of a particle executing circular loops at radius r0 and
angular frequency ω, while simultaneously translating along an axis parallel to the unit vector ez

at speed v. The particle motion may be expressed xp(t) = r0er(t) + vtez, where er(t) = cos(ωt)ex +
sin(ωt)ey is the radial unit vector and eθ (t) = − sin(ωt)ex + cos(ωt)ey is its angular counterpart,
with {ex, ey, ez} forming a fixed orthonormal basis. By substituting this ansatz into the trajectory
equation (2.4) and considering the force balance in the radial, tangential and vertical directions,
respectively, we deduce that

−κ0r0ω
2 = 3r0

∫∞

0

j1(D(t))
D(t)

(1 − cos(ωt))e−μt dt, (3.1a)

r0ω = 3r0

∫∞

0

j1(D(t))
D(t)

sin(ωt)e−μt dt (3.1b)

and v = 3v

∫∞

0

j1(D(t))
D(t)

te−μt dt, (3.1c)

where
D(t) =

√
2r2

0(1 − cos(ωt)) + v2t2 (3.2)

denotes the distance between the particle’s current position and that at a time t in the past.
We solve (3.1) numerically to determine r0, ω and v (the orbital radius, angular frequency and
translation speed, respectively), for given κ0 and μ. Notably, (3.1a) and (3.1b) are satisfied by
r0 = 0, with (3.1c) then supplying the force balance for a particle moving in a straight line at
a constant speed, as detailed in §2(c). Furthermore, (3.1c) is satisfied by v = 0, corresponding
to a planar spin state, the existence and stability of which have been rationalized for the two-
dimensional pilot-wave system [38] and will be briefly characterized in §3(d) for the spherical
wave kernel considered in our investigation.

As is the case for circular orbits in two spatial dimensions [7], the monochromatic nature of the
guiding wave field is likely to impose geometric constraints on the permissible solutions to the
steady helical equations (3.1), particularly at high memory (μ � 1). To gain insight into the form
of the pilot wave accompanying steady helical motion (as computed by substituting xp(t) into the
dimensionless counterpart of equation (2.3)), we present cross-sectional slices of h(x, t) in figure 4.
In figure 4a, we see in the xz-plane the wave field accompanying the particle, whose form and
amplitude are prescribed by the path memory. The oscillations in the pilot wave in the direction
of propagation are thus likely to restrict the permissible values of the helical pitch length, Λ. In
figure 4b, we see the wave field in the xy-plane perpendicular to the direction of propagation, in
which the wave field is similar to that emerging for orbital dynamics in two spatial dimensions
[7,36]. We thus anticipate that, as in their two-dimensional orbital counterpart, helical states will
be quantized in their radial extent.

(b) Emergence of double quantization
For different values of κ0 and μ, a large number of helical states may be found by solving the
force balance equations (3.1). At low memory (Γ < 0.7), the wave field decays too quickly to be
able to support steady helical states. However, as the memory is increased, a series of helical
states emerge, at the helical existence boundaries detailed in figure 5, in a manner similar to spin
states in two dimensions [38]. Each helical state is associated with exactly one existence boundary,
and we distinguish these boundaries in terms of the helix’s radius, r0, and pitch length, Λ (as
indicated in figure 4). Notably, the critical memory of each existence boundary increases with the
dimensionless mass, κ0, in a manner similar to two-dimensional spin states, with helical states
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Figure 4. The pilot-wave field and particle trajectory (dashed curves) for a stable helical state arising whenΓ = 0.865 and
κ0 = 0.01. The radius, angular frequency and translation speed are r0 = 1.04λ, ω = 0.2 and v = 0.14, respectively, and
satisfy the steady helical equations (3.1). (a) Cross-section of the wave field through the x-z (y = 0) plane. The particle moves
counter-clockwise and the pitch length is denoted byΛ. (b) Cross-section of the wave field in the x-y (z = 0) plane. Positive
and negative values of h(x, t) are denoted in red and blue, respectively.

being most prevalent in the overdamped (κ0 = 0) limit. We rationalize the shape of the existence
boundaries in terms of the particle’s tendency to be propelled outwards when inertial effects are
more pronounced, and so the pilot wave needs to be of larger amplitude to confine the particle,
as is achieved at higher memory.

The structure of the helical solutions in figure 5 and the influence of the monochromatic pilot
wave on both the helix’s radius and pitch (figure 4) hint at the possibility of a double quantization
emerging for these states. To test this hypothesis, we characterize the helical states in terms of their
pitch length, Λ, and radius of curvature, R. The pitch length for a steady helical state is defined as
the change in particle position over one loop, namely Λ =D(2π/ω) = 2πv/ω (see (3.2)). In terms
of the wavelength of the pilot wave, which is λ = 2π in dimensionless variables, the pitch length
satisfies Λ/λ = v/ω. The pitch length vanishes for planar spin states, v = 0, but increases with axial
speed, v. We anticipate that the monochromatic form of the pilot wave will restrict the accessible
values of the pitch length for steady helical motion (figure 4a).

