
Chapter 2 
The State of Play in Hydrodynamic 
Quantum Analogs 
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Abstract We describe the manner in which the physical picture emerging from 
hydrodynamic quantum analogs (HQAs) may serve to resolve some of the long-
standing difficulties of quantum mechanics. We enumerate some of the most 
significant intellectual cul-de-sacs of quantum mechanics, and the manner in which 
HQA suggests a route past them. Particular attention is given to enumerating the 
many guises of quantum nonlocality as it appears in the standard quantum interpre-
tations. We illustrate how one might misinfer such nonlocality from the walking-
droplet system if one had an incomplete description of the system dynamics, if the 
variables required for its complete description were hidden rather than in plain sight. 
We highlight recent work that illustrates how phenomena typically attributed to 
nonlocality in quantum systems may be rationalized in terms of classical, pilot-wave 
dynamics. Finally, we define the frontiers of the field of hydrodynamic quantum 
analogs, including attempts to achieve classical entanglement by demonstrating 
Bell violations in pilot-wave hydrodynamics, and attempts to develop a model of 
quantum dynamics informed by the walking-droplet system. 
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2.1 Introduction 

The walking-droplet system discovered in 2005 by Yves Couder and Emmanuel 
Fort (Couder et al., 2005; Couder and Fort, 2006) has since captured many features 
previously thought to be exclusive the the microscopic, quantum realm (Bush, 2015; 
Bush and Oza, 2020). The growing grocery list of hydrodynamic quantum analogs 
includes single-particle diffraction and interference (Couder and Fort, 2006), quan-
tized orbits (Fort et al., 2010; Perrard et al., 2014), unpredictable tunneling (Eddi 
et al., 2009a), Friedel oscillations (Sáenz et al., 2020), spin lattices (Sáenz et al., 
2021), statistical projection effects (Sáenz et al., 2018) in corrals (Harris et al., 
2013), surreal trajectories (Frumkin et al., 2022) and superradiance (Papatryfonos 
et al., 2022a; Frumkin et al., 2023). This pilot-wave hydrodynamic system has 
extended the range of classical systems and so provided a platform for delineating 
between what can and cannot be understood about quantum systems from a classical 
perspective. 

The hydrodynamic pilot-wave system consists of a millimetric liquid droplet sus-
pended on the surface of a vibrating liquid bath (Couder et al., 2005) (Fig. 2.1a–c). In 
certain parameter regimes (specifically, for certain drop sizes, liquid properties, and 
vibrational accelerations), the bouncing droplet achieves resonance with the bath’s 
most unstable Faraday wave mode and destabilizes into a walking state in which it 
is guided or ‘piloted’ by its own wave field. The resulting ‘walker’ then consists of 
a droplet self-propelling along the bath surface, dressed in a quasi-monochromatic 
pilot-wave field (Fig. 2.1c). The key features of the system are two-fold (Bush and 
Oza, 2020). First, the resonance between the droplet and its wave ensures that 

Fig. 2.1 (a) A millimetric droplet bounces in place on a vibrating bath. (b) When the droplet’s 
bouncing frequency matches that of the vibrating bath’s most unstable Faraday mode, the 
drop destabilizes into a ‘walker’, and is self-propelled across the bath by its pilot wave. (c) 
Comparison between experimental measurements (top) and simulation (bottom) of the wave field 
accompanying a walker moving from left to right (Damiano et al., 2016). Color bar indicates the 
wave height in microns. (d) The pilot-wave field computed for a quantum particle propelled by 
a wave field that evolves according to the Klein-Gordon equation and is excited locally by the 
particle vibrating at the Compton frequency, .ωc = mc2/h̄ (Durey and Bush, 2020)
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the pilot-wave field is quasi-monochromatc, a feature that is responsible for the 
emergence of quantized states in many settings. Second, the persistence of this pilot-
wave field renders the droplet dynamics non-Markovian: computing its trajectory 
requires that one consider its history. The droplet is thus endowed with ‘path-
memory’ (Eddi et al., 2011), and navigates a quasi-monochromatic potential of its 
own making, as is ultimately responsible for all of the system’s emergent quantum 
features (Bush and Oza, 2020). 

The most valuable aspect of the walking-droplet system is that it furnishes a 
macroscopic example of wave-particle interaction, and so a physical picture for 
how quantum dynamics might conceivably look. Importantly, this physical picture, 
of a vibrating particle moving in resonance with its own wave field, is not new 
and has features of several extant realist theories of quantum dynamics, including 
de Broglies double-solution pilot-wave theory (de Broglie, 1926, 1970, 1987), 
stochastic electrodynamics (de la Peña et al., 2015) and the Zitterbewegung theory 
of quantum mechanics (Hestenes, 1990). Each of these theories invokes the particles 
internal vibration at the Compton frequency as the source of its guiding wave. The 
commonality of this physical picture has allowed the HQA community to connect to 
others attempting to make sense of quantum mechanics. Moreover, it has motivated 
the development of a generalized classical pilot-wave theory that allows one to 
explore parameter regimes inaccessible in the laboratory with the walking-droplet 
system (Bush, 2015; Oza et al., 2018; Durey and Bush, 2021), as well as forge links 
with and extend extant quantum pilot-wave theories (Dagan and Bush, 2020; Durey  
and Bush, 2020). 

The formalisms of pilot-wave hydrodynamics and quantum mechanics are 
markedly different. In the former, the HQA community has developed a hierarchy 
of progressively more sophisticated theories to describe the droplet and wave 
dynamics, both of which are required for an adequate desription of the droplet’s 
trajectory (Turton et al., 2018). The resulting particle statistics are viewed as 
an emergent feature, the rationalization of which is not always straightforward. 
Conversely, quantum mechanics provides an explicit theory for the evolution of the 
system’s statistics, as prescribed by the wave function. According to the standard 
Copenhagen Interpretation, there is no notion of an underlying dynamics, so no need 
for a trajectory equation. Bohmian mechanics furnishes a trajectory equation by 
positing that the particle moves in response to the quantum wavefunction (Holland, 
1995). Throughout this review, we describe recent attempts to reconcile the very 
different theoretical formalisms developed to describe pilot-wave hydrodynamics 
and quantum mechanics. Specifically, we describe recent attempts to develop a 
statstical theory for pilot-wave hydrodynamics and a dynamical theory for quantum 
mechanics informed by the walker system. 

We proceed by enumerating a number of concepts that may seem beguiling 
from the point of view of quantum mechanics, but become less problematic when 
considered from the new perspective offered by HQA. We advance in increasing 
order of difficulty, commencing with notions that transform from inscrutable to 
trivial, such as wave-particle duality and wave-function collapse. We move on to 
show how quantized states and coherent wave-like statistics naturally emerge from
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classical pilot-wave dynamics. We highlight the manner in which quantum non-
locality in its various guises might be misinfered from the walking-droplet system. 
Finally, we discuss current attempts to demonstrate violation of Bell’s inequality 
with the pilot-wave hydrodynamic system, which remains the central challenge to 
any local realist theory of quantum mechanics. We conclude with a discussion of 
the benefits of the perspective and enhanced physical intuition offered by HQAs on 
quantum mechanics and quantum foundations. 

