Lecture 24

Biocapillarity

John W. M. Bush

Department of Mathematics MIT

"Choose only one master, Nature."

- Rembrandt

MOTIVATION

• to rationalize Nature's designs

Bonus: to inspire and inform biomimetic design

Walking on water

with David Hu

Water-walkers in the tree of life (over 1200 species)

Motivation: foraging on water surface, avoidance of predators

Biolocomotion

- propulsion rationalized in terms of force, energy or momentum transfer
- creature applies a force to its environment: the reaction force propels it

Terrestrials

- frictional forces applied at point of contact with ground
- energy cycled between muscular strain energy, GPE and KE of body

Swimmers and fliers

- hydrodynamic forces applied over body
- strain energy, GPE and KE of body, KE of fluid

Water-walkers

- combination of hydrodynamic and surface forces applied over body
- strain energy, GPE and KE of body, KE of fluid, surface energy

Flying and swimming at high Re

Momentum created by stroke: $\mathbf{P} = \mathbf{m}\Delta\mathbf{v} = \int_{S} \mathbf{F}_{\mathbf{h}} dt$ where $\mathbf{F}_{\mathbf{h}} = \int_{S} \mathbf{n} \cdot \mathbf{T} \, \mathrm{dS}$, $\mathbf{T} = -\mathbf{p}\mathbf{I} + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}}\right)$ Momentum transferred in wake: $\mathbf{P}_{f} = \iiint_{V} \rho \, \mathbf{u}(\mathbf{x}, t) \, \mathrm{dV}$ Conservation of momentum: $\mathbf{P} = \mathbf{P}_{f}$ Propulsion rationalized by elucidating $\mathbf{F}_{\mathbf{h}}$ or \mathbf{P}_{f}

The flight of the humming bird

Weight supported by downward momentum flux.

Two modes of weight-support: $B = \frac{Mg}{\sigma P} = \frac{\text{weight}}{\text{surface tension force}}$

 \square static weight support by σ

- dynamic weight support
- vertical hydrodynamic forces generated by slapping

Lateral propulsion at the interface

$$\underline{F}_{\mathrm{H}} = \int_{S} \underline{\underline{\mathrm{T}}} \cdot \underline{\mathrm{n}} \, dS + \int_{C} \sigma \, \underline{t} \, dl$$

Stress tensor:

$$\underline{\mathbf{T}} = -p\,\underline{\mathbf{I}} + \mu\left(\nabla u + (\nabla u)^T\right)$$

Surface tension force:

$$\int_{C} \sigma \underline{t} \, dl = \int_{S} \sigma \left(\underline{\nabla} \cdot \underline{n} \right) \underline{n} - \underline{\nabla} \sigma \, dS$$

curvature pressure Marangoni stress

For high Re motion:

 $\underline{\underline{T}} = -p \underline{\underline{I}}$ where

$$\frac{\partial \phi}{\partial t} + \frac{1}{2}u^2 + \frac{p}{\rho} - \underline{g} \cdot \underline{x} = const$$

time-dependent Bernoulli

Dynamic classification of water-walkers

$$\mathbf{F}_{\mathrm{H}} \sim \rho g \mathbf{V}_{\mathrm{s}} + \rho U^{2} A + \rho V \frac{dU}{dt} + \rho v \mathbf{U} a + \sigma (\underline{\nabla} \cdot \underline{n}) A - \underline{\nabla} \sigma A$$

buoyancyformaccelerationviscouscurvatureMarangonidragreactiondragdrag

Mathematician: which terms can I discard to get a tractable equation?

Physicist: which forces are used by which creatures?

every force is used by some creature

Biological classification

made along evolutionary grounds

Dynamic classification

- group according to propulsion mechanism
- evaluate relative magnitudes of hydrodynamic forces

	ρgz A	ρVdU/dt	ρU²A	σ∇• <u>n</u> A	<u></u> <i>Σ σ Α</i>
Surface		- A-			
slapping					
Rowing &				The last	
walking				1 AF	
Surface					
distortion				- CON	
Marangoni					
propulsion					

Dynamic constraints on large water-walkers

• hydrodynamic force must bear body weight:

Crudely,

$$\rho \overline{U^2 w^2} > Mg$$

Tougher constraints:1) power requirements2) dynamic stability.