The radius of curvature of a three-dimensional trajectory is defined as

R = |ẋp|3√
|ẋp|2|ẍp|2 − (ẋp · ẍp)2

,

where we note that the velocity and acceleration are orthogonal for steady helical motion, and so
ẋp · ẍp = 0. The radius of curvature thus simplifies in this case to R = |ẋp|2/|ẍp|, or

R = r0

(
1 + v2

r2
0ω

2

)
. (3.3)

When v = 0, the radius of curvature is simply the radius of the planar spin state. For v �= 0, the
translational velocity along the axis of the helix induces a decrease in curvature; consequently,
R > r0.

We present in figure 6 the solutions to the helical equations (3.1), characterized in terms of
radius of curvature, R, and pitch length, Λ. In accordance with the existence curves in figure 5,
each helical solution curve forms from a saddle-node bifurcation (at the left-most tip of each
solution curve), giving rise to a pair of helical spin states. The radius of curvature tends to
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Figure 5. Double quantization in radius of curvature,R, andpitch length,Λ, for thefirst four helical spin states.We characterize
the various helical states by the nomenclature (n, �), with n and � denoting the radial and pitch quantization numbers,
respectively. The solid and dashed curves in the (κ0,Γ )-plane (left) correspond to the existence thresholds for pitch levels
� = 1 and � = 2, respectively, and are overlaid on the stability region for the (1,1) helical state (light red, see figure 7). The
radial quantization level is denoted by the curve colour, with n= 1 in black, n= 2 in blue, n= 3 in red, and n= 4 in green.
Each helical state exists above the corresponding curve in the (κ0,Γ )-plane. The various helical states are visualized in the
legend (right), with each trajectory corresponding to that on the existence line at κ0 = 0. The radial quantization number, n,
increases from bottom to top, and the pitch length number, �, increases from left to right. The first and third columns are the
axial view of the helix, and the second and fourth columns present the corresponding side view. All panels are in proportion,
with the pilot-wavelength denoted by the scale bar.

increases with memory for one solution, and decreases for the other (figure 6a), giving rise to the
characteristic ‘tongue’ shape. However, there are also helical states for which the solution curve
is more pin-shaped, with very little variation in the radius of curvature with increasing memory.
The corresponding pitch length follows a similar progression, with both pin- and tongue-shaped
stability curves (figure 6b). At high memory, a wealth of different helical states exist; we present
in figure 6 only those with R/λ < 2.5 and Λ/λ < 5.5.

To untangle this plethora of solution curves, we present in figure 6c the values of the
radius of curvature and pitch length on the existence boundary, corresponding to the smallest
memory along each solution curve. Despite the complexity apparent in figures 6a,b, we see that
a remarkably simple structure emerges. Specifically, the radius of curvature on the existence
boundary is very close to a half-integer multiple of the pilot-wavelength (R ≈ nλ/2 with n ≥ 1
an integer), similar in form to the emergence of quantized spin states in two dimensions [38].
A quantization in pitch length also emerges, with the solution along the existence boundary
lying close to the lines Λ = (� − 1

2 )λ for integers � ≥ 1. We may thus characterize the onset of
helical states in terms of a double quantization in radius of curvature and pitch length, which we
enumerate in terms of the lattice of ‘quantum numbers’ n and �, respectively.

Notably, the lattice of quantum numbers is not fully populated. For a fixed value of the radial
number, n, only the smallest pitch numbers, �, are accessible, with the range of � increasing with n
(see the grey dashed line in figure 6c). We conclude that helical states cannot be highly ‘stretched’
in the direction of propagation. However, the pitch length can be small relative to the radius of
curvature, corresponding to wide, slowly propagating helical states. The most extreme example
is the planar spin state with v = 0, for which the pitch length is zero and yet the radius may be
arbitrarily large [38].
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Figure 6. Bifurcation curves for the double quantization of the first four helical states with κ0 = 0.1, as shown in figure 5. The
radial quantization number is denoted by the colour of the curve, with n= 1 in black, n= 2 in blue, n= 3 in red and n= 4 in
green. The pitch quantization number is denoted by the shade of the curve, with� = 1 corresponding to the darkest curves and
� = 5 to the lightest. (a) Dependence of the radius of curvature, R, on the memory parameter,Γ . (b) Dependence of the pitch
length,Λ, onΓ for the same helical states as in panel (a). (c) The double quantization between radius of curvature and pitch
length at the minimum value of the memory parameter,Γ , along each bifurcation curve in panels (a,b), corresponding to the
existence curves in figure 5. The points lie roughly on a grid with helical solutions confined to the region above the dashed grey
line, indicating that larger pitch lengths are possible only if the radius of curvature is sufficiently large.

