18.357: Lecture 3

Surface tension:

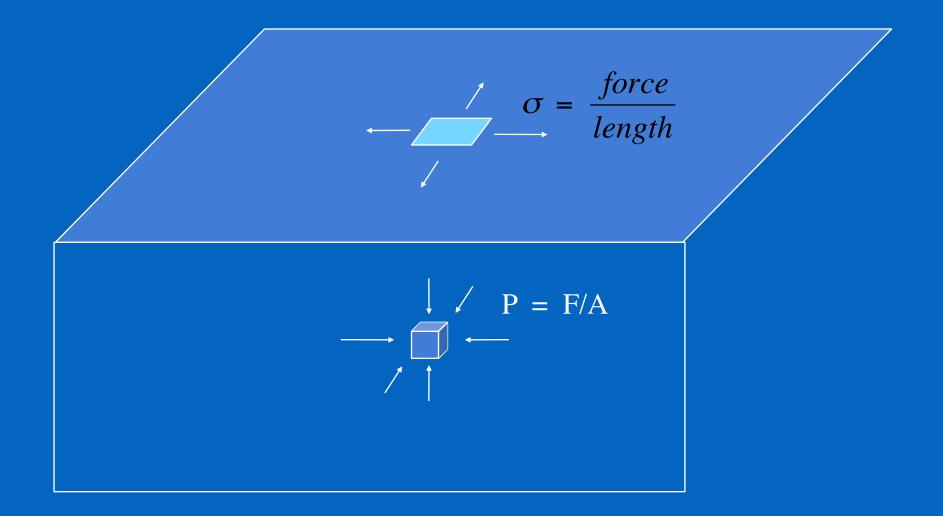
Capillary pressure, scaling, wetting

John W. M. Bush

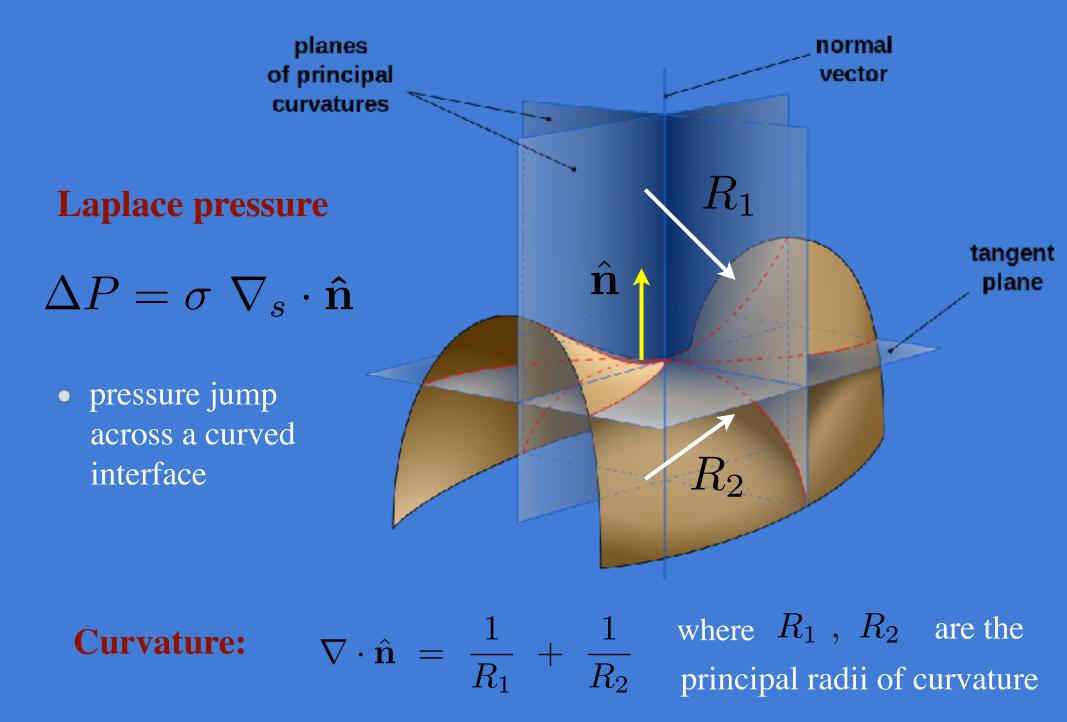
Department of Mathematics MIT

Surface tension: analogous to a negative surface pressure

gradients in surface tension necessarily drive surface motion



Curvature pressure



The scaling of surface tension

DIMENSIONAL ANALYSIS

Fundamental Concept

The laws of Nature cannot depend on arbitrarily chosen system of units. A system is most succinctly described in terms of dimensionless variables.