Clark's Grebe: clip courtesy of "Winged Migration"

Courtesy of National Geographic

Video by Tonia Hsieh, Lauder Laboratory Harvard University

The skittering frog

Courtesy of BBC's Natural World

What is the largest creature that can walk on water?

Can man walk on water?

Imagine a man of weight M = 70 kg who can run at U = 10 m/s.

How big must his feet be to walk on water?

Option 1: use surface tension $\sigma = 70$ dynes/cm

Vertical force balance: $Mg = \sigma P$

 $Mg = \sigma P$

Requires feet with perimeter: $P = \frac{Mg}{\sigma} \approx 10 \text{ km}$

Option 2: run via slapping mode

Vertical force balance: $Mg = \rho U^2 A$ Requires feet with area: $A \approx 1 m^2$

Power requirements: unaided, a man would need to run 30 m/s and generate 15 times as much muscle power (Glasheen & McMahon 1996)

Liquid mountaineering

"It is remarkable that Man should have had to wait until the advent of Youtube to walk on water. Coincidence?"

- JB, unreported!

Flotation devices required....

Mizugo Ninja, 12th century

Leonardo da Vinci

	ρgz A	ρVdU/dt	ρU2A	σ∇· <u>n</u> A	$\nabla \sigma A$
Surface		- A-			
slapping					
Rowing &			-	And -	
walking					
Surface					
distortion				- COL	
Marangoni					
propulsion					

quasi-static propulsion

Quasi-static propulsion

Marangoni propulsion
 Meniscus-climbing

Marangoni propulsion

- lateral force generated by surface tension gradient
- quasi-static propulsion
- transfer of chemical potential energy to kinetic energy

Tangential stress, $abla \sigma$, may drive lateral motion.

Marangoni propulsion: insect uses lipid as fuel.

Microvelia clear dye from surface using Marangoni stresses.

	ρgz A	ρVdU/dt	ρU²A	σ∇· <u>n</u> A	$\nabla \sigma A$
Surface		- A-			
slapping					
Rowing &			-	And -	
walking					
Surface					
distortion					An and an art
Marangoni					
propulsion					

quasi-static propulsion

Meniscus-climbing

3 mm

Capillary forces: The Cheerios effect

- exist between objects floating at a free surface
- attractive/repulsive for meniscii of the same/opposite sense

- explains the formation of bubble rafts in champagne
- explains the attraction of Cheerios in a bowl of milk
- used by small insects to move themselves along the free surface
Meniscus climbing

Hu & Bush (2005)

- Anurida arches its back to match curvature of meniscus
- anomalous surface energy exceeds GPE associated with climb

Meniscus-climbing: Energetics

Body climbs provided total energy minimized:

$$\sigma(A_1 + A_2) + M_1gh_1 + M_2gh_2 > MgH$$

Meniscus-climbing for non-wetting insects

Microvelia

- exploit attraction between like-signed menisci
- pull up with front legs to generate lateral force
- pull up with rear legs to balance torque
- push down with middle legs to support weight

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

nature

A SLIPPERY SLOPE

Meniscus-climbing insects scale the heights

Surfaces

DARK MATTER Lost and found in space

> SELF REPLICATION Robots get it right

PLANT GROWTH Elusive gibberellin receptor

OCEAN ACIDIFICATION Calcifying organisms hit by 2100

NATUREJOBS Berlin's pulling power

Other uses for capillary attraction

Anurida colony

	ρgz A	ρVdU/dt	ρU2A	σ∇· <u>n</u> A	$\nabla \sigma A$
Surface		- A-			
slapping					
Rowing &					
walking				1.A	
Surface					
distortion				- CODE	
Marangoni					
propulsion					

The Water Strider (Gerridae)

