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Since its discovery in 2005, the hydrodynamic pilot-wave system has provided a con-
crete macroscopic realization of wave-particle duality and concomitant classical analogs
of a growing number of quantum effects. The question naturally arises as to how closely
particle-particle correlations achieved with this classical system can mimic those arising
on the quantum scale. We here introduce a new platform for addressing this question, a
numerical model of cooperative tunneling in a bipartite pilot-wave hydrodynamic system.
We execute a static Bell test, in which the system geometry is fixed and the two subsystems
are coupled through the intervening wave field. This wave-mediated coupling is not
congruent with the assumptions made in deriving Bell’s inequality, and so allows one to
rationalize the reported violations. Nevertheless, these violations are elusive, and arise only
in a limited corner of parameter space.
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I. INTRODUCTION

In 2005, Couder and Fort [1,2] discovered that a millimetric droplet may self-propel along
the surface of a vibrating fluid bath through a resonant interaction with its own wave field. The
resulting "walker" consists of a droplet dressed in a quasimonochromatic wave field, and represents
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a concrete, macroscopic example of wave-particle duality [3]. Remarkably, this hydrodynamic
pilot-wave system exhibits many features previously thought to be exclusive to the microscopic,
quantum realm [4,5]. Notable examples include single-particle diffraction and interference [2,6,7],
quantized orbits [3,8], unpredictable tunneling [9], Friedel oscillations [10], surreal trajectories [11],
spin lattices [12], and quantumlike statistics and statistical projection effects in corrals [13,14]. In
all instances, the emergent quantum behavior may be rationalized in terms of the droplet’s non-
Markovian pilot-wave dynamics [5]. Specifically, the instantaneous wave force imparted to the drop
during impact depends on the droplet’s history. Thus, the drop navigates a potential landscape of its
own making [5], and the hydrodynamic pilot-wave system is said to be endowed with "memory"
[15]. The walking-droplet system has provided a framework for exploring the boundary between
classical and quantum behavior. Moreover, it has inspired investigations of other hydrodynamic
pilot-wave systems in which oscillators interact with their suspending fluids [16–19].

In several settings, long-range interactions in the walking-droplet system arise through the
influence of the pilot-wave field [5]. For example, long-range lift forces are generated when a
walking droplet interacts with a submerged pillar [20] or well [10], and could be misconstrued as
indicating action at a distance if the influence of the pilot-wave field were not adequately resolved
[5]. Moreover, long-range correlations between distant walkers may be established through the
influence of the intervening wave field [21–23]. Recently, Papatryfonos et al. [24] and Frumkin et al.
[25] established hydrodynamic analogs of superradiance, an effect originally attributed to quantum
interference of two or more entangled atoms [26–28], but subsequently rationalized in terms of
classical electromagnetic wave interference [29]. The accumulation of these results naturally raises
the question as to whether this pilot-wave hydrodynamic system might exhibit bipartite correlations
that violate Bell’s inequality [30], and so provide a hydrodynamic analog of quantum entanglement,
the acid test of quantumness. This question seems all the more pertinent given suggestions that
Bell’s theorem may have no bearing on systems in which particles interact with a background field
[30–32].

Bell’s theorem was derived by John Bell in 1964 [33] with a view to informing the Bohr-Einstein
debate concerning the completeness of quantum theory [34]. Hidden variables are those variables
that would be required for a complete description of quantum dynamics. For example, for the
type of dynamics engendered in pilot-wave hydrodynamics, these would be the discrete variables
defining the position and momentum of the particles, as well as the continuous variables defining the
background field with which the particles interact. Quite generally, a Bell test can be performed on
any physical system consisting of two subsystems (A and B) on which one measures a dichotomic
property X (with stochastic outcomes of +1 or −1) that depends on some "analyzer setting" (α or β).
The measurement XA made in the left two-level subsystem depends on the analyzer setting α, which
may take values a or a′; likewise, the measurement XB made in the right two-level subsystem
depends on β, which may take values b or b′.

