18.357: Lecture 13

Fluid sheets, bells and fishbones

John W. M. Bush

Department of Mathematics MIT

Savart (1833)

Rayleigh (1879)

Taylor (1959abc)

Industrial application: spray atomization

Industrial application: spray atomization

Glycerol-water solutions: $v \sim 1 - 100 \text{ cS}$

Recall ...

Curvature force on rim:

$$F_c = \int_{S} \sigma \left(\nabla \cdot \mathbf{n} \right) \mathbf{n} \, dS$$

2D Surfaces Frenet-Serret equation: $(\nabla \cdot \mathbf{n}) \mathbf{n} = \frac{d\mathbf{t}}{d\ell}$

$$F_{c} = \int_{C} \sigma \left(\nabla \cdot \mathbf{n} \right) \mathbf{n} \, d\ell = \int_{A}^{B} \sigma \, \frac{d\mathbf{t}}{d\ell} \, d\ell = \sigma(\mathbf{t}_{B} - \mathbf{t}_{A})$$

E.g. Force/length on edge of planar sheet

$$\begin{array}{c} x \\ \hline x \\ \hline B \\ \hline B \\ \hline RIM \end{array}^{n} t$$

$$F_c = \sigma(\mathbf{t}_{\mathbf{B}} - \mathbf{t}_{\mathbf{A}}) = 2\sigma \mathbf{x}$$

independent of detailed rim shape

sheet radius: balance of surface tension and inertia

$$\rho u^2 h \sim 2\sigma$$

sheet thickness :

$$h = \frac{Q}{2\pi r u} \sim \frac{1}{r}$$

Taylor radius:

$$R_T = \frac{\rho Q u}{4 \pi \sigma}$$

toroidal sheet rim releases drops through Rayleigh instability

Formation of thin flat sheets of water

(Taylor 1960)

- unstable rims eject droplets
- sheet shape prescribed by balance:
- sheet thickness:

$$h = \frac{Q(\theta)}{2\pi r u}$$

Taylor radius:

$$R_T = \frac{\rho u_n^2 Q(\theta)}{4 \pi \sigma u}$$

• flux distribution $Q(\theta)$ deduced experimentally, or calculated

$$\rho u_n^2 h \sim 2\sigma$$

Sheets with stable rims

Fluid Chains

ubiquitous in high Re sheet motione.g. pour wine from a lipped jug

Physical Picture

- colliding jets generate fluid sheets in orthogonal plane
- sheet develops rims and closes through influence of σ
- rim jets again collide ... ad infinitum

- successive links decrease in size through viscous damping
- chain eventually coalesces into a cylindrical stream

Mass conservation in rim:

$$\frac{\partial}{\partial s}(\pi R^2 w) = u_n h$$

flux from sheet

Normal force balance:

$$\rho u_n^2 h + \pi \rho R^2 w^2 \frac{1}{r_c} = 2\sigma + \sigma \pi \frac{R}{r_c}$$

inertia centripetal curvature

Tangential force balance:

$$\rho \frac{\partial}{\partial s} (\pi R^2 w^2) = -\pi R^2 \sigma \frac{\partial}{\partial s} (\nabla \cdot \mathbf{n}) + 3\mu \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left(R^2 \frac{\partial w}{\partial s} \right) + \frac{\partial}{\partial s} \left$$

gradient in curvature pressure

viscous resistance + $\rho h u_t u_n$

tang. mom. flux from sheet

Rim instability

Fluid Fishbones

Physical Picture

- capillarity instability develops on bounding rims
- bulbous regions flung outwards by centripetal force
- fluid tendrils, fishbones drawn out
- capillary instability of fishbones leads to elaborate wake structure

Bush & Hasha (2004)

-G Ó € \cap

FISH OUT OF WATER

A kinetic sculpture by Jeff Lieberman & Daniel Paluska

Colliding jets

DIMENSIONAL ANALYSIS

Fundamental units:

Physical variables: $R, Q, \rho, \sigma, \nu, \beta, g$ M, L, T

Buckingham's Thm: 4 dimensionless groups

ß

Impact angle:

Reynolds number:

Weber number:

Froude number:

Re =
$$\frac{Q}{vR}$$
 = $\frac{\text{INERTIA}}{\text{VISCOSITY}}$
We = $\frac{\rho Q^2}{\sigma R^3}$ = $\frac{\text{INERTIA}}{\text{CURVATURE}}$
Fr = $\frac{Q^2}{\sigma R^5}$ = $\frac{\text{INERTIA}}{\text{GRAVITY}} >> 1$

Bush & Hasha (JFM, 2004)

Sagging sheets

The water bell

Water bells in the garden

Water bells (Savart 1833, Taylor 1959)

 form prescribed by balance of inertia, gravity and capillarity

Continuity: $Q = 2\pi h r u$

Energy conservation:

$$u^2 = 2gz + u_0^2$$

Normal force balance:

bell closes owing to influence of out-of-plane curvature

Cusps on sheets

Cusps on sheets

may arise for sheets that are initially concave upwards

- in this case, numerical integration of governing equations suggests that sheet will be self-intersecting
- Bark et al. (1979) suggest that the cusps arise at the lines of intersection of these phantom loops

The latest word on fluid sheets...

Lhuissier & Villermaux (2011)

Instability of flapping sheets

Cusps on sheets

Jets and sheets in rotation

Instabilities of rotating jets with Nikos Savva

- thread destabilized by rotation owing to influence of centripetal force
- above a critical $\Sigma = \frac{\rho \Omega^2 a^3}{\sigma}$

most unstable mode is nonaxisymmetric

reminiscent of symmetry-breaking in rotating drop

Weidman (1987)

Peter Rhines

Swirling water bells (Bark et al. 1979)

Sheet velocity: $\mathbf{v} = \mathbf{u} \, \mathbf{e}_s + \mathbf{v} \, \mathbf{e}_{\theta}$

Continuity: $Q = 2\pi h r u$

Energy conservation:

$$u^2 + v^2 = 2gz + u_0^2 + v_0^2$$

Conservation of angular momentum:

$$v r = v_0 r_0$$

Normal force balance:

$$\frac{2\sigma}{R} + \frac{2\sigma\cos\phi}{r} + \rho gh\sin\phi = \Delta P + \frac{\rho h u^2}{R} + \frac{\rho h v^2 \cos\phi}{r}$$

bell fails to close owing to influence of

CENTRIPETAL FORCE g

 \mathbf{u}_0

 $P + \Delta P$

Ζ

h

R

 \mathbf{e}_{θ}

e.

u

Rain drop hits a puddle

What forms do we expect?

Fluid-fluid impact

The Edgerton crown

What forms do we expect?

Fluid-fluid impact

How do we rationalize the resulting forms?

- "I never before realized so strongly the splendour and beauty of the mere physical forms of Nature.
- A wonderful thing is the curious repetition of the same forms, of the same design almost, in the shape of the falling water.
- It gave me a sense of how completely what seems to us the wildest liberty of Nature is restrained by governing laws."

- Oscar Wilde, on viewing Niagara Falls (the Canadian side)