2.2 Wave-Particle Duality and Complementarity 

Both matter and radiation possess a remarkable duality of character, as they sometimes 
exhibit the properties of waves, at other times those of particles. Now it is obvious that a 
thing cannot be a form of wave motion and composed of particles at the same time—the 
two concepts are too different. 

– Heisenberg, ‘The Physical Principles of the Quantum Theory’ (Heisenberg, 1930). 

Wave-particle duality is a notion common in both optics and quantum mechanics. 
It first arose in the debate over the nature of light, where it became apparent that light 
sometimes behaves like a particle, other times like a wave. Huygens and Fresnel 
were two of the most prominent proponents of the wave nature of light. In 1678, 
Huygens proposed that every point on a wavefront of a light beam may be seen 
as a new source, emitting spherical waves in the forward direction (Miller, 1991). 
These secondary wave sources interfere with each other to produce the advancing 
wavefront. Huygens thus explained linear and spherical wave propagation and 
derived the laws of reflection and refraction, but failed to rationalize other optical 
phenomena, such as the diffraction from an edge or an aperture (Miller, 1991). 
More than a century later, Fresnel combined his own theory of interference with 
Huygens’s principle, which enabled him to rationalise these diffraction effects (San-
tos et al., 2018). Newton championed the corpuscular view, that light consisted 
of a series of discrete, localized corpuscles, now known as photons, ‘skipping on 
the ether like stones on a pond’ (Newton, 1704). Subsequently, Thomas Young’s 
ripple tank experiments demonstrated that the diffraction of light was consistent 
with its having a wave nature. The wave view became dominant when Maxwell 
(1873) demonstrated that all forms of light (infrared, visible and ultraviolet) could 
be described as electromagnetic waves oscillating at different frequencies. When 
the wave-particle debate seemed all but settled, it was again revived in 1905 by 
Einstein’s explanation of the photoelectric effect in terms of ‘light quanta’, a critical 
step in the development of quantum mechanics (McKagan et al., 2009). 

The concept of complementarity was introduced by Niels Bohr as an essential 
feature of quantum theory (Folse, 1985). It asserts that a complete knowledge 
of quantum phenomena requires a simultaneous description of particle and wave 
properties, hence a quantum version of wave-particle duality. Specifically, prior to
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being measured, a single quantum particle is described in terms of its wave function 
that evolves according to Schrodinger’s equation. Measurement forces the wave to 
collapse to a particle, for example when particles passing through slits arrive at 
the detection screen. Bohr asserted that it is impossible to observe both wave and 
particle aspects simultaneously, but both notions need be retained. Finally, quantum 
systems have certain pairs of ‘complementary’ properties that cannot be observed 
simultaneously. These are also known as non-commuting observables and include, 
for example, position and momentum, and different components of a particle’s spin. 

De Broglie’s theory of matter waves was built upon his premise that the universe 
is composed of two elements, light and matter. Since light has both corpuscular 
and wave aspects, so too must matter. His was an attempt to reconcile quantum 
mechanics with Einstein’s theory of relativity. He proposed that a particle of mass 
m has an internal frequency that may be deduced by equating its rest mass energy 
mc2 to its wave energy h̄ω. The resulting de Broglie-Einstein equation defines the 
frequency of particle vibration to be the Compton frequency, ωc = mc2/h̄. He thus 
envisioned microscopic particles generating, then moving in response to, their own 
wave fields. He proposed that a free particle moves in response to gradients in the 
phase of its monochromatic guiding or ‘pilot’ wave, with a wavelength prescribed by 
the de Broglie relation, p = h̄k. He imagined, but never proved, that this pilot-wave 
dynamics might give rise to statistical behavior consistent with that described by the 
standard formulation of quantum mechanics. His theory thus involved two waves, 
the real pilot-wave responsible for guiding the particle, and the emergent statistical 
wave, and his unfinished theoretical program was known as the double-solution 
pilot-wave theory (Hatifi et al., 2018; Colin et al., 2017). De Broglie’s answer to 
the question of ‘particle or waves?’ was thus simply ‘particle and wave’ (Bell, 
1987). On the basis of this physical picture, he predicted electron diffraction and 
was awarded the Nobel prize in 1929. Nevertheless, this physical picture has been 
largely ignored by the physics community (Bell, 1987) until its recent revival by the 
HQA community (Bush, 2015; Bush and Oza, 2020). 

The walking droplet is inarguably a classical realization of wave-particle duality 
(Figs. 2.1b and 2.2). The ‘walker’ has both particle and wave aspects. Without the 
droplet, there would be no source of waves, and without the accompanying wave 
field, the droplet wouldn’t self propel. The walker is, moreover, an embodiment 
of the physical picture proposed by de Broglie in his double-solution pilot-wave 
theory (Bush, 2015). In the walker system, the Faraday frequency plays the role of 
the Compton frequency, the Faraday wavelength that of the de Broglie wavelength. 
The walker moves in response to gradients in the wave amplitude rather than phase, 
but the resonance condition respected by the free walker effectively renders this 
distinction a moot point. The pilot-wave of the walker is quasi-monochromatic, 
of a distinctive, horseshoe-like form (Fig. 2.1c), while de Broglie envisaged a 
monochromatic plane wave of the form illustrated in Fig. 2.1d (Durey and Bush, 
2020).
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2.3 Quantized States 

I wish first to show in the simplest case of the hydrogen atom that the usual rates for 
quantization can be replaced by another requirement, in which mention of “whole numbers” 
no longer occurs. Instead the integers occur in the same natural way as the integers 
specifying the number of nodes in a vibrating string. 

– Schrödinger, ‘Quantisierung als Eigenwertproblem’ (Schrödinger, 1926). 

In the pilot-wave hydrodynamic system, quantized dynamical states are a central 
feature, apparent in both the structure of droplet aggregates (Fig. 2.2) and orbital 
dynamics (Fig. 2.3). Bouncing droplets may form either static bound states, pairs, 
trios, rings or lattices (Eddi et al., 2009b), or dynamic bound states comprised of 
ratcheting (Eddi et al., 2008; Galeano-Rios et al., 2018) orbiting (Couder et al., 
2005; Protière et al., 2008; Oza et al., 2017) or promenading pairs (Borghesi 
et al., 2014; Arbelaiz et al., 2018). In all such states, the interdrop distance is 
quantized, prescribed by the Faraday wave length. In both rings and lattices, the 
drop aggregates are most stable when the droplets bounce in local minima of their 
collective wave field (Couchman and Bush, 2020). A critical requirement for the 
emergence of quantization is the synchronization of the droplets, which ensures a 
coherent quasi-monochromatic wave form that serves as the trapping self-potential 
of the aggregate. 