In the derivation of the Bell’s inequality, Eq. (1), two assumptions are made. Assumption (i) is
that the two subsystems undergo only local interactions. Specifically, XA depends on α and not on β;
likewise, XB depends on β and not on α. Assumption (ii) is that the hidden variables that prescribe
both XA and XB are independent of α and β. Bell’s theorem [33] implies that for any classical system
for which assumptions (i) and (ii) hold, the quantity S(α = a, β = b, α = a′, β = b′) = M(a, b) +
M(a′, b) + M(a, b′) − M(a′, b′) must satisfy the inequality

|S(a, b, a′, b′)| � 2 (1)

for any choice of measurement settings (a, a′, b, b′). Here, M(α, β ) is the average product,

M(α, β ) =
∑

XA,XB

XAXBP(XA, XB|α, β ), (2)

where P(XA, XB|α, β ) is the joint probability of measurements (XA, XB) when the left and right
analyzers are set, respectively, to (α, β). We note that Eq. (1) is cast in the form of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [35]. It has been well established that quantum systems
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FIG. 1. Hydrodynamic Bell test arrangement. (a) Schematic of our hydrodynamic Bell test. The system
consists of a pair of drops (red and green) walking on the surface of a vibrating liquid bath (blue) that spans
the solid substrate (gray). Each drop is confined to its subsystem, a pair of wells separated by barriers across
which they may tunnel unpredictably at a rate influenced by the barrier depths α and β, as may assume values
of a, a′ or b, b′, respectively. Inset: β is the distance between the unperturbed free surface and the top of the
submerged pillar separating cavities (+) and (−) in subsystem B; α is analogously defined in subsystem A. (b)
The four possibilities for the droplet configuration space, (XA, XB ).

can violate the inequality (1) for a judicious choice of (a, a′, b, b′), and these Bell violations are
widely taken to be proof that the statistical behavior of quantum systems cannot be underlaid by a
local, causal dynamics [36]. Quantum Bell tests were first performed with static analyzer settings
[37], and so are referred to as static tests. In subsequent dynamic tests [38–44], the detector settings
α and β were altered just prior to measurement, so that the two measurement events are spacelike
separated, so that assumption (i) is expected to hold true. Bell violations have been achieved
with classical electromagnetic [45–48] and acoustic wave [49] systems. We here demonstrate the
possibility of achieving Bell violations in a static test with a theoretical model of the walking-droplet
system.

II. MODEL AND METHODS

We consider a pair of walking droplets in the bipartite tunneling system introduced by Papa-
tryfonos et al. [24] in their demonstration of a hydrodynamic analog of quantum superradiance
[see Fig. 1(a)]. We describe this system in terms of two coupled, two-level systems, as shown
schematically in Fig. 1(b). The two subsystems, labeled A and B, contain a single, wave-generating
particle confined to a pair of identical cavities separated by a barrier across which the particles may
tunnel. The measurements XA and XB in our Bell experiment indicate whether the droplets are in the
inner well (Xj = −1, j = A, B) or the outer well (Xj = +1, j = A, B) at the time of measurement.
Each particle generates waves and moves in response to them according to Eqs. (3)–(5). In each
subsystem, the preferred cavity corresponds to the ground state (−) and the other to the excited state
(+). The ground state may be either the inner or the outer cavity, depending on the geometry of the
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outer cavities [24]. For the specific geometry considered here, the inner cavity of each subsystem is
the ground state (−) and the outer cavity, the excited state (+) [see Fig. 1(b)]. The two subsystems
are separated by a coupling cavity of fixed length Lc, and by barriers that are sufficiently high
as to preclude the particles from tunneling into the coupling cavity. Waves are transmitted across
the central cavity, and so provide the coupling between subsystems A and B. The strength of this
coupling is prescribed by the geometry of the central cavity: by increasing its depth dc, the coupling
may be increased, allowing the coupling cavity to serve as a nearly resonant transmission line
[21]. Transitions between ground and excited states in the subsystems correspond to individual
tunneling events, the rate of which depends on the depths of the submerged barrier, denoted α

for the subsystem A and β for the subsystem B. These barrier depths α and β thus serve as the
measurement settings in our Bell tests.