(c) Linear stability analysis
Having established the existence of helical states and their corresponding double quantization in
radius of curvature and pitch length, we now investigate their robustness to small perturbations,
from which we can assess the relative likelihood of various helical states emerging in the evolution
of the free particle. To do so, we employ linear stability analysis, extending the framework
developed by Oza et al. [36,38] to three spatial dimensions. Using Laplace transforms, we reduce
the stability problem to that of finding complex roots of the system’s transfer function, from which
we may determine the long-time perturbation growth or decay rates, analogous to eigenvalues
for non-hereditary systems.

To assess the linear stability of helical states, we first recast the particle trajectory equation (2.4)
in cylindrical polar coordinates, namely xp(t) = rp(t)er(t) + zp(t)ez, with radial and tangential
unit vectors er(t) = cos θp(t)ex + sin θp(t)ey and eθ (t) = − sin θp(t)ex + cos θp(t)ey, respectively. By
projecting onto the basis {er, eθ , ez}, we derive the system of equations

κ0(r̈p − rpθ̇
2
p ) + ṙp = 3

∫ t

−∞
j1(D(t, s))

D(t, s)

[
rp(t) − rp(s) cos(θp(t) − θp(s))

]
e−μ(t−s) ds + εcrδ(t),

(3.4a)

κ0(rpθ̈p + 2ṙpθ̇p) + rpθ̇p = 3
∫ t

−∞
j1(D(t, s))

D(t, s)

[
rp(s) sin(θp(t) − θp(s))

]
e−μ(t−s) ds + εr0cθ δ(t) (3.4b)

and κ0z̈p + żp = 3
∫ t

−∞
j1(D(t, s))

D(t, s)

[
zp(t) − zp(s)

]
e−μ(t−s) ds + εczδ(t), (3.4c)

where D(t, s) = |xp(t) − xp(s)| denotes the distance between the particle’s position at times t and s,
where s < t. In terms of cylindrical polar coordinates,

D(t, s) =
√

r2
p(t) + r2

p(s) − 2rp(t)rp(s) cos(θp(t) − θp(s)) + (zp(t) − zp(s))2.

Finally, we have introduced in (3.4) a perturbation to the trajectory at time t = 0 in terms of a Dirac
delta function, δ(t), where cr, cθ and cz are O(1) constants and 0 < ε � 1 controls the magnitude of
the perturbation.
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We linearize (3.4) about a helical solution of radius r0, angular frequency ω and translation
velocity v, where r0, ω and v solve the helical force balance equations (3.1). We thus express the
particle’s trajectory as

rp(t) = r0 + εr1(t)H(t), θp(t) = ωt + εθ1(t)H(t), and zp(t) = vt + εz1(t)H(t), (3.5)

where r1(t), θ1(t) and z1(t) are the perturbed radial, angular and vertical components, and H(t)
is the Heaviside step function. We impose that the particle’s position is continuous across the
perturbation at t = 0, corresponding to r1(0) = θ1(0) = z1(0) = 0. However, the delta forcing in
(3.4) gives rise to a velocity jump across the perturbation, resulting in the initial conditions
ṙ1(0) = cr/κ0, θ̇1(0) = cθ /κ0 and ż1(0) = cz/κ0. We substitute (3.5) into (3.4) and retain terms only
of size O(ε), from which we deduce that (for t > 0) r1(t), θ1(t) and z1(t) evolve according to

κ0(r̈1 − r1ω
2 − 2r0ωθ̇1) + ṙ1 = 3[a11r1 + (b11 ∗ r1) + a12r0θ1

+ (b12 ∗ r0θ1) + a13z1 + (b13 ∗ z1)], (3.6a)

κ0(r0θ̈1 + 2ṙ1ω) + r1ω + r0θ̇1 = 3[a21r1 + (b21 ∗ r1) + a22r0θ1 + (b22 ∗ r0θ1)

+ a23z1 + (b23 ∗ z1)] (3.6b)

and κ0z̈1 + ż1 = 3[a31r1 + (b31 ∗ r1) + a32r0θ1

+ (b32 ∗ r0θ1) + a33z1 + (b33 ∗ z1)], (3.6c)

where the constants aij and functions bij(t) are defined in appendix B. Notably, equation (3.6)
forms a linear system of integro-differential equations, where the influence of path memory
on the evolution of the perturbed particle trajectory is characterized by the convolution terms,
specifically those of the form (f ∗ g)(t) = ∫t

0 f (s)g(t − s) ds for given functions f (t) and g(t).
To reduce the linearized equations (3.6) to a more amenable form, we take their Laplace

transforms and deduce algebraic equations for R̂(s) = L [r1](s), Θ̂(s) = L [θ1](s) and Ẑ(s) =
L [z1](s), where L [f ](s) = ∫∞

0 f (t)e−st dt denotes the Laplace transform. By accounting for the
initial conditions when applying the Laplace transforms to derivatives, we obtain the system of
algebraic equations ⎛⎜⎝A11(s) A12(s) A13(s)