Quantization is also a key feature of orbital pilot-wave dynamics, as arises 
when walkers move subject to constraints. Three such systems have been explored 

Fig. 2.2 Quantized bound states, both static and dynamic, arise owing to the quasi-
monochromatic wave field generated by the droplets bouncing in resonance with the bath’s most 
unstable Faraday mode. (a) Two walkers locked into a circular orbit. (b) A promenading pair: drops 
move together in the same direction, with the lateral distance between them varying periodically 
with time (Arbelaiz et al., 2018). (c) A colinear trio of stationary bouncers. (d) Rings of bouncing 
droplets may form with quantized radii. We show here the circular motion arising at the onset of 
instability of a stable ring induced as the driving acceleration exceeds a critical value (Couchman 
and Bush, 2020)
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Fig. 2.3 Quantized orbital states arise for (a) walkers in a rotating frame or (b) walkers confined 
by a central spring force. (a) The solution curve for the orbital radius, r0, as a function of rotation 
rate, Ω, has both stable (blue) and unstable (red) branches. The absence of stable solutions at 
certain radii leads to orbital quantization (Fort et al., 2010; Harris and Bush, 2014; Oza et al., 
2014a). Inset: the walker moves along a circularly corrugated wave field, whose form imposes the 
quantization (Fort et al., 2010). (b) When a walker is confined by a radial spring force, a variety of 
periodic orbits are accessible, all of which are quantized in both mean radius R̄ = R/λF and mean 
orbital angular momentum L̄z = Lz/(mu0λF ) (Perrard et al., 2014; Labousse et al., 2014a) 

both experimentally and theoretically. When walkers move in a rotating frame, the 
Coriolis force plays a role analogous to the Lorentz force acting on a charge moving 
in a uniform magnetic field (Fort et al., 2010). The expected continuum of circular 
inertial orbits arising at low memory are replaced by quantized circular orbits as the 
memory increases (Fort et al., 2010; Harris and Bush, 2014). The requirement for 
orbital quantization is that the orbital period of the drop is less than the memory 
time; thus, the drop feels its own capillary wake, which serves to quantize its orbital 
radius. The drop thus navigates its own potential, a circularly symmetric wave field 
with the Faraday wavelength centered on the orbital center (Fig. 2.3a, inset). In these 
quantized circular orbits, the Faraday wavelength plays a role analogous to the de 
Broglie wavelength in Landau levels (Fort et al., 2010). 

When walkers move in a central force, in addition to quantized circular orbits, 
a family of more elaborate orbits arise, including lemniscates and trefoils (Perrard 
et al., 2014; Labousse et al., 2014a). As in the 2D quantum harmonic oscillator, 
these orbits are quantized in both energy and mean angular momentum. A similar 
progression of quantized orbits arise when a walker is confined to a small corral at 
relative low memory, when the bounding geometry plays the role of the confining 
potential (Cristea-Platon et al., 2018). Once again, the key requirement for the 
emergence of quantized states is resonance between drop and bath, as assures 
a quasi-monochromatic self-potential. Quantized orbital states emerge when the 
memory time exceeds the orbital period, so that the drop continuoulsy navigates 
a highly structured potential of its own making.
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2.4 Single-Particle Diffraction 

A phenomenon which is impossible, absolutely impossible to explain in any classical way, 
and which has in it the heart of quantum mechanics. In reality, it contains the only mystery. 

– Richard Feynman (Feynman, 1964). 

The most prominent example of particle-wave duality is found in single-particle 
diffraction. The first experimental investigation of single-photon diffraction was 
undertaken by a graduate student, G.I. Taylor, who subsequently went on to become 
a prominent and influential fluid and solid mechanician (Batchelor, 2008). The 
question posed him by his supervisor, J.J. Thomson, was whether a diffraction 
pattern would emerge when light passed through a slit, even when the photons 
passed through one at a time. The results of his experiments were conclusive: a 
diffraction pattern ultimately emerged. So, despite the photons passing through 
the slits one at a time, their superposition corresponded to a continuous wave 
pattern (Taylor, 1909), indicating single-particle diffraction. 

Feynman’s (Feynman, 1964) insistence on the inscrutability of the electron 
double-slit experiments is somewhat puzzling in light of de Broglie’s work on 
electron diffraction (de Broglie, 1926; Bell, 1987). The relevant experiments were 
first performed with electrons diffracting around a pair of obstacles, the complement 
of the double slit (Tonomura et al., 1989). The build-up of the resulting diffraction 
pattern, into alternating bright and dark bands, has been numbered among the most 
beautiful experiments in the history of physics, the beauty presumably being rooted 
in the common conception that the phenomenon is impossible to understand from 
a classical perspective. The mystery is not the particular form of the diffraction 
pattern: the mystery is that the pattern emerges at all. 

The original experiments of walkers passing through slits (Fig. 2.4) and accom-
panying simulations of Couder and Fort (2006) clearly showed a diffraction pattern. 
As the drop approaches the slit, the distortion of its pilot wave by the barriers 
causes the drop to be deflected, with certain deflection angles being preferred. 
A more exhaustive series experiments performed in different laboratories have 
made clear that single-particle diffraction is indeed a robust feature of pilot-wave 
hydrodynamics (Andersen et al., 2015; Pucci et al., 2018; Ellegaard and Levinsen, 
2020). Moreover, the presence of a second slit alters the emergent diffraction 
pattern, another keystone of its quantum counterpart. The fact that the emerging 
diffraction pattern does not generally conform to the Fraunhofer pattern, is neither 
troubling nor surprising when one considers that the pilot-wave form is markedly 
different in the walker systems than what one would expect to arise in de Broglie’s 
mechanics (Fig. 2.1c, d). The diffraction of walking droplets reminds us that the 
physical picture of de Broglie’s is sufficient to understand the basic mysteries of 
electron diffraction.
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Fig. 2.4 Single-particle diffraction and interference of a walking drop. (a) A walker passing 
through a single slit is deviated from its initial path owing to the influence of the submerged 
topography on its pilot wave. Histogram for the final deflection angle α in (b) the single-slit 
experiments and (c) the double-slit arrangement. The droplet trajectories emerging from (d) the  
single-slit and (f) the double slit experiments of Pucci et al. (2018). (e) The distribution of 
deflection angles in the single-slit arrangement. In the double-slit arrangement, the presence of 
the second slit alters the diffraction pattern of walkers through the first slit because the pilot wave 
is influenced by both slits (Pucci et al., 2018). Panels (a)–(c) adapted from Couder and Fort (2006); 
panels (d)–(f) from Pucci et al. (2018) 

2.5 Wave-Like Statistics 

The wave character of light is not vibrating stuff like a wave of water but rather a wavelike 
function encoding information about where you’ll find the photon of light once it is 
detected. 

– Marcus du Sautoy, ‘The Great Unknown: Seven Journeys to the Frontiers of Science’ 
(Sautoy, 2017). 

