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Industrial application:   spray atomization



Industrial application:   spray atomization
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Recall … 

                  Curvature force on rim:                                                   

€ 

Fc = σ (∇ ⋅n) n dS
S
∫

Frenet-Serret equation:
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2D Surfaces

E.g.  Force/length on edge of planar sheet
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Stable sheet
(Savart 1833, Taylor 1959)

 sheet radius: balance of surface tension and inertia

 sheet thickness :

 Taylor radius:

 toroidal sheet rim releases drops through Rayleigh instability
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Formation of thin flat sheets of water (Taylor 1960)

 unstable rims eject droplets

 sheet shape prescribed by balance:

 sheet thickness: 

 Taylor radius: 

 flux distribution           deduced experimentally, or calculated
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Sheets with stable rims







Fluid Chains

Physical Picture

 colliding jets generate fluid sheets in 
   orthogonal plane

 sheet develops rims and closes through
   influence of   

 rim jets again collide … ad infinitum

 successive links decrease in size through viscous damping

 chain eventually coalesces into a cylindrical stream

 ubiquitous in high Re sheet motion

e.g. pour wine from a lipped jug
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Rim Dynamics

Mass conservation in rim:

Normal force balance:

Tangential force balance:
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Rim instability 









Fluid Fishbones

 capillarity instability develops on 
bounding rims

  bulbous regions flung outwards
    by centripetal force

  fluid tendrils, fishbones drawn out

  capillary instability of fishbones
    leads to elaborate wake structure

Physical Picture

bones

head

Bush & Hasha (2004)













https://www.youtube.com/watch?v=tQdrgyf5zFM


Colliding jets



DIMENSIONAL ANALYSIS

Physical variables:
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R ,Q , ρ ,σ ,ν , β , g

Fundamental units: 
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M ,L , T

Buckingham’s Thm:   4 dimensionless groups

Impact angle:

Reynolds number:

Weber number:

Froude number:
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Sagging sheets





The water bell



Water bells in the garden



Water bells (Savart 1833, Taylor 1959)

   form prescribed by balance of inertia, 
     gravity and capillarity
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Energy conservation:
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  bell closes owing to influence of out-of-plane curvature
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Cusps on sheets 





Cusps on sheets

  in this case, numerical integration of governing equations suggests that
    sheet will be self-intersecting

  may arise for sheets that are initially concave upwards

   Bark et al. (1979) suggest that the cusps arise at the lines of intersection
     of these phantom loops

SURELY NOT!

PHANTOM  
LOOPS

SHEET



Lhuissier & Villermaux (2011)

Cusps on sheets

Instability of flapping sheets

The latest word on fluid sheets...



Jets and sheets in rotation 



Instabilities of rotating jets
with Nikos Savva

Peter Rhines

  thread destabilized by rotation owing
    to influence of centripetal force

   above a critical                               ,

     most unstable mode is nonaxisymmetric

   reminiscent of symmetry-breaking in 
     rotating drop

Weidman (1987)
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Swirling water bells (Bark et al. 1979)
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What forms do we expect?

Rain drop hits a puddle

Martin Waugh



Fluid-fluid impact

What forms do we expect?

The Edgerton crown



How do we rationalize the resulting forms?

Fluid-fluid impact







Photo essay



“I never before realized so strongly the splendour and beauty of the mere 
physical forms of Nature. 

A wonderful thing is the curious repetition of the same forms, of the same 
design almost, in the shape of the falling water.

It gave me a sense of how completely what seems to us the wildest liberty of 
Nature is restrained by governing laws.”

                                            

                                   - Oscar Wilde, on viewing Niagara Falls (the Canadian side)