A21(s) A22(s) A23(s)
A31(s) A32(s) A33(s)

⎞⎟⎠
⎛⎜⎝ R̂(s)

r0Θ̂(s)
Ẑ(s)

⎞⎟⎠=

⎛⎜⎝ cr

r0cθ

cz

⎞⎟⎠ , (3.7)

where we define the functions Aij(s) = Cij(s) − 3aij − 3Bij(s) in terms of the constants aij and
Laplace transforms Bij(s) = L [bij](s), with

C11(s) = κ0(s2 − ω2) + s, C12(s) = −2κ0ωs, C21(s) = 2κ0ωs + ω,

C22(s) = κ0s2 + s and C33(s) = κ0s2 + s,

and all other Cij terms being equal to zero.
The long-time exponential growth or decay of a perturbed trajectory is governed by the poles

of R̂(s), r0Θ̂(s) and Ẑ(s), which correspond to the roots of det A(s), where A(s) is the 3 × 3 matrix
in (3.7) with elements Aij(s). Notably, there are trivial eigenvalues associated with the various
invariant properties of helical trajectories: specifically, s = 0 is a double root of det A(s), with one
root reflecting temporal invariance and the other corresponding to the translation of the helix in
the propagation direction, denoted by the unit vector ez. Furthermore, det A(s) has a pair of double
roots at s = ±iω, with one complex conjugate pair corresponding to translational invariance in
the plane perpendicular to ez and the other complex conjugate pair corresponding to invariance
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Figure 7. Regimediagram illustratinghow thedynamics of a free particle depends on thedimensionlessmass,κ0, andmemory
parameter,Γ , in the high-Γ , low-κ0 corner of figure 2. The red region specifies all values of κ0 andΓ for which the helical
spin state of smallest radius and pitch is stable. The horizontal red and lavender lines represent co-existence of helical spin and
erratic walking. The diamond gives the location of the spin state depicted in figure 4, while the white dashed line corresponds
to theΓ values for the bifurcation curves given in figure 8.

under rotations of ez. As the stability of the helical state depends on the non-trivial roots of
det A(s), we define the stability function

Fhelix(s) = det A(s)
s2(s2 + ω2)2 ,

which is analytic for Re(s + μ) > 0. The helical state is stable if all the roots of Fhelix(s) have a
negative real part, and unstable otherwise.

Of the numerous helical states identified in §3(b), only the helix with smallest radius (n = 1)
and smallest pitch length (� = 1) is found to be stable in the absence of external forces. Akin to
spin states in two dimensions, the helical state is stable only for small dimensionless mass and
relatively high memory, with the stability region in the (κ0, Γ )-plane detailed in figure 7 (see also
the shaded region in figure 5, which lies above the corresponding existence curve). Remarkably,
stable helical states may be found even for arbitrarily high memory, including for the limiting case
of Γ = 1, for which the spatial decay of the wave kernel ensures that all integrals in the stability
problem converge even in the absence of wave damping (see appendix B). This behaviour differs
from two-dimensional spin states, for which the repeated looping of the particle along the same
circular path prompts instability at high memory [38]. We note also that the helical stability region
extends over the interval κ0 < 0.347, and so exceeds that of two-dimensional spin states [38]. The
extent of this stability region highlights the robustness of helical spin states, and rationalizes their
spontaneous formation in figure 3b.

We note that the helical stability boundary has a sharp kink near (κ0, Γ ) = (0.08, 0.8), which
is associated with a change of instability frequency. This transition gives rise to a particularly
complex series of instabilities along the solution curve near this point, which we visualize in
figure 8 for κ0 = 0.07. When the memory slightly exceeds the existence boundary, the helical
state with larger radius is unstable with a monotonically growing perturbation (as is typical
of a saddle-node bifurcation) and the helical state with smaller radius is unstable to wobbling
perturbations. As memory is increased (tracing along the white dashed line in figure 7), the spin
state with smaller radius is stabilized close to Γ = 0.8. However, increasing memory further leads
to a second wobbling instability, corresponding to the interval in which the white line lies above
the kink (over the light blue region) in figure 7. This instability is eventually suppressed at high
memory, and the helical state is stable up to and including Γ = 1. These transitions in stability
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Figure 8. The dependence of the helical state (n, �)= (1, 1) on the dimensionless memory parameter,Γ . Bifurcation curves
forκ0 = 0.07, tracing the white dashed line in figure 7. The bifurcation curves parametrize the helical states by their (a) radius,
r0, (b) angular frequency,ω, and (c) helical translation speed,v. The curves are colour-coded according to the linear stability of
the helical state. Stable orbits arise on the blue portions of the curve (which overlie the red region in figure 7), and monotonic
and oscillatory instabilities on the red and green portions, respectively. There exists a pair of helical states at high memory: the
helix with smaller radius and faster translation speed is stable, while the helix with larger radius and smaller translation speed
is monotonically unstable. The vertex of the ‘tongue’ in each panel lies on the existence line for the helical spin state (figure 5),
corresponding toΓc = 0.7841 for κ0 = 0.07.

are also apparent in the bifurcation curves for the orbital frequency, ω, and translation speed, v,
where we note that the solution with smaller radius corresponds to the branch for which ω and v

are larger.