One of the most compelling features of pilot-wave hydrodynamics is that it 
naturally leads to the emergence of wave-like particle statistics reminiscent of 
those arising in many quantum systems. We have already seen the wave patterns 
arising in walker diffraction through slits (Fig. 2.4). Superpositions of dynamical 
states have been demonstrated in a number of settings involving chaotic pilot-wave 
hydrodynamics. In the orbital pilot-wave systems first considered by Couder and 
Fort, specifically walker motion in a rotating frame (Fort et al., 2010) and a central 
spring force (Perrard et al., 2014), analogs of a charge moving in a uniform magnetic 
field and the 2D quantum harmonic oscillator, respectively, quantized orbital states
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Fig. 2.5 The hydrodynamic corral consists of a single walker moving within a bounded domain, 
either circular (a)–(b) (Harris et al., 2013) or elliptical (d)–(g) (Sáenz et al., 2018). (a) The build-up 
of the particle trajectory, which is color-coded according to droplet speed. The resulting correlation 
between droplet position and speed gives rise to a statistical signature (b) strongly reminiscent of 
that arising in its quantum counterpart (c) (Crommie et al., 1993b). In the elliptical corral, similar 
speed maps (e) and histograms (f) emerge. The instantaneous wave field (d) is complex and time-
dependent, while the mean pilot-wave (g) closely resembles the droplet histogram (f) 

emerge as the memory is increased (Fig. 2.3). Eventually, at sufficiently high 
memory, these orbital states destabilize, giving rise to chaotic states marked by 
the drop switching intermittently between a number of finite accessible quantized 
orbital states (Harris and Bush, 2014; Oza et al., 2014b; Labousse et al., 2014a). 
The emergent wave-like statistics thus reflect a superposition of dynamical states, 
and the precise form of the emergent statistics reflects the relative instability of the 
accessible unstable orbits (Harris and Bush, 2014; Oza et al., 2014a; Labousse et al., 
2014a). 

Robust wave-like statistics also arose in Harris et al. (2013)’s experimental 
investigation of a walker in a circular corral (Fig. 2.5a–c). In the high-memory 
limit arising just below the Faraday threshold, the drop executes an erratic, chaotic 
trajectory. Ultimately, the correlation between drop position and speed give rises 
to a statistical signature of comparable form to the most unstable Faraday mode 
of the cavity. The emergent statistics in this ergodic system is virtually identical 
to that arising when electrons are confined to the quantum corral (Crommie et al., 
1993b; Fiete and Heller, 2003), with the Faraday wavelength again playing a role 
analogous to the de Broglie wavelength. The walker corral is marked by three 
distinct timescales, those of droplet bouncing (∼0.01 s), droplet translation (∼2 s)  
and statistical convergence (∼1 h). Given the vast difference in scales between this 
experiment and its quantum counterpart (e.g. the corral diameter is 3 cm rather than 
75 Angstrom), the ability to resolve all three timescales in the laboratory is quite 
remarkable. 

While theoretical models have yet to capture satisfactorily the wave-like statis-
tical behavior in corrals (Durey et al., 2020), its robustness was demonstrated in 
a subsequent study of an elliptical corral (Sáenz et al., 2018), where additional
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Fig. 2.6 The hydrodynamic analog of Friedel oscillations (Sáenz et al., 2020). (a) When a walker  
approaches a deep well, it is drawn inward along a spiral path, then exits the well radially. (b) 
In-line speed oscillations along its outgoing path are evident in the droplet’s speed map. The 
associated correlation between droplet speed and radial position leads to a coherent statistical 
signature similar in form to Friedel oscillations (Crommie et al., 1993) 

quantum-like features were revealed, including superposition of statistical states 
and statistical projection effects (Fig. 2.5d–g). Moreover, it was noted that the mean 
pilot wave was very similar in form to the emergent particle histogram, a result 
later rationalized by Durey et al. (2018, 2020), who demonstrated that the mean 
pilot-wave field for either periodic or ergodic walker mation may be deduced from 
a convolution of the particle histogram and the stationary bouncer wave field. This 
result provides the means to deduce the particle statistics from the mean pilot-wave 
form, so plays a role analogous to that of Born’s Rule in quantum mechanics if one 
identifies the mean pilot wave with the wave function (Kutz et al., 2023). Bush and 
Oza (2020) discuss the relation between the mean-pilot-wave potential in the walker 
system and the quantum potential in Bohmian mechanics. 

Robust wave-like statistics were also revealed in the hydrodynamic analog of 
Friedel oscillations (Sáenz et al., 2020, Fig. 2.6), waves in the density of states 
surrounding impurities in the electron sea on a metal surface (Crommie et al., 1993). 
The analog system consisted of a walker interacting with a deep well. The drop was 
drawn inwards along a spiral path until crossing the center of the well then exiting 
radially. As the drop exited the well, in-line speed oscillations were excited, and the 
resulting correlation between radial position and speed along the outgoing trajectory 
gave rise to a statistical signature identical to that arising in Friedel oscillations, with 
the Faraday wavelength again playing the role of the de Broglie wavelength. With 
this concrete physical mechanism for the emergent statistics in the analog quantum 
corral and Friedel oscillations, one can imagine that a similar mechanism might also 
be at play in their quantum counterparts. At the very least, one can conclude that the 
emergent statistics in both systems are not inconsistent with the notion of particle 
trajectories. 

According to the Copenhagen Interpretation, the act of measurement causes the 
wave function to collapse to a particular eigenstate of the system, the associated 
probability cloud describing the particle position to collapse instantaneously to a 
point. Given the spatially extended nature of the associated wave form, this collapse
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would seem to violate the basic tenets of relativity (Einstein et al., 1935). Adherents 
to the Copenhagen Interpretation typically sidestep this issue by stating that the 
wave function collapse does not represent a physical process, but merely an update 
of information. However, if the wave function represents a complete description of 
a quantum system, there should be no new information according to which it need 
be updated (Hance and Hossenfelder, 2022). This criticism of the completeness 
of quantum theory was originally launched by Einstein et al. (1935), prompting 
an exchange now referred to as the Debate over the Nature of Reality. Despite 
the obscurity of Bohr’s response (Bohr, 1935), history has judged him to be the 
winner (Bricmont, 2017, 2016). 

2.6 The Measurement Problem 

The electron, as it leaves the atom, crystallises out of Schrödinger’s mist like a genie 
emerging from his bottle. 

– Sir Arthur Stanley Eddington, Gifford Lectures (Eddington, 1927). 

The state of a quantum system is described by the wave function, a vector 
in a Hilbert space that evolves deterministically in time according to the linear 
Schrodinger equation: 

.ih̄
∂ψ

∂t
= Ĥψ (2.1) 

where Ĥ is the system’s Hamiltonian. Due to the linearity of the Schrodinger 
equation, any superposition (linear combination) of solutions will also be a solution 
and evolve in time according to Eq. (1). During measurement, the wave function 
“collapses” onto an eigenstate of the Hamiltonian that corresponds to a particular 
measurement outcome, the value measured in the laboratory (Griffiths, 2014). 
Unlike the time evolution described by Eq. (2.1), the collapse process is non-linear, 
non-deterministic, and typically non-local (Bassi et al., 2013). Importantly, the 
theory does not specify what precisely constitutes a measurement, which raises 
the following fundamental questions. What exactly happens during measurement? 
Is the “collapse” a physical process or merely an update of information? These 
puzzles in the foundations of quantum mechanics are collectively referred to as 
‘the measurement problem’, and embodied in widely known paradoxes such as 
Schrodinger’s cat (Schrödinger, 1935) and Wigner’s friend (Wigner, 1995). 