We employ the numerical simulation method developed by Nachbin [21,50] for the one-
dimensional motion of walking droplets over a vibrating liquid bath with complex topography. We
adapt this model in order to consider the cooperative tunneling of two identical particles in the
geometry depicted in Fig. 1(a). Two identical particles of mass m are confined to their respective
subsystem (A or B), and their positions, x j ( j = A, B), evolve according to Newton’s law:

mẍ j + cF (t )ẋ j = −F (t )
∂η

∂x
(x j (t ), t ). (3)

The particles move in response to gradients of the wave elevation η(x, t ). The waves are generated
in a manner consistent with models of the vertical droplet dynamics [51,52]. The droplet impacts the
free surface with the Faraday frequency ωF = ω/2 at a prescribed time relative to the vibrational
forcing, making first contact when ωt = 0.45π . Waves are generated during the contact time, of
duration Tc = TF /4, where TF = 2π/ωF is the Faraday period, a value consistent with laboratory
experiments [51] and used in prior studies [50,52]. During impact, the droplet is accelerated by the
wave slope and decelerated by a drag force proportional to its horizontal speed, a drag coefficient
c = 0.01 s/cm and the normal force imparted to the droplet by the interface, F (t ). The time depen-
dence of these propulsive and drag forces is prescribed by F (t ) = (2π2mg)/(ωTc) sin (πt/Tc)1Tc , as
follows from the linear-spring-like response of the interface in the walker system [50,52,53]. Here,
g is the gravitational acceleration, and the periodic indicator function 1Tc highlights the intermittent
nature of the forcing imparted by the interface to the bouncing droplets, which acts only during
impact. By generating waves during impact, the droplets establish their own time-dependent wave
potential, which serves as the memory of the system [15]. The wave forcing enters the droplet
trajectory equation through the final term in Eq. (3), and is computed as follows.

The velocity potential of the liquid bath φ(x, z, t ) is a harmonic function satisfying Laplace’s
equation. In the bulk of the fluid, the velocity field is given by (u, v) = ∇φ. The wave model is for-
mulated in the bath’s vibrating reference frame, where the effective gravity is g(t ) = g + γ0 sin(ωt ).
The wave field thus evolves according to [50,52]:

∂η

∂t
= ∂φ

∂z
+ 2ν

∂2η

∂x2
, (4)

∂φ

∂t
= −g(t )η + σ

ρ

∂2η

∂x2
+ 2ν

∂2φ

∂x2
−

∑

j=A,B

c̃F (t )

ρπR2
1Dj . (5)

The particles ( j = A, B) generate waves on the free surface by imparting, during impact, a pressure-
like term over an area corresponding to the droplet’s diameter, Dj = 2R = 0.07 cm, as denoted by
the spatial indicator function 1Dj . c̃ = 0.95 is a dimensionless constant that prescribes the strength of
the impact-induced wave forcing. Consistent with our modeling of the droplet dynamics, the wave
forcing coefficient F (t ) is activated only during the contact time Tc = TF /4. The forcing terms of
this wave-particle dynamical system are discontinuous in both time and space, as highlighted by
the indicator functions arising in Eqs. (3) and (5). Through the imposition of periodic wave-particle
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coupling at the Faraday frequency, we ensure resonance between the particle and the most unstable
Faraday mode of the bath [52], a key feature of pilot-wave hydrodynamics [4,5,54].

In Eqs. (3)–(5), spatial derivatives are computed using the Fast Fourier transform (FFT) in x. The
shallow outer reaches of the fluid domain extend sufficiently far to ensure quiescent conditions in the
far field. The vertical speed at the free surface φz(x, 0, t ) is defined through a Dirichlet-to-Neumann
(DtN) operator [50] and yields a Fourier integral operator computed in a straightforward fashion
through a FFT. The DtN operator mathematically reduces the two-dimensional fluid problem to
one spatial variable defined along the undisturbed free surface. To compute the DtN operator, a
numerical conformal mapping is performed that maps the (x, z) fluid domain onto a (ξ, ζ ) canonical
flat strip. Details of the conformal mapping can be found elsewhere [55,56]. The mapping for a
given geometry is computed only once and provides the relation x = x(ξ ) along the undisturbed
free surface. We denote by F the FFT in the ξ coordinate, which runs along the undisturbed free
surface in the canonical domain. We denote by φ(x, 0, t ) = ϕ(x, t ) the Dirichlet data. We thus have
that

φz(x, 0, t ) = DtN[φ](x, t ) = F−1{G(k)F[ϕ(ξ )]}
M(ξ (x, 0))

, (6)

where G(k) = k tanh k is the Fourier multiplier [50]. The metric coefficient is M(ξ ) = √|J|, where
|J| is the Jacobian of the [(x, z) → (ξ, ζ )] change of variables, evaluated along the undisturbed free
surface [55,56]. To summarize, the geometrical information of the cavities and barriers is encoded
in M and in ξ = ξ (x, 0), which is obtained with the inverse map. The time evolution is performed
with a second-order fractional-step Verlet method [50].