(d) Planar spin states
As noted in §3(a), the solution v = 0 to the force balance equations (3.1) gives rise to orbital particle
motion confined to a plane and so may be regarded as the pitch number � = 0 for quantized helical
states. The radius, r0, and angular frequency, ω, of the circular orbits may then be deduced from
equations (3.1a)–(3.1b) by setting v = 0, with the stability of the planar spin state likewise being
inferred from its helical counterpart. Specifically, the functions A13, A23, A31 and A32 all vanish
when v = 0, with the Laplace transforms of radial and angular perturbations satisfying(

A11(s) A12(s)
A21(s) A22(s)

)(
R̂(s)

r0Θ̂(s)

)
=
(

cr

r0cθ

)
and perturbations perpendicular to the plane being governed by the roots of the transfer function
A33(s). In contrast to the two-dimensional system [38], we find that all planar spin states are
unstable in their plane of motion. The absence of stable planar spin states might be attributed
to the increased spatial decay of the wave kernel in three dimensions, which cannot provide a
sufficient inward radial force to stabilize small perturbations. Nevertheless, one expects that in
three dimensions as in two, planar spin states may be stabilized by the application of an external
confining force [51].

4. Exotic states
The two-dimensional generalized pilot-wave framework is known to exhibit a number of exotic
dynamics in different corners of the (κ0, Γ ) parameter space. For example, stable wobbling and
precessing spin states emerge just outside the spin state stability region, even in the absence of a
confining force [39]. Motivated by this richness, we hunt for similar wobbling dynamics in three
dimensions by simulating the stroboscopic trajectory equation (2.4) using a fourth-order Adams–
Bashforth time-stepping scheme similar to that developed by Oza et al. [9]. Upon perturbing a
weakly unstable helical state at time t = 0, we identify the emergence of stable wobbling helical
motion as time increases (figure 9), in which the radius of curvature and speed both oscillate
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Figure 9. Wobbling helical state for κ0 = 0.25 and Γ = 0.90787. (a) The helical state wobbles about its symmetry axis,
with periodic velocity variations. The trajectory is colour-coded by its speed relative to the steady propulsion speed for the
given parameters. (b) The limit cycle for the wobbling helical state characterized in terms of its speed, U= |ẋp|, and radius of
curvature, R. Here u= 1.6575 is the steady propulsion speed.

periodically in time, with variations on the order of 10%. The existence of these stable helical
wobbling states hints at the possibility of numerous wobbling helical states emerging when the
particle moves in response to a confining force, as is known to be the case in two dimensions
[9,10,52].

As indicated by the regime diagram in figure 7, rectilinear motion is the dominant state of
the free particle, as is also the case for the two-dimensional generalized pilot-wave system [39].
Also similar to the two-dimensional system, exotic states are observed in the low-particle inertia,
high-memory regime. Here, erratic walking co-exists with stable helical spin states, giving rise to
various forms of complex dynamics. These include random walks, either confined to the plane
or exploring three-dimensional space (figure 2b), intermittent coiling trajectories (figure 3a), the
spontaneous formation of helical states from a random walk (figure 3b) and exotic trajectories
arising due to the imposition of relic wave fields. The latter case is implemented by specifying an
initial trajectory of the particle, which effectively preconditions the wave field, creating a space-
filling potential that the particle then explores.

Presented in figure 10 are three separate systems in which the particle interacts with a wave
field generated by imposing the initial particle path. Specifically, we initialize with a helical
trajectory in figure 10a and rectilinear motion in figures 10b,c. These imposed trajectories generate
the associated wave potential, and the subsequent particle dynamics. The initial helical wave
field in figure 10a prompts a spontaneous reversal of the particle, which coils backwards along
the imposed helix before then spiralling towards a stable helical state. Initializing with an
anomalously low-speed walking speed at Γ = 1 generates a highly structured potential that the
particle explores. If the initial propulsion speed is sufficiently small, the self-potential is nearly
spherically symmetric, and the particle is largely confined to a spherical shell (figure 10b). If the
initial speed is larger, the self-potential is circularly symmetric, and the particle is confined to a
cylindrical shell (figure 10c). In both instances, the diameter of the confining shells is prescribed
by the pilot-wavelength. As the simulations are done in the infinite-memory limit (Γ = 1), the
particle appears to be restricted to these shells indefinitely. The richness of these memory-induced,
hereditary dynamics suggests the likelihood of a variety of exotic states in three-dimensional
pilot-wave systems.