Deduction of Dimensionless groups: Buckingham's Theorem

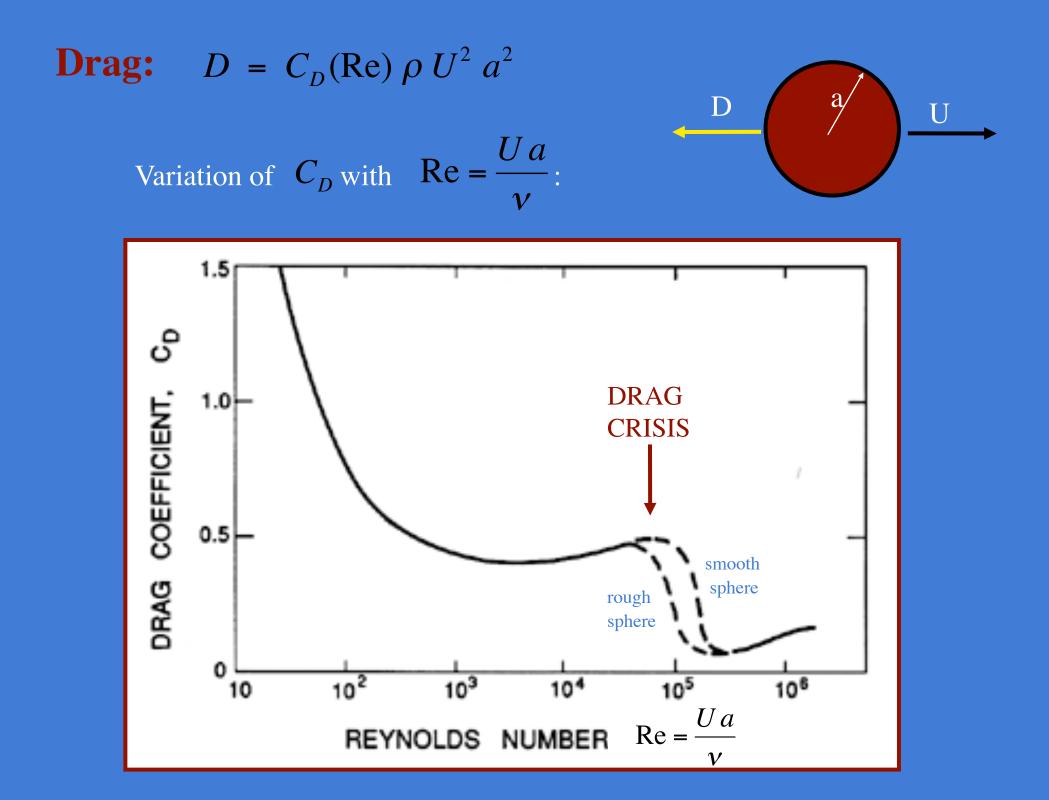
For a system with M physical variables (e.g. density, speed, length, viscosity) describable in terms of N fundamental units (e.g. mass, length, time, temperature), there are M - N dimensionless groups that govern the system.

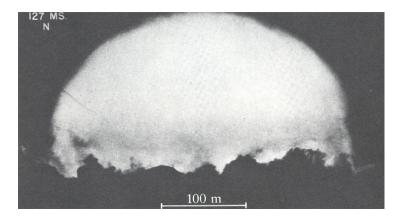
E.g. Uniform translation of a sphere

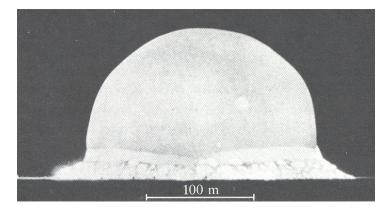
Physical variables: $U, a, v, \rho, D \Rightarrow M = 5$ Fundamental units: $M, L, T \Rightarrow N = 3$