System parameters are chosen to correspond to a fluid bath of density ρ = 0.95 g/cm3, viscosity
ν = 16 cS, and surface tension σ = 20.9 dyn/cm vibrating vertically in a sinusoidal fashion with
peak acceleration γ0 = A0ω

2, peak amplitude A0, and frequency ω/2π = 80 Hz. The resonant
bouncing of the particle at the Faraday frequency triggers a quasimonochromatic damped wave
pattern with a corresponding Faraday wavelength of λF = 4.75 mm. Each of the four cavities has
a fixed length of 1.0 cm, corresponding to approximately 2.1λF and a fixed depth of 0.5 cm. The
central cavity, coupling the right and left subsystems, has a fixed length of 0.4 cm and a fixed depth
of 2 cm. Each of the barriers has a fixed width of 0.4 cm. The two barriers connecting the central
cavity to the right and left subsystems, have a fixed depth of 0.045 cm. For this geometry, the
critical vibrational acceleration above which waves are generated in the absence of the droplets, the
Faraday threshold, was γF = 4.69g. We report results attained with a fixed vibrational acceleration
γ0 = A0ω

2 = 4.23g = 0.92γF .
We proceed by demonstrating that for a judicious choice of pairs of static measurement settings

(α, β ), the inequality (1) may be violated in our bipartite hydrodynamic system owing to the wave-
mediated coupling between the two subsystems. In our numerical simulations, each run begins by
placing the two particles at random positions within their own subsystem. Their trajectories are then
calculated for 48 000 Faraday periods. During that time, we observe in which cavities the droplets
reside. XA takes the value −1 if the drop A is observed in the ground state of the left subsystem,
and +1 otherwise. Similarly, XB takes the value −1 if the drop B is observed in the ground state
of the right subsystem, and +1 otherwise. The robustness of the emergent statistics was ensured by
following the protocol detailed in the Appendix.

III. RESULTS

Our main result is shown in Fig. 2, which indicates a narrow parameter range in which the CHSH
inequality is violated. While the inequality can be violated in our system with four different values of
the measurement settings (a, a′, b, b′), our exploration of the (a, a′, b, b′) parameter space indicates
that a local maximum of S arises when b = a and b′ = a′, the symmetric case in which one may
write S(a, b, a′, b′) = S(a, a, a′, a′) = M(a, a) − M(a′, a′) + 2M(a, a′). We deduced a maximum
violation of Smax = 2.49 ± 0.04 when a = b = a∗ = 0.099 cm and a′ = b′ = a′∗ = 0.1033 cm. In
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FIG. 2. Violation of Bell’s inequality. Bell parameter S(a, a, a′, a′) as a function of the barrier depth,
a′, for the symmetric case of a = b, a′ = b′. For the calculation of the corresponding correlation functions,
M(a, a), M(a, a′), and M(a′, a′), the barrier depth a = a∗ = 0.099 cm remains fixed. For each combination
of measurement settings, runs continue until statistics converge. The maximum Bell violation appears at
a′∗ = 0.1033 cm, where S = 2.49 ± 0.04.

Fig. 2, we plot S as a function of a′ for fixed a = a∗, with the dashed line showing the limit S = 2
above which the CHSH inequality, Eq. (1), is violated.

While the inequality was found to be violated only for a narrow range of parameter settings, in
this parameter regime, the violation is clear, and the statistical confidence of the violation is above
20 standard deviations (see Fig. 6). We note that this behavior is reminiscent of the quantum case,
where, without guidance from the theory, it is relatively difficult to find analyzer settings that allow
for violation of the CHSH inequality, but for judiciously chosen settings, the inequality is violated
substantially. As in our previous study of superradiance [24], the wave-mediated coupling creates
a collective behavior of the droplet pairs. In particular, when one of the droplets transitions to its
excited state, the probability of the second droplet doing likewise increases substantially. Thus,
through its wave-mediated interaction with its partner, each droplet is indirectly affected by the
barrier depth of the distant station.