5. Discussion
Pilot-wave hydrodynamics has provided a platform for realizing quantum behaviour on the
macroscopic scale, and so for redefining the boundaries between classical and quantum systems
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Figure 10. Exotic trajectories with an imposed initial path. (a1) A particle initialized in an imposed helical trajectory atΓ = 1
and κ0 = 0.27 with parameters r0 = 0.43λ,ω = 0.306, and v = 0.352. Upon release, the particle reverses its path, forming
a double helix and eventually stabilizing into a new helical spin state. (a2) The same plot projected onto the x-y axis. (b1) A
rectilinear walker initialized in the+z direction with an anomalously low walking speed of 0.0071u, where u= 1.732 is the
free walking speed and κ0 = 0.32. After release, the particle reaches a maximum speed of 38.627 before being confined to a
spherical shellwith radius≈ 2.7λ. The corresponding x-y projection is shown in (b2). (c1) A similar rectilinearwalker is initialized
with speed 0.0705u and κ0 = 0.32. The particle reaches a maximum speed of 9.63 before being confined to a cylindrical shell,
with the x-y projection depicted in (c2). The time step is set to be 2−6 or smaller for all simulations, with robustness verified by
benchmarking against steady and perturbed rectilinear and helical states.

[2]. The generalized pilot-wave framework has provided a vehicle for exploring two-dimensional
pilot-wave dynamics in parameter regimes inaccessible to the walking-droplet system [31]. We
have here extended this framework to consider three-dimensional pilot-wave dynamics, in which
a vibrating particle generates a wave with a spherical Bessel function form, then moves in
response to wave gradients. A comparison of the salient features of theoretical models of pilot-
wave dynamics in one through three dimensions is provided in table 1. The dependence of
the dynamics of the free particle motion in three dimensions on the dimensionless mass, κ0,
and memory, Γ , is summarized in figure 11. Pilot-wave dynamics in three dimensions has both
similarities and differences with its two-dimensional counterpart.

As in the two-dimensional case, the behaviour of the free particle is characterized in terms
of two dimensionless parameters that prescribe the dimensionless particle inertia, κ0, and the
system memory, Γ . The trajectory equation supports a stationary solution that becomes unstable
to perturbations and transitions to a self-propelling state, marked by rectilinear motion at constant
speed, at the walking threshold Γ = 0. The resulting self-propelling state is stable for a wide range
of κ0 and Γ and exhibits neutrally stable responses to perturbations orthogonal to the direction
of motion. The response to parallel perturbations can be either overdamped or underdamped.
For high memory and low particle inertia (below approximately κ0 = 0.9), the walking state
destabilizes and the particle trajectory becomes erratic. As in the two-dimensional case, intriguing
periodic and quasi-periodic states arise in the low inertia, high memory corner of parameter
space.
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Figure 11. Regime diagram summarizing all the dynamical states identified in three dimensions. Plots of overdamped,
underdamped and helical states have values of (κ0,Γ ) given by the diamonds in the corresponding coloured regions. The
plots of erratic and wobbling states correspond to the diamonds at (0.2, 1) and (0.25, 0.90787), respectively.

Table 1. The dependence of classical pilot-wave dynamics on spatial dimension, β . With the three wave kernels specified,
the dimensionless speed limits, c, are prescribed by c = √

β , and the dependence of free particle speed u on the memory
parameter Γ = 1 − μ is indicated. As time is non-dimensionalized by scaling with the memory time at the onset of
propulsion, τ0 =

√
βDT/FAk2, all three speed limits are equal to

√
FA/DT in dimensional units.

β c Wave kernel Propulsion speed

1D 1
√
1 cos(x) u=

√
1 − μ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2D 2
√
2 J0(r) u= 1√

2

√
4 − μ2 − μ

√
μ2 + 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3D 3
√
3 j0(r) u= (u3/3) + μ arctan u/μ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The self-propelling particle is accompanied by a quasi-monochromatic wave field. In pilot-
wave hydrodynamics, the quasi-monochromatic form of the pilot wave is critical for the
emergence of quantized orbits [7,36]. Specifically, it acts as a self-potential that serves to support
only finite bands of orbital radii and so lead to orbital quantization [53]. We thus expect the
basic paradigm for orbital quantization and the emergent quantum-like statistics in orbital
pilot-wave dynamics in two dimensions to be robust to the extension to three dimensions.
In hydrodynamic pilot-wave dynamics, underdamped in-line oscillations may give rise to the
emergence of quantum-like statistics [11], so we expect this paradigm for quantum-like statistics
to likewise arise in three-dimensional pilot-wave dynamics. On the basis of the similarities of
the dynamics in two- and three-dimensional pilot-wave dynamics, we thus expect the two basic
paradigms for the emergence of quantum-like behaviour in two dimensions [54] to persist in three
dimensions.