M - N = 2 dimensionless groups: $C_d = \frac{D}{\rho U^2}$, Re = $\frac{Ua}{v}$

System uniquely determined by a single relation: $C_d = F(\text{Re})$

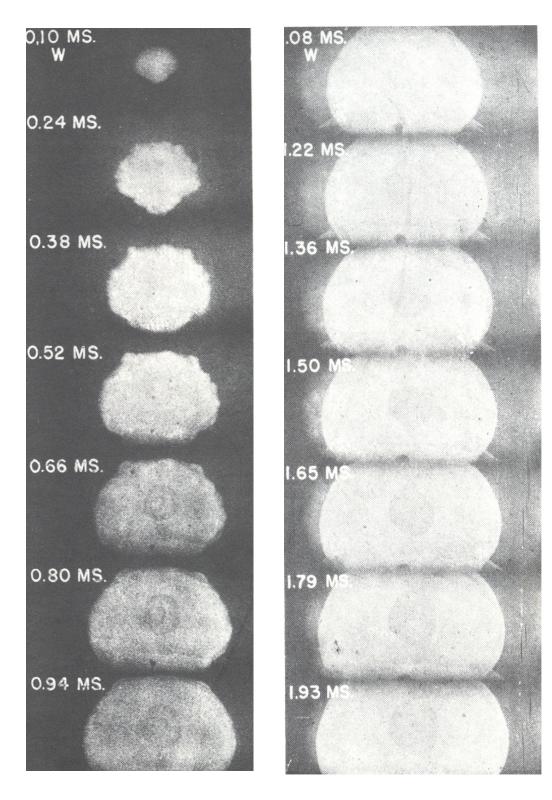


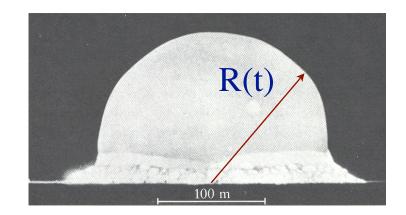




Can we predict R(t)?

Given R(t), can we infer the energy released?





The scaling of atomic blast clouds

- G.I. Taylor, Sedov

Physical variables: R, t, E, ρ

Fundamental units: M, L, T

system prescribed by one dimensionless group:

$$\Pi = \frac{Et^2}{\rho R^5} = constant$$

yields desired scaling for radius of the blast cloud:

$$R \sim \left(\frac{E}{\rho}\right)^{1/5} t^{2/5}$$

$$W_e = \frac{\rho U^2 a}{\sigma} = \frac{\text{INERTIA}}{\text{CURVATURE}} = \text{Weber number}$$

$$C_a = \frac{\rho v v}{\sigma} = \frac{v \text{ISCOSITY}}{\text{CURVATURE}} = \text{Capillary number}$$

$$B_o = \frac{\rho g a^2}{\sigma} = \frac{\text{GRAVITY}}{\text{CURVATURE}} = \text{Bond number}$$

Note: σ is dominant relative to gravity when $B_o < 1$ i.e. $a < \left(\frac{\sigma}{\rho g}\right)^{1/2} = \ell_c$ = capillary length ~ 2mm for air-water

When is surface tension important relative to gravity?

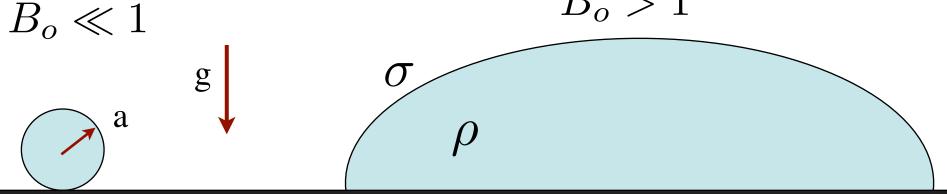
• when curvature pressures are large relative to hydrostatic:

Bond number:
$$B_o = \frac{\rho g a}{\sigma/a} = \frac{\rho g a^2}{\sigma} < 1$$

i.e. for drops small relative to the capillary length:

$$a < l_c = \left(\frac{\sigma}{\rho g}\right)^{1/2} \sim \frac{2 \text{ mm for air-water}}{(\sigma = 70 \text{ dynes/cm})}$$

$$B \ll 1 \qquad B_o > 1$$



Surface tension dominates the world of insects - and of microfluidics.

Falling rain drops

Force balance:

$$\rho_a U^2 a^2 \sim Mg = \frac{4}{3}\pi a^3 \rho g$$

Fall speed: $U \sim \sqrt{\frac{\rho g a}{\rho_a}}$

Drop integrity requires:

$$\rho_a U^2 \sim \rho g a < \sigma/a$$

Small drops

If a drop is small relative to the capillary length

$$a < \ell_c = \sqrt{\sigma/\rho g} \approx 2 \text{mm}$$

 σ maintains it against the destabilizing influence of aerodynamic stresses.