Attempts to solve the measurement problem have led to the various interpreta-
tions of quantum mechanics. In some, such as the de Broglie–Bohm theory (Bohm, 
1952a, 1925b; Holland, 1995) (a.k.a. Bohmian mechanics, not to be confused with 
de Broglie’s original double solution pilot-wave theory) and the Many Worlds 
Interpretation (Everett, 1957), there is no measurement problem since the wave 
function never undergoes a collapse process. In others, like the objective-collapse 
models, a stochastic term is added to the Schrodinger equation in order to induce
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a spontaneous collapse of the wavefunction at some characteristic time scale. 
The result is an emergent “classical” behavior for many particle systems, and 
an approximate quantum behavior for microscopic isolated systems (Bassi and 
Ghirardi, 2003). Thus, while collapse is continuously occurring, it is not the result 
of interaction with a measurement device. 

An attempt to reconcile the Copenhagen interpretation with the measurement 
problem has given rise to the notion of decoherence. Roughly speaking, decoherence 
posits that, through interaction with the environment, a quantum system loses its 
coherent properties, resulting in a classical superposition of probabilities. In terms 
of the density matrix formalism, the off-diagonal terms that represent quantum 
interference disappear due to interaction with the environment, yielding a diagonal 
matrix with the Born probabilities as its entries (Zurek, 2003). Decoherence thus 
attempts to explain how quantum states evolve into classical probabilities, and 
so rationalize why we do not observe quantum superpositions in the laboratory. 
However, it does not explain why we do not observe classical superpositions instead. 
Schrodinger’s cat evolves from being simultaneously dead and alive, to being half 
dead and half alive. However, when we observe the cat, it is either 100% dead 
or 100% alive, corresponding to a density matrix consisting of a single non-zero 
entry on its diagonal. Thus, while decoherence describes how quantum probabilities 
become classical, it does not provide an entirely satisfactory resolution of the 
measurement problem (Adler, 2003). 

If we adopt the physical picture suggested by de Broglie and the walking droplets, 
the measurement problem vanishes from consideration. In particular, wave function 
collapse becomes a nonproblem (Bush and Oza, 2020). Consider the robust wave-
like statistics emerging in the hydrodynamic corrals (Harris et al., 2013; Sáenz et al., 
2018) (Fig. 2.5) or the analog Friedel oscillations (Fig. 2.6). If one were to assert that 
this statistical waveform were a complete description of the system, then its collapse 
into a discrete droplet in response to the act of observation might be troubling. 
With the knowledge of the underlying pilot-wave dynamics, it is obvious that wave 
function collapse is a feature of any statistical theory. Bush and Oza (2020) refer 
to this as ‘statistical nonlocality’, the misinference of nonlocality owing to one’s 
insistence on the completeness of a statistical theory. Wave-function collapse may 
thus be seen as a dilemma only for those insistent on the completeness of a statistical 
theory, be it quantum or classical. Ditto for the measurement problem. 

2.7 Quantum Superposition 

One cannot in the classical sense picture a system being partly in each of two states and 
see the equivalence of this to the system being completely in some other state. There is 
an entirely new idea involved, to which one must get accustomed and in terms of which 
one must proceed to build up an exact mathematical theory, without having any detailed 
classical picture. 

– P.A.M. Dirac, Principles of Quantum Mechanics (Dirac, 1958).
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Due to the linearity of the Schrodinger equation (Eq. (2.1)), any linear combina-
tion of its solutions also constitutes a solution of the equation, and thus represent a 
valid quantum state. These linearly combined states are called superpositions, and 
they play a key role in the formalism and phenomenology of quantum mechanics. 
Formally, if ψ1 and ψ2 represent two different eigenstates of the Hamiltonian, then 
the superposed state, ψ = aψ1+bψ2, is also a solution of the Schrodinger equation, 
with a, b being complex numbers such that |a|2 + |b|2 = 1. According to the 
Copenhagen interpretation, during measurement the wave function collapses onto 
one of the eigenstates ψ1, ψ2 with probabilities |a|2, |b|2 respectively. Notably, the 
coefficients a, b are generally complex numbers, and can assume negative values. 
As a result, the two eigenstates constituting the superposed state can destructively 
interfere with one another, yielding phenomena such as single particle interference 
as seen in the double-slit experiment (Sect. 2.4). 

In their study of walker motion in an elliptical corral (Fig. 2.5d–g), Sáenz 
et al. (2018) demonstrated that in the high-memory, chaotic regime, the emergent 
statistics may be simply expressed in terms of the superposition of two cavity 
modes, one being the corrals most unstable Faraday mode at the systems driving 
frequency, the other being the most unstable mode at a nearby frequency. This 
then represents a superposition of statistical rather than dynamical states. By using 
bottom topography with high symmetry, they demonstrated that the relative weights 
of the two modes could be tuned. Specifically, by placing a submerged well at the 
focus of the ellipse, it favored one mode over the other. The analogous procedure 
in the quantum corral (Fiete and Heller, 2003), undertaken by manipulating 
magnetic impurities on the metal surface, leads to so-called ‘statistical projection 
effects’ (Moon et al., 2008; Manoharan et al., 2000). When an impurity is located at 
the focus of an ellipse, the preferred mode is that with extrema at the foci, leading 
to a projection effect referred to as the ‘quantum mirage’ (Manoharan et al., 2000). 
The walker system thus provides a rational means of interpreting both statistical 
projection and mirage effects. 

We have seen that pilot-wave hydrodynamics can account for wave-particle 
duality and related phenomena such as single-particle interference. An important 
open question is thus whether one can derive a description of the emergent statistics 
equivalent to the Schrodinger formalism in quantum mechanics, from the dynamical 
description of the walker in HQA. The fact that the walker system exhibits both 
single-particle interference phenomena and the superposition of states suggests that 
such may be the case. In the HQA community, efforts are currently being made to 
develop a theory of walker statistics through consideration only of the pilot-wave 
field (Kutz et al., 2023). Specifically, for a walker confined to a one-dimensional 
well, the evolution of the pilot-wave field is characterized as the system memory 
(vibration forcing) is increased progressively. A discrete set of wave modes emerge 
sequentially, analogous to the new eigenstates of the wavefunciton arising as the 
particle energy is increased. Finally, the mean wavefield is inverted to yield the 
particle statistics, using Durey’s convolution result (Durey et al., 2018, 2020). This 
recent study takes one step closer towards one current goal of the HQA community, 
developing a wave theory for the statistics of walking droplets (Kutz et al., 2023).
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2.8 Nonlocality 

That particular interpretation (Bohmian mechanics) has indeed a grossly non-local 
structure. This is characteristic, according to the result to be proved here, of any such 
theory which reproduces exactly the quantum mechanical predictions. 

– John S. Bell, On the Einstein Podolsky Rosen paradox (Bell, 1964). 

The inference made from the experimental violation of Bell’s Theorem (see 
Sect. 2.10) has generally been that any hidden variable theory of quantum mechanics 
must be non-local; thus, non-locality is seen by some as being a necessary feature 
of a theory of quantum dynamics (Maudlin, 2014). For example, having seen the 
experimental violations of Bell’s Inequality (Aspect et al., 1982a), Bell was an 
advocate of Bohmian mechanics on the grounds that it was non-local (Bricmont, 
2016). Nonlocality has different guises in the various interpretations of quantum 
mechanics. For example, we have already seen in §2.5 that proponents of the 
Copenhagen Interpretation must contend with the instantaneous collapse of the 
wave function, a form of nonlocality simply rationalized from the new perspective 
offered from HQAs (Bush and Oza, 2020). 