There are also several notable differences with the two-dimensional dynamics. First, while
solutions corresponding to planar spin states exist in both two and three dimensions, that with the
smallest radius is stable in two dimensions, while all such states are unstable in three dimensions.
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Second, the extra dimension allows for a novel phenomenon in the form of helical spin states
that are quantized in both radius of curvature and pitch length. Specifically, like two-dimensional
spin states [38], the helical spin states are quantized in radius of curvature by half wavelengths.
A further quantization appears in the pitch length at half-integer multiples of the wavelength,
resulting in a system with two ‘quantum numbers’ (n, �). We have assessed the stability of the
helical spin states by examining their response to infinitesimal perturbations. All helical spin
states above the lowest level (1, 1) were found to be unstable in all parameter regimes considered.
The stable helical spin state may coexist with rectilinear self-propelling states at relatively low
particle inertia, or with erratic walkers for higher particle inertia. In the latter regime, the particle
may follow an erratic trajectory for some time before spontaneously transitioning to a stable
helical spin state. In this regime, since the rectilinear walking state is unstable, while the helical
state is not, the default stable state thus changes from rectilinear walking to helical spin.

The spin of subatomic particles is widely believed to be a non-classical effect, an intrinsic
feature with no known physical rationale. Attempts to provide such a rationale [55] are frequently
based on physical pictures with some resemblance to the helical spin state. For example, classical
models of the electron feature a charge executing a circular orbit with the Compton length at the
Compton frequency, confined by its own electromagnetic field [56,57]. An inference that might be
made from the field of hydrodynamic quantum analogues is that there is currently an unresolved
quantum pilot-wave dynamics on the Compton time scale [3], analogous to the time scale of
wave generation in our classical systems [2]. The helical spin state thus represents a beguiling
new feature of classical pilot-wave dynamics that evokes classical models of the electron. If the
dynamics is fully resolved, the particle is seen to follow a helical path in response to the constraint
imposed by its pilot wave. However, if the scale of the pilot wave (and so of the helix diameter)
were not resolved, one would instead infer motion, along the helix centreline, of an object with
intrinsic angular momentum. The associated mean angular momentum vector is necessarily
aligned either parallel or antiparallel to the direction of motion, but the instantaneous angular
velocity necessarily precesses around its direction of motion. The dynamics of this multi-scale
object will be the subject of future investigations.

Our extension to three dimensions will allow for an exploration of pilot-wave dynamics in
a number of new settings inaccessible to either the hydrodynamic system or its parametric
generalization. Of particular interest would be a characterization of orbital quantization in a
central force, both a simple harmonic potential and a Coulomb potential, the latter of which
promises a classical analogue of the hydrogen atom. The extensive studies of static and dynamic
bound states in pilot-wave hydrodynamics, including crystals [58,59], and orbiting [60,61] and
promenading pairs [62,63], might also be readily extended to include a third direction. The
dynamic states arising from the interaction of helical spin states will also be characterized.
Another potentially fruitful direction will be leveraging the analogy between a charge moving
in a uniform magnetic field and a mass moving in a rotating frame [7]. The motion of a helical
spin state in a rotating frame should thus bear some relation to that of a magnetic dipole in a
uniform magnetic field.

As a final caveat, we note that our exploration of three-dimensional pilot-wave dynamics has
been based on two assumptions. First, we have assumed a particular form of the wave kernel, j0(r),
variation of which will undoubtedly change the stability characteristics of the various dynamical
states. Second, our analysis is based on the stroboscopic approximation, which relies on the
perfect resonance between the oscillations of the particle and its guiding wave form. Recent
experimental work in pilot-wave hydrodynamics has revealed the importance of non-resonant
effects, specifically the desynchronization of the bouncing drops and their pilot waves [47,64],
which may alter the stability of various dynamical states. We expect that relaxing the assumption
of resonance in our three-dimensional model through retention of the time oscillation of the wave
kernel might likewise alter the stability of various dynamical states; for example, they might serve
to stabilize both the helical and planar spin states. Consideration of different wave kernels and
non-resonant effects will be the subject of future work.
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Appendix A. Steady propulsion: linear stability analysis
To assess the linear stability of the walking state, we introduce a small impulse at t = 0, deviating
the droplet from its steady motion. Following the framework developed by Oza et al. [29], we
consider the perturbed trajectory equation

κ0ẍp + ẋp = 3
∫ t

−∞
j1(|xp(t) − xp(s)|)

|xp(t) − xp(s)| (xp(t) − xp(s))e−μ(t−s) ds + εδ(t), (A 1)

where 0 < ε � 1 is a small parameter governing the strength of the perturbation and δ(t) =
(c‖e‖ + c⊥e⊥)δ(t) is a Dirac delta function with components parallel, e‖, and perpendicular, e⊥,
to the steady motion, where c‖ and c⊥ are arbitrary O(1) constants. The influence of the small
perturbation on the droplet path may be characterized by writing xp(t) = ute‖ + εx1(t)H(t), where
H(t) is the Heaviside function and x1(t) = x‖(t)e‖ + x⊥(t)e⊥ is the perturbed trajectory. Assuming
continuity in the particle position across the Delta impulse, we deduce from (A 1) that x1(0) = 0,
with ẋ‖(0) = c‖/κ0 and ẋ⊥(0) = c⊥/κ0