Since the inequality involves four different correlation functions (three for the symmetric case
considered here), finding the combinations of measurement settings that maximized S was not
entirely straightforward. The strategy we followed in seeking violations is summarized in Fig. 3.
We first investigated the evolution of a single correlation function M(α = a, β = a) as a function of
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FIG. 3. Strategy to optimize S(a, a, a′, a′) = M(α = a, β = a) − M(α = a′, β = a′) + 2M(α = a, β =
a′) . S is optimized by searching a parameter regime (a, a′) near the maximum of δM(a, a′) = M(α = a,

β = a) − M(α = a′, β = a′) and a range of a′ that maximizes M(a, a′) with a fixed. (a) Evolution of M(α =
a, β = a) as a function of a. The indicated values a∗ = 0.099 cm and a′∗ = 0.1033 cm are the S-maximizing
values used in Fig 2. We note δa = a′ − a and δa∗ = a′∗ − a∗. The difference between the corresponding cor-
relation functions δM(a, a + δa) = δM(a, a′) = M(α = a, β = a) − M(α = a′, β = a′) is marked in orange.
(b) Optimization of δM(α = a, β = a + δa) as a function of barrier depth a and δa. The domain for which
[maxa,a′ (δM ) − δM]/ maxa,a′ (δM ) > 0.9 is bound by the black dashed curve. (c) 2M(α = a∗, β = a′) as a
function of depth a′ for fixed a = a∗. (d) Evolution of S(a, a, a′, a′) in the correlation representation space
(M(a, a′); M(a′, a′)) with a = a∗. The direction of increasing a′ is indicated by the blue arrow. The dots are
colored with respect to their S values. The gray dashed line indicates the limiting case of S = 2.

a. This gave us a good sense of parameters that maximize the difference δM(a, a′) = M(a, a) −
M(a′, a′) [see Fig. 3(a)]. δM(a, a′) involves two of the correlation functions of Eq. (1), in the
symmetric case of interest where a = b and a′ = b′. Figure 3(b) shows a two-dimensional (2D) plot
of the optimization of δM as a function of a and a′. The black dashed lines highlight the domain
in which [maxa,a′ (δM ) − δM]/ maxa,a′ (δM ) > 0.9. The other term in the inequality, specifically
2M(α = a, β = a′), represents a combination of measurements from unequal barrier depths at the
two measurement stations. Figure 3(c) represents the dependence of 2M(α = a∗, β = a′) on depth
a′ for fixed a = a∗, the S-maximizing value considered in Fig. 2. a′∗ marks the end of the plateau of
high correlation, beyond which the term M(a∗, a′) decreases. Finally, Fig. 3(d) shows the evolution
of the correlation functions (M(a, a′); M(a′, a′)) with increasing a′ and fixed a = a∗. The maximum
S value occurs for moderate barrier depths, for which the droplets may become most strongly
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correlated through the background wave field. In Fig. 4(a), we show typical trajectories for the three
combinations of measurement settings (α, β ) ∈ {(a∗, a∗), (a∗, a′∗), (a′∗, a′∗)} that maximize S. For
(a, a′) = (a∗, a′∗), S is maximized because M(a∗, a∗) and M(a∗, a′∗) are large [see Fig. 4(a), top and
middle panels], while M(a′∗, a′∗) is relatively small [Fig. 4(a), lower panel]. Figure 4(b) corresponds
to a shallow barrier, a′ = 0.0937 cm (the leftmost value in Fig. 2) and Fig. 4(c) to a relatively deep
barrier, a′ = 0.11 cm (the rightmost value in Fig. 2). Figures 4(b) and 4(c) correspond to minima of
S occurring when the a′ barrier is either too shallow [Fig. 4(b)] or too deep [Fig. 4(c)].

The degree of synchronization in the droplet tunneling depends on the extent to which the
droplets are affected by the barrier depth in the distant station. When the barrier depth in one
station is too small, the local particle is prevented from tunneling, regardless of the barrier depth in
the other. The synchronization of states is thus reduced substantially. Conversely, when the barrier
depth is too large, the particle generally tunnels across it, unaffected by the distant particle. Thus, the
synchronization again remains relatively low. For intermediate barrier depths, each particle tunnels
with a moderate probability that is strongly affected by the behavior of its distant partner.

Finally, to ensure that the dynamics were a result of the two-droplet state rather than just the
topography, we ran