Large drops

Drops larger than the capillary length

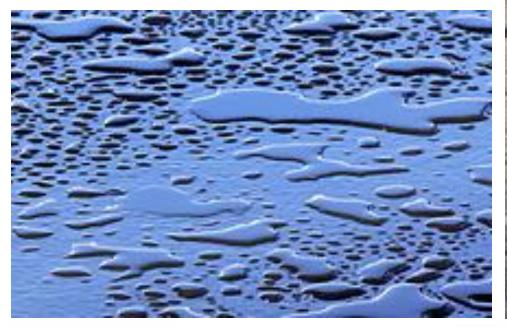
$$a > \ell_c \approx 2 \text{mm}$$

break up under the influence of aerodynamic stresses.

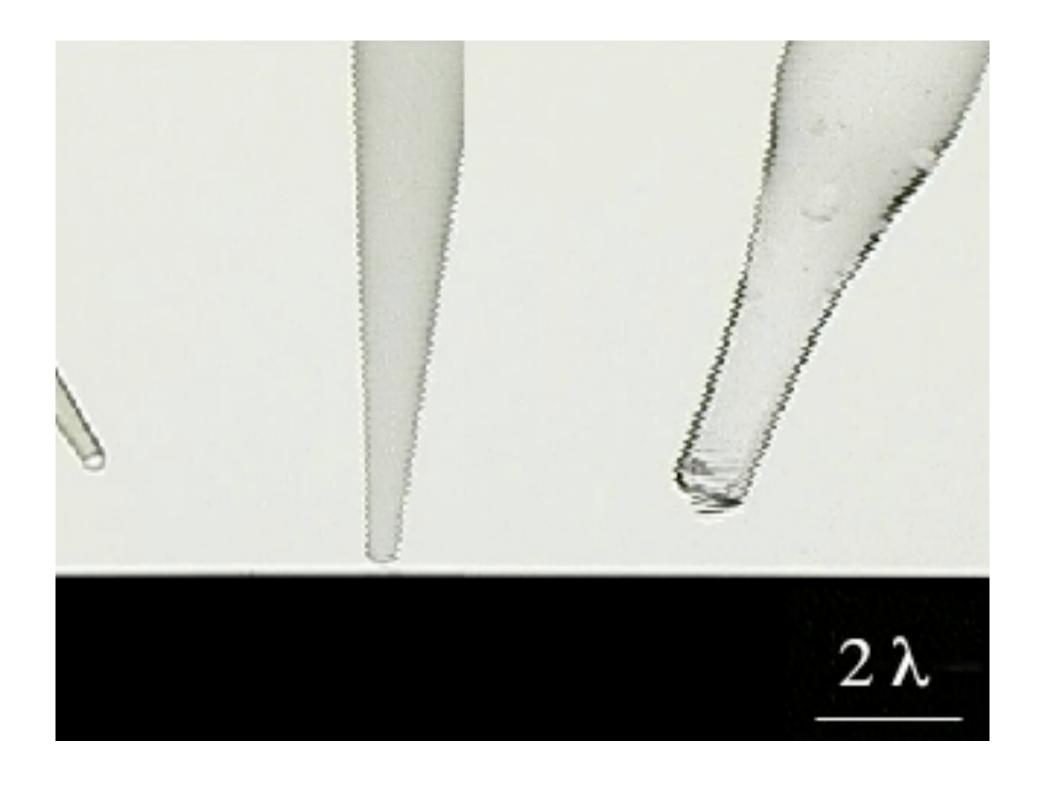
The break-up yields drops with size of order:

$$\ell_c \approx 2 \text{mm}$$

Puddles on flat surfaces



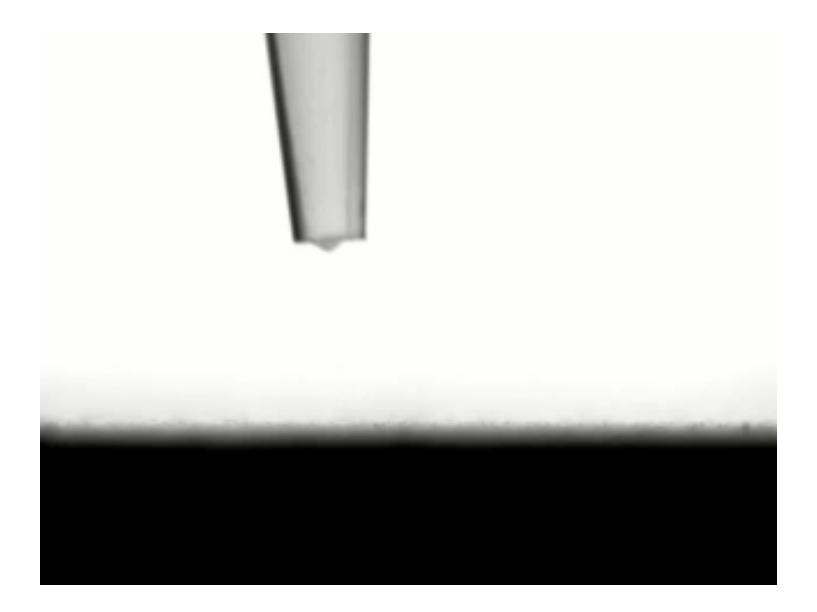
What sets their size?



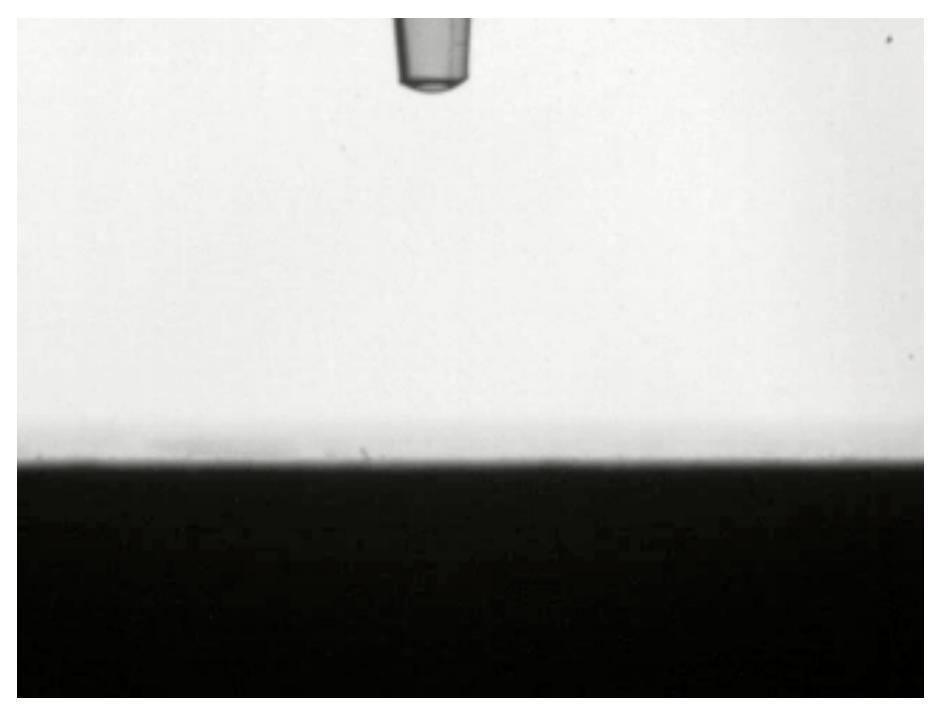
Wetting

Who cares about wetting?

The world's smallest lizard: the Brazilian Pygmy Gecko

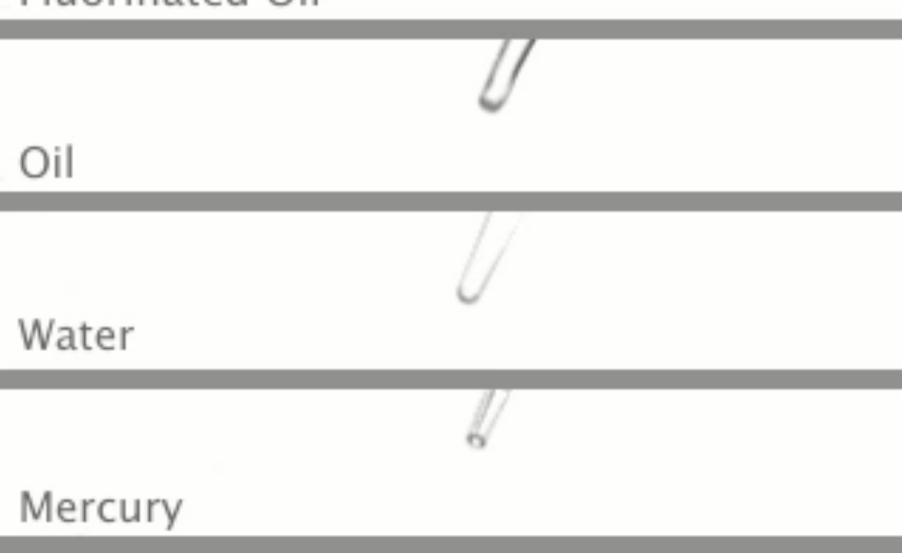


Partial wetting

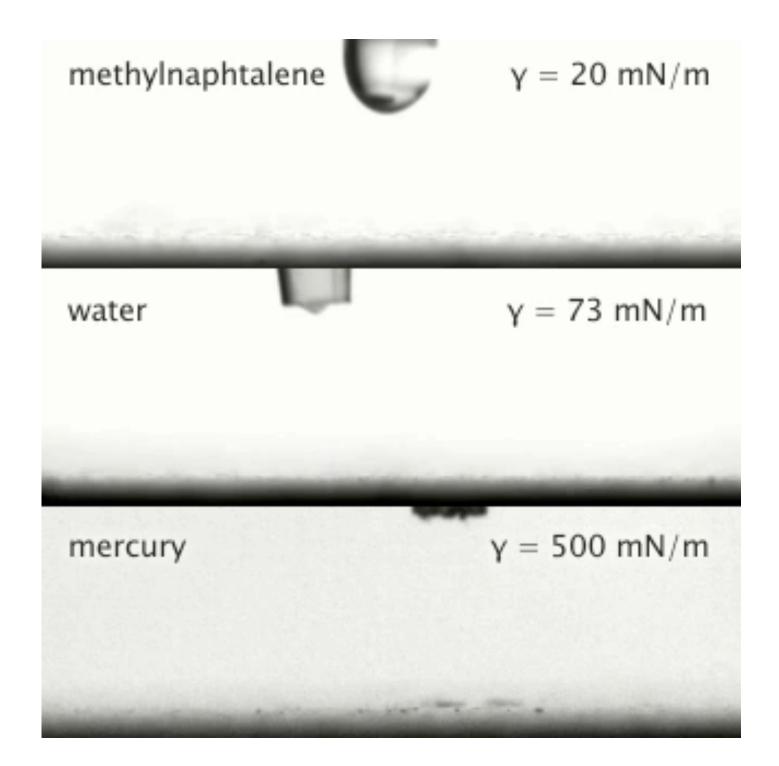


Total wetting

Fluorinated Oil



Water on glass



Fluid-Solid Contact: Partial wetting

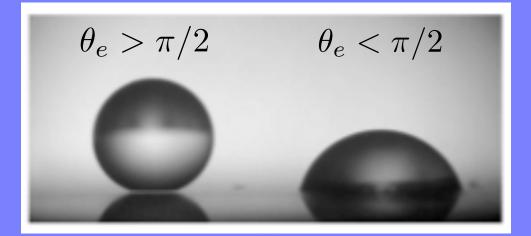
Equilibrium contact angle θ_e

Energy differential: $dW = dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta_e$

Young's relation:

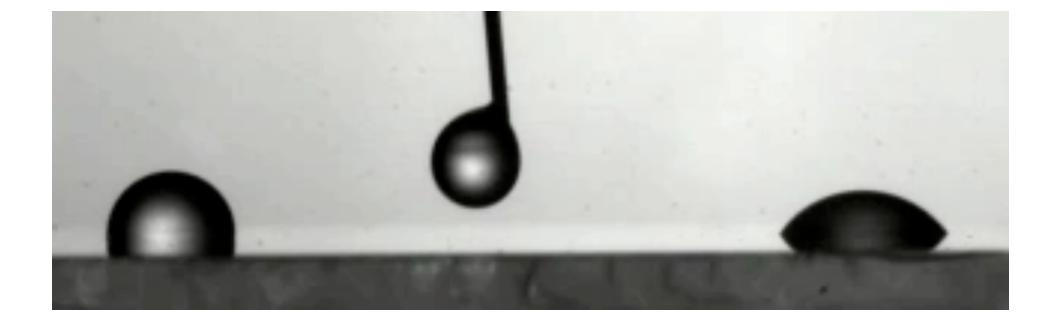
$$\sigma \, \cos\theta_e = \sigma_{SL} - \sigma_{SG}$$