To determine linearized evolution equations for the perturbed droplet motion parallel and
perpendicular to the steady motion, we substitute the perturbation ansatz into (A 1), expand
nonlinear terms in powers of ε and retain only the leading-order terms. We deduce that

κ0ẍ‖+ẋ‖=3
[

x‖
∫∞

0
g‖(s) ds − (x‖ ∗ g‖)

]
(A 2a)

and

κ0ẍ⊥+ẋ⊥=3
[

x⊥
∫∞

0
g⊥(s) ds − (x⊥ ∗ g⊥)

]
, (A 2b)

where

g‖(t) = j′1(ut)e−μt and g⊥(t) = j1(ut)
ut

e−μt

account for the influence of path memory on the particle motion, with ∗ denoting the convolution
(f ∗ g)(t) = ∫t

0 f (s)g(t − s) ds. Notably, one may integrate by parts and apply the relationship (2.5)
to evaluate the coefficient of x‖ in (A 2a), giving

∫∞
0 g‖(s) ds = 1

3 μ. We thus observe that this
component of the wave force, which acts as a repelling spring, serves to perturb the particle
from its steady motion; however, our analysis below indicates that this effect is countered by
the convolution term, which may dampen inline perturbations when the path memory remains
below a critical threshold.

To investigate the long-time response of particle motion to perturbation, we analyse the
equations for X̂‖(s) =L[x‖](s) and X̂⊥(s) =L[x⊥](s), where L[f ](s) = ∫∞

0 f (t)e−st dt denotes the
Laplace transform. Specifically, we deduce that X̂‖(s) = c‖/F‖(s) and X̂⊥(s) = c⊥/F⊥(s), where the
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transfer functions are defined

F‖(s) = κ0s2 + s − μ + 3̂g‖(s) and F⊥(s) = κ0s2 + s − 3̂g⊥(0) + 3̂g⊥(s), (A 3)

with

ĝ‖(s) = (μ + s)
u2

[
1 − (μ + s)

u
arctan

(
u

μ + s

)]
and ĝ⊥(s) =L[g⊥](s)

being the Laplace transforms of g‖ and g⊥, respectively. The roots of each transfer function
determine the long-time response of the particle to perturbations from steady motion: specifically,
the motion is stable when all roots lie in the left-half plane, with the magnitude of all perturbations
decaying exponentially in time, and unstable otherwise. Owing to the relative complexity of the
algebraic expressions describing the transfer functions, we compute all roots numerically using
the method of Delves & Lyness [65]. Although ĝ⊥(s) may be evaluated analytically, we omit its
form for the sake of brevity.

Appendix B. Helical states: linear stability analysis
The constants, aij, and functions, bij(t), appearing in (3.6) are defined

a11 = I [f1(t) − r2
0f2(t)(1 − cos ωt)2],

a12 = I [f1(t) sin(ωt) − r2
0f2(t)(1 − cos ωt) sin(ωt)],

a13 = −r0vI [f2(t)t(1 − cos ωt)],

a21 = −r2
0I [f2(t)(1 − cos ωt) sin(ωt)],

a22 = I [f1(t) cos(ωt) − r2
0f2(t) sin2(ωt)],

a23 = −r0vI [f2(t)t sin(ωt)],

a31 = −r0vI [f2(t)t(1 − cos ωt)],

a32 = −r0vI [f2(t)t sin(ωt)]

and a33 = I [f1(t) − v2t2f2(t)],

and

b11(t) = −f1(t) cos(ωt) − r2
0f2(t)(1 − cos ωt)2,

b12(t) = −f1(t) sin(ωt) + r2
0f2(t)(1 − cos ωt) sin(ωt),

b13(t) = r0vf2(t)t(1 − cos ωt),

b21(t) = f1(t) sin(ωt) − r2
0f2(t)(1 − cos ωt) sin(ωt),

b22(t) = −f1(t) cos(ωt) + r2
0f2(t) sin2(ωt),

b23(t) = r0vf2(t)t sin(ωt),

b31(t) = −r0vf2(t)t(1 − cos ωt),

b32(t) = r0vf2(t)t sin(ωt)

and b33(t) = −f1(t) + v2t2f2(t),

where I [f (t)] = ∫∞
0 f (t) dt,

f1(t) = j1(D(t))
D(t)

e−μt, f2(t) = j2(D(t))
D2(t)

e−μt and D(t) =
√

2r2
0(1 − cos(ωt)) + v2t2

is the distance between the particle and its position a time t in the past.
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