18.357: Lecture 5

I. Interfacial boundary conditions

II. Fluid statics: menisci, floating bodies

John W. M. Bush

Department of Mathematics MIT

Surface tension: Geometry

Along a contour C bounding a surface S there is a tensile force per unit length σ acting in the S direction

Net force on S:

$$\oint_C \sigma \mathbf{s} \ d\ell = \iint_S \sigma (\nabla \cdot \mathbf{n}) \mathbf{n} \ dS + \iint_S \nabla \sigma \ dS$$

curvature pressure

Marangoni stress

- 1) normal curvature pressure $\sigma \nabla \cdot \mathbf{n}$ resists surface deformation
- 2) tangential Marangoni stresses may arise from $\nabla \sigma$

Governing Equations

Navier-Stokes equations:

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{u} , \qquad \nabla \cdot \mathbf{u} = 0$$

Boundary Conditions

Normal stress:

$$\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{n} = \sigma \nabla \cdot \mathbf{n}$$

Tangential stress:
$$\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{s} = \nabla_{\mathbf{s}} \sigma$$

Stress tensor

$$\mathbf{n} \wedge \mathbf{g} \vee \mathbf{T} = -p\mathbf{I} + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$$
air σ iquid ρ , μ

Capillary forces support the weight of water-walking insects.

Marangoni Flows

• flows dominated by the influence of surface tension gradients

Recall tangential stress BC: $\Delta \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{s} = \nabla \sigma$

• $\nabla \sigma$ may arise due to dependence of $\sigma(T, c, \Gamma)$

Marangoni Flows

- flows dominated by the influence of surface tension gradients
- $\nabla \sigma$ may arise due to dependence of $\sigma(T, c, \Gamma)$

The cocktail boat: fueled by alcohol

Some notes on geometry

I. Computing curvatures: a quick recap

II. Frenet-Serret equations

Capillary rise: the planar meniscus

On floating bodies

Heavy things sink, light things float.

Not exactly.....