 $\sigma_{_{SL}}$ θ_{e}

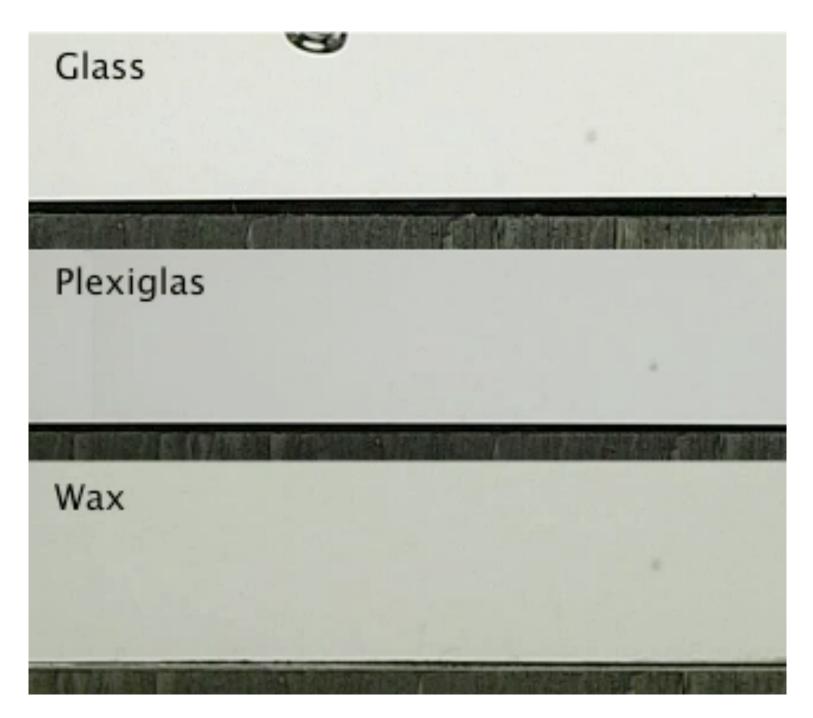


Hydrophobic surface Hydrophilic surface

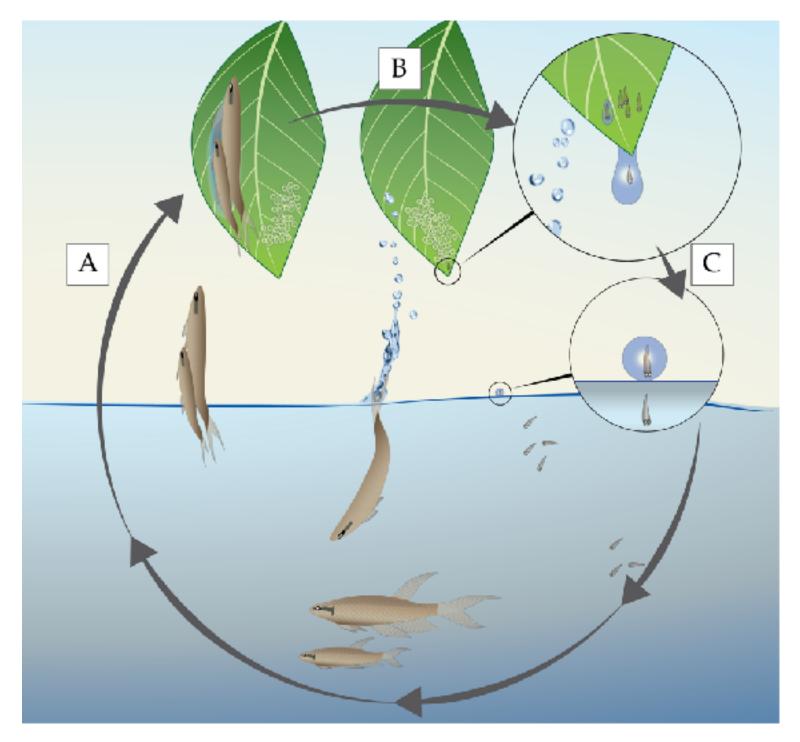
Spontaneous motion in response to a wettability gradient



Puddles revisited



Plenty of fish in the trees



Capillary adhesion in nature