• weight: 1-10 dynes

- contact leg length ~ 1 cm; perimeter ~ 5 cm
- hairy non-wetting legs

The life cycle

Crossing the interface

	and the second second	1000			and sold have			62	1000
222602		210	2.2.2		33 6	1000	100 July		
1	a sea the to	1-17	770 100 100		1242		1000		
and a				1			2 0	N N	
163.4	10,185	1 100			-	+++			+ + + +
0 83.2		100 22	2220			1	Miles	-	
Real P.	110000000	6 60 533					1912	anti	the second
1000	100								001070
-	10252	-				+++	-		
1 6.9	0 0 000		112-12-5						
	立法調整品	10101		10 10					1
1	100107.00		10000	1000		122123		123 13 1	1
in the second		1		-	-	111			1
1154		1 1 5	-			1 1 1			
1962	20.000	12401	13 2.0 12	02113	11		20 0 0 1		1
8-00	11000	1 55 X23	10 12			101		1.1	1. 5
1000	1111	1000	100 100 100	0017		1.1			1951
	1.	and the	-			1		10	1
12/12	0 3 13 1	11101			-	1		1000	-
		1.11			2	A COL			1120
1015	0155 CO. 11	6 22 23			1.2		1000		1 h
-					100		7 1 1		
1000	di la la	- de al	in the	distant.	-dinda	- Lud		1.1.1	and the second
	-Nulla	and the second	Se lan						
10 2 -	and the second division in which the second division in the second din the second division in the second division	a contraction of the			and the state of the	5- 1- 6		1 1 1	+ +

Experimental Technique

- A. Insects, spiders maintained in lab
- B. High-speed cinematography
- C. Particle tracking (Kalliroscope, pliolite)
- D. Dye studies (food colouring, thymol blue)

Observations

- peak speed ~ 150 cm/s; momentum ~ 1 g cm/s
- stroke Reynolds number: $\text{Re} = VL_2 / \nu \sim 1000$

Propulsive force: F ~ 50 dynes

Lines of evidence:Acceleration:F = M dv/dtLeap height:F = MgH/L

 \implies strider ideally tuned to life at the interface

Denny's Paradox (1993)

infant water striders cannot swim:

"Exactly how they manage to propel themselves across the water surface remains a mystery."

Reasoning

- assumed momentum transfer exclusively in waves
- to generate waves, legs must exceed

 $c_m = (4g\sigma/\rho)^{1/4} = 23 \text{ cm/s}$

• infant leg speed $< C_m$

Walking on water

The physics of water strider motion

7 August 2003

\$11.00

Accelerated vaccine Targeting Ebola virus

Early Solar System Comets change their story

Particle physics Whatever happened to antimatter?

naturejobs Chicago for energy

Conclusions

- Denny's Paradox resolved
- momentum transferred principally in vortices, not waves
- striders row, using their legs as oars, menisci as blades

Flying

Rowing

Swimming

Generic Physical Picture

• water-walking creatures propel themselves forward through momentum transfer via subsurface vortices

ROBOSTRIDER

Goal: to design and construct the first mechanical water walker

Design Criteria

1. Non-wetting legs

2. $M_c < 1$: weight supported by σ

3. Force/length on driving legs $< 2\sigma$

4. Form consistent with natural counterpart

Home | Publications | Members | Contact | Projects | Links | Publicity | Equipment

Water Walker A miniature water strider robot

Goal: To develop a microrobet that can maneuver on water with cower efficiency and agility

Approach: To understand the physics of water striders to model their characteristics of floating on the surface of water. We are using micro-actuators to simulate water striders movements. We are also investigating different materials to improve the robot's ability to float on water.

Benefits: Water stricer reports will be small and relatively efficient. Because it is on the surface of water and light, the robot will be highly agile and call reach inaccessible areas for many different applications.

Videos:

Video 1: Water strider rebot moving scross the surface

Members: Sleve Sunn, Sang Jun Lee, Yun Seong Song, Motin Sitti

Publicity:

Associated Press Article featured in: Fordes.com, Yahoo supporting loss; E and - aro the actuating loss; G is the ody with sensors, power loss; G is the ody with sensors, power

In Turkish - MSINBO, e-koley, sacah.com, Milliyet.com.

[Moving Water strider robot prototype]

[Moving Water strider robot prototype]

[Conceptual 0-0 CAD model of the water stricer roott, A, B, C and D are the cupporting loop; E and H are the actuating loop; G is the body with sensors, power sources and a wireless commonication module; L is the middle actuator; and and J are the right/left actuators.]

The return of Robostrider

by R. Brasso & collaborators

Dept. of Mechanical Engineering Columbia University

» solar powered?!?

Bush & Hu (2006)

SUMMARY

	Buoyancy	Added mass	Inertia	Curvature	Marangoni
Surface slapping	Slap Stro	Hsi ke Recovery	eh & Lauder (2004)		
Rowing & walking			Hu, Chan & Bush (20	→ / → →	
Meniscus climbing				Hu & Bush (2005)	
Marangoni propulsion					