Another manifestation of quantum nonlocality takes the form of an apparent 
action at a distance, as arises in Bohmian mechanics. Specifically, if the position of 
one particle in an entangled pair is changed, the position of its entangled counterpart 
is instantaneously affected. In HQA, a number of systems have been considered 
in which one would infer action-at-a-distance if the pilot-wave dynamics were not 
adequately resolved. For example, in the double-slit walker diffraction experiments, 
the change prompted by the influence of the second slit on a droplet passing 
through the first would be considered nonlocal (Fig. 2.4d). When walkers approach 
submerged pillars (Harris et al., 2018) and wells (Sáenz et al., 2020, Fig. 2.6), they 
experience long-range lift forces that depend in a particular fashion on the distance 
from the obstacle. Were it not known that such forces are wave-mediated, one might 
misinfer that they imply action at a distance. 

In single-particle Bohmian mechanics, nonlocality enters through the quantum 
potential. In classical mechanics, Newtons law of gravitation and Coulombs law 
both express non-local force laws, specifically, action at a distance. While the 
motion of a massive or charged particle in response to either force field is local (in 
the sense that it responds only to the local field), the field itself is nonlocal, in the 
sense that its origins cannot be rationalized without appealing to deeper theoretical 
developments, specifically, quantum electrodynamics or general relativity. The same 
could be said of Bohmian mechanics, according to which a particle moves in 
response to the quantum potential, whose form is prescribed by the quantum wave 
function. While the particle’s motion may be considered local, it is moving in 
response to a nonlocal field imposed by fiat. 

A recent example illustrates how the HQA perspective allows one to achieve 
quantum effects and rationalize them without appealing to nonlocality. ‘Surreal 
trajectories’ is a term coined by Englert et al. (1992) (ESSW) to describe Bohmian
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Fig. 2.7 Surreal trajectories in the hydrodynamic pilot-wave system (Frumkin et al., 2022). (a) 
A variant of the interferometer setup considered by ESSW (Englert et al., 1992). (b) A single  
particle trajectory, along with the instantaneous pilot wave field. (c) In a symmetric arrangement, 
the droplet enters the right or left channel with equal probability, after which it is deflected away 
from the system centerline, resulting in a ‘surreal’ trajectory. Twenty such trajectories are shown. 
(d) When one of the barriers is removed, the symmetry of the system is broken. The walking 
droplet is then reflected away from the remaining barrier, resulting in the trajectory that one might 
expect. (e) Numerical simulations of an ensemble of initially vertical trajectories with different 
values of the impact parameter x. (f) The mean pilot-wave field generated by averaging simulated 
droplet trajectories with a Gaussian distribution of initial impact parameters 

trajectories predicted to arise in the interferometer arrangement illustrated in 
Fig. 2.7a. The term was intended to point out that the trajectories predicted by 
Bohmian mechanics are counterintuitive, and so cannot be real. Mahler et al. 
(2016) measured mean trajectories in the geometry proposed by ESSW via weak 
measurement, and found that they were consistent with those predicted by Bohmian 
mechanics. The authors concluded that ‘the trajectories seem surreal only if one 
ignores their manifest nonlocality’. In Bohmian mechanics, surreal trajectories 
arise as a result of the particles being guided by the quantum potential, a non-
local field. In the standard formulation, there is no notion of trajectories, but the 
experimental observations of mean trajectories consistent with surreal trajectories 
led (Mahler et al., 2016) to seek a rationale in terms of quantum nonlocality, 
specifically entanglement with the measurement device. In the walker system, 
‘real surreal trajectories’ arise naturally from non-Markovian, classical dynamics in 
which the droplet navigates its pilot-wave field, a local potential of its own making. 
Nonlocality need not be invoked. Our study showed that the designation of Bohmian 
trajectories as surreal is based on misconceptions concerning the limitations of clas-
sical dynamics and a lack of familiarity with pilot-wave hydrodynamics (Frumkin
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et al., 2022). Moreover, it made clear that the physical picture furnished by the 
walker system allows one to see how to side-step the invocation of the non-local 
quantum potential required in Bohmian mechanics. 

HQA suggests that one can avoid the invocation of a nonlocal field, as is done 
in Bohmian mechanics, provided one follows the suggestion of Holland (1995): 
“We can envisage a more active role for the particle, something which is not even 
admitted as conceivable in the conventional view. This may, for instance, enter 
as a source of the pilot-wave field through an inhomogeneous term in the wave 
equation”. This conceptual leap would constitute a conformance to de Broglie’s 
double-solution theory rather than the provisional theory now known as de Broglie-
Bohm theory or Bohmian mechanics, and would seem to be a critical step in 
restoring locality to quantum pilot-wave theories. Considering the particle as the 
source of its own wave renders the resulting dynamics local: the particle generates 
its pilot wave and moves in response to it. This approach was recently followed 
by Dagan and Bush (2020) and Durey and Bush (2020), who considered particles 
with an internal oscillation at the Compton frequency generating, then moving in 
response to, waves satisfying a forced Klein-Gordon equation. While exploratory, 
the results yielded a striking result, a physical picture for the origins of the de 
Broglie relation. If a particle vibrating at the Compton frequency is dressed in a 
quasi-monochromatic wavefield that is a solution of the Klein-Gordon equation, 
then the group velocity of that wavefield must match the particle speed; thus, 
p = h̄k. The emergent pilot-wave form for a free, uniformly translating particle, 
illustrated in Fig. 2.1d, roughly conforms to that envisaged by de Broglie (1987). 
The potential and limitations of this approach, of developing a model of quantum 
dynamics informed by the walker system, are currently being explored more widely. 

2.9 Non-separable States 

Often a pair of quantum systems may be represented mathematically (by a vector) in a 
way each system alone cannot: the mathematical representation of the pair is said to be 
non-separable: Schrödinger called this feature of quantum theory entanglement. 

– Richard Healey, The Quantum Revolution in Philosophy (Healey, 2017). 

Non-separable states arise in multi-partite systems when the state of the whole 
cannot be simply defined in terms of the state of its subsystems (Horodecki et al., 
2009). For example, if a quantum system S is comprised of two subsystems, A 
and B, then the system will be considered non-separable if ψS /= ψA ⊗ ψB , 
where ψS,ψA and ψB are the wave functions of the respective systems, and ⊗ 
represents a tensor product. A canonical example is that of a singlet state, namely, 
two particles with opposite spins: ψ = 1√

2 
(|↓↑> − |↑↓>) . Such states cannot 

be factored into a product of two independent states, specifically, there are no 
complex numbers a, b, c, d such that: ψ = (a |↓> + b |↑>) ⊗ (c |↓> + d |↑>) . The 
singlet state is one of the maximally entangled Bell states (Bohm, 1951), and has
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been used historically to illustrate the difference between classical and quantum 
correlations through violations of Bell’s inequality (see Sect. 2.10). The outcome 
of a spin measurement on one of these particles will necessarily be correlated with 
the outcome of a measurement on the other. When non-separability persists over 
arbitrarily large distances (Weihs et al., 1998; Yin et al., 2017), it is considered to 
be a signature of entanglement. According to the Copenhagen interpretation (Home 
and Nair, 1994), particles in a singlet state do not have a well-defined spin prior 
to measurement. Once one of the two particles is measured, the wave function 
collapses instantaneously for both. One might then ask how the second particle, that 
was not measured, knows that a measurement took place at the location of the distant 
first particle. The Copenhagen Interpretation suggests that there is an instantaneous 
transfer of information between the two particles, spcifically the information that 
one of the particles was measured. This peculiar “non-local” feature of entangled 
states in quantum mechanics, is what Einstein referred to as “spooky action at a 
distance” (Einstein et al., 1935). 

In recent years, it has been shown that non-separability is not limited solely 
to the quantum realm. Indeed, it is possible to achieve non-separable states with 
different degrees of freedom of a classical electromagnetic field, and to use these 
non-separable states to violate Bell’s inequality (Qian et al., 2015; Spreeuw, 1998). 
Non-separable acoustical states were also recently demonstrated in coupled elastic 
waveguides (Hasan et al., 2019), extending the notion of non-separability to the 
field of phononics. Due to the commonalities with the standard formalism of 
quantum entanglement, the above demonstrations have been described in terms of 
‘classical entanglement’ (Spreeuw, 1998; Qian et al., 2015; Hasan et al., 2019). 
However, it has been convincingly argued that a different term, specifically ‘non-
separable states’, would be preferable to distinguish these classical states from those 
exhibiting standard bipartite quantum entanglement (Karimi and Boyd, 2015). 

Prior work on classical non-separable systems has made clear the distinction 
between classical and quantum superpositions of states: while non-separability 
may arise in both, entanglement (specifically, the persistence of non-separable 
states to arbitrary distances Weihs et al., 1998; Yin et al., 2017) is peculiar to 
quantum mechanics. While the classical non-separable states discovered to date 
cannot be used for testing local realism or quantum computing, they may be useful 
for a number of other quantum information related applications (Schmid et al., 
2010; Simon et al., 2010; Töppel et al., 2014; Pinheiro et al., 2013). Unlike the 
aforementioned examples of classical non-separability, the bouncing droplet system 
allows for the possibility of non-separable states in a spatially separated bipartite 
system (Nachbin, 2022), and so for the application of these states in quantum-
inspired classical computing. 

In quantum mechanics, tunneling is unpredictable, but the probability of its 
occurrence is well-defined by the system geometry (Papatryfonos et al., 2015). Eddi 
et al. (2009a) and later Tadrist et al. (2020) demonstrated that such is also the case 
for bouncing droplets, and Nachbin et al. (2017) captured this behavior using a 
theoretical model for one-dimensional walker motion over a vibrating liquid bath 
with complex topography. Subsequently, Nachbin (2018) extended this model to
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study correlations between two droplets separated by an intervening cavity. The 
coupling strength was prescribed by the geometry of the central cavity, which 
served as a nearly resonant transmission line. Using this system, the author showed 
that the two-particle system is non-separable, by demonstrating that each particle’s 
phase space dynamics is given by the system as a whole and cannot be described 
separately. He further showed that after the correlations were established, removing 
one of the particles from the system resulted in a drastic alteration of the phase space 
picture. The correlations arising in this model persisted even when the droplets were 
separated by large distances. Most recently, this model was extended to combine 
the aspects of unpredictable tunneling and bipartite non-separability in order to 
demonstrate a hydrodynamic analog of superradiance (Papatryfonos et al., 2022a). 

Superradiant photon emission is the anomalous emission arising when a pair or 
assemblage of ions is in close proximity. Superradiance was originally attributed 
to quantum interference arising from entangled atoms (DeVoe and Brewer, 1996; 
Makarov and Letokhov, 2004; Karnieli et al., 2021), but has since been rationalised 
in terms of electromagnetic wave interference (Tanji-Suzuki et al., 2011). Papatry-
fonos et al. (2022a) have recently used the walker system to develop a hydrodynamic 
analog of superradiance in a numerical model of bipartite walker tunneling. Their 
system consists of a pair of walkers, each in a subsystem consisting of a pair of cav-
ities across which the walker may tunnel between ground (outer) and excited (inner) 
states (see Fig. 2.8). While the bottom topography precludes the drops from escaping 
their respective subsystems, the two subsystems communicate through the wave 
field spanning the coupling cavity, allowing for strongly correlated states induced by 
the wave-mediated forces. By identifying the tunneling transitions between excited 
and ground states with photon emission events, they demonstrated that the wave-
induced droplet tunneling may lead to an analog of superradiant photon emission. 
Moreover, they demonstrated that the emission rate varies sinusoidally with distance 
between the two subsystems, as is also the case in superradiant photon emission 
from ion pairs (DeVoe and Brewer, 1996). 

2.10 Entanglement 

What  Bell’s  theorem,  together  with  the  experimental  results,  proves  to  be  impossible  . . . is  
not determinism or hidden variables or realism but locality, in a perfectly clear sense. What 
Bell proved, and what theoretical physics has not yet properly absorbed, is that the physical 
world itself is non-local. 

– Tim Maudlin, “What Bell Did”, J. Phys. A: Mathematical and Theoretical (Maudlin, 
2014). 

Those that assert that quantum mechanics in its standard form is incomplete 
appeal to ‘hidden variable theories’ for its completion. The hidden variables are 
those variables needed to provide a complete description of the quantum dynamics 
underlying quantum statistics. For example, in pilot-wave theories of the form
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Fig. 2.8 Photonic and hydrodynamic Bell test arrangements. (a) For optical Bell tests, pairs of 
entangled photons are produced at the source and sent in opposite directions to two measurement 
stations. At each station one of two measurement settings is selected randomly and a measurement 
is performed. The measurement outcomes, which can take on two possible values, +1 or  −1, 
are noted. (b) The hydrodynamic Bell test consists of a pair of drops (red and green) walking 
on the surface of a vibrating fluid bath (blue) that spans the solid substrate (grey). Each drop 
is confined to its subsystem, a pair of wells separated by barriers across which they may tunnel 
unpredictably at a rate prescribed by the barrier depths α and β, as may assume values of a, a'
or b, b', respectively. The two subsystems are coupled through the intervening wave field. For 
a limited range of measurement settings (barrier depths), Bell violations are obtained, with a 
maximum violation of 2.49. (Figure adapted from Ref. Papatryfonos et al., 2022b) 

suggested by pilot-wave hydrodynamics, the hidden variables would be the particle 
position and momentum and the form of the real pilot-wave field, as distinct from the 
wave function. In 1964, John Bell derived an inequality, the experimental violation 
of which is widely taken to indicate that no local hidden variable theory can account 
for the correlations apparent in quantum spin measurements (Bell, 1964). We refer 
here to a variant of Bell’s theorem that was introduced by Clauser, Horne, Shimony, 
and Holt (CHSH) (Clauser et al., 1969; Clauser and Horne, 1974). Consider two
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entangled particles in a singlet state that are measured at two spatially separated 
detectors, A and B. Each detector can have two possible measurement settings, 
α ∈ {a, a'} for A, and β ∈ {b, b'} for B. If  E(a, b) denotes the expectation value 
of the product of outcomes of measurements (+1 for spin-up and -1 for spin-down) 
with settings a and b, then the CHSH-Bell inequality states that any local hidden 
variable theory must satisfy the condition: 

.|S| = |
|E(a, b) + E(a, b') + E(a', b) − E(a', b')

|
| ≤ 2 (2.2) 

where S quantifies the correlations between measurement outcomes at the two 
detectors. One can demonstrate theoretically that for certain choices of measurement 
settings, the singlet state can violate the CHSH-Bell inequality, with a maximal 
correlation value of S = 2

√
2. 

The predicted violation of the CHSH-Bell inequality by quantum mechanics 
has been verified experimentally in a wide range of physical systems (Brunner 
et al., 2014), thus leading to the conclusion that quantum mechanics does not 
satisfy at least one of the assumptions made in the derivation of Bell’s theorem. 
Given that these assumptions include the basic tenets of reality (a physical world 
exists independent of human observation) and locality (nothing travels faster than 
the speed of light), some have even proclaimed Bell’s Theorem to be ‘the most 
profound in science’ (Stapp, 1975). The experimental violation thereof by Aspect 
et al. (1982a,b) was rewarded with the most recent Nobel prize in physics, and 
was interpreted by the Nobel Prize Committee as proving that ‘quantum mechanics 
cannot be replaced by a theory that uses hidden variables’. 

While the experimental violation of Bell’s inequality is widely taken to imply 
that quantum mechanics is inescapably non-local, less drastic conclusions are 
currently being explored through careful scrutiny of the assumptions made, either 
explicitly or implicitly, in the derivation of Bell’s inequality. In particular, Vervoort 
(2018) has questioned whether the assumption of ‘measurement-independence’, 
according to which the hidden variables that prescribe the measurement outcomes 
are independent of α and β, is valid in systems with a background field. Vervoort 
argues that such may not be the case in pilot-wave systems, wherein the hidden 
variables characterizing the pilot-wave field might in principle be influenced by the 
analyzer settings. A similar line of questioning was originally put forth by workers 
in stochastic electrodynamics (de la Peña et al., 1972). 

To inform this debate, we have recently adopted the model geometry used in the 
hydrodynamic analog of superradiance (Papatryfonos et al., 2022a) to administer 
the first static Bell test in the hydrodynamic pilot-wave system (see Fig. 2.8). To 
that end, we identified the location of the drop (inner or outer cavity) with the 
dichotomic property, corresponding to spin (+1 or −1) in traditional Bell tests. We 
identified the barrier depths in the two subsystems with the measurement settings 
(α, β). Judicious choice of combinations of measurement settings, including one 
for which strongly synchronized tunneling arises, allowed for violation of Bell’s 
Inequality, with a maximum violation of 2.49±0.04. This violation is made possible 
by the fact that in the walker system, the assumption of measurement-independence
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is violated. Specifically, owing to the wave-mediated coupling between the two 
subsystems, the probability of a droplet occupying a given cavity in either of the 
subsystems depends on both measurement settings (Papatryfonos et al., 2022b). 
Pilot-wave hydrodynamics thus illustrates how static Bell violations may arise in 
a classical setting. This particular system also shows how non-separable states with 
non-classical correlations can be established in classical bipartite systems. 

The question remains open as to whether the violations deduced in the static Bell 
test will survive isolation of the two subsystems, as would effectively eliminate 
communication between them. A promising result in this direction has recently 
been demonstrated by Nachbin (2022), who considered correlations of two droplets 
confined to individual cavities linked through a coupling cavity. He demonstrated 
that the wave-mediated forces between the droplets allowed them to achieve 
strongly correlated energetic states inaccessible to either droplet in the other’s 
absence. By decreasing the depth of the coupling cavity during the course of the 
simulations, he demonstrated that these correlated excited states could survive 
even when the droplets are no longer communicating. We are currently taking 
a similar approach to the two-cavity geometry considered in our static Bell test 
that will determine whether violations of Bell’s inequality can persist even when 
the two subsystems are isolated. Such tests should settle the matter as to whether 
memory might provide a viable mechanism for establishing classical entanglement. 
Such violations might in principle be rationalized through the measurement-
independence loophole (Vervoort, 2018): the hidden variables (specifically, the 
droplet trajectories and pilot-wave field) depend on both measurement settings, 
whose influence is imposed prior to, but persists after, isolation of the subsystems. 
Concurrently, numerous efforts are being made in the HQA community towards 
achieving Bell violations experimentally with the walker system. 

2.11 Conclusion 

I think it very probable that the solution to our problem will come through the back door: 
some person who is not addressing himself to these difficulties with which I am concerned 
will probably see the light. An analogy that I like is that of a fly buzzing against a window 
when the door is open. 

– John. S. Bell (Davies and Brown, 1993). 

Several pronouncements concerning the inscrutability of quantum mechanics, 
made by some of its most distinguished practitioners, have been revisited in light 
of insights gained from pilot-wave hydrodynamics. Many now fall flat. If one is 
unwilling to make one’s peace with quantum nonlocality, there would appear to 
be two options. First, one may ascribe to one of the more extravagant quantum 
interpretations that side-step the nonlocality problem by offering up an even less 
appealing prospect, for example, the Multiverse (Everett, 1957). Second, one may 
follow the progressive approach offered by HQA, and explore the possibility of
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a hidden variable theory that violates Bell’s inequality without being explicitly 
nonlocal, specifically without having to appeal to superluminal signaling or a 
nonlocal quantum field. The authors are currently following this approach, and so 
persist in the stubborn view that while nonlocality is undoubtedly a feature of the 
current quantum theory, it need not be a feature of an adequately resolved, complete 
theory of quantum physics (Kupczynski, 2020). 

The proliferation of quantum interpretations has arisen because there is presently 
no experimental means by which to distinguish between them. Conversely, theories 
of quantum mechanics can be falsified or verified via experimental test. The 
hope is that HQAs will provide additional insight into the quantum pilot-wave 
theories of de Broglie (1987), de la Peña et al. (2015), and Hestenes (1990), 
that will ultimately be tested experimentally. Given that all such theories appeal 
to an unresolved dynamics on the Compton scale, it is conceivable that future 
experimental investigations, achieved for example in electron channeling (Catillon 
et al., 2008), might validate or refute the physical picture suggested by walking 
droplets. 

Finally, it is noteworthy that the field of hydrodynamic analogs of general 
relativity was initiated by Unruh (1981) and Schützhold and Unruh (2002) and 
has subsequently been well-established (Euve et al., 2016; Rousseaux and Kellay, 
2020). The field of HQAs is relatively recent, but burgeoning. A primary difficulty 
in modern physics is reconciling general relativity and quantum mechanics. Should 
the subject of fluid mechanics provide the church at which to marry the two, one 
imagines that the subject might become a more prominent component of the modern 
undergraduate physics curriculum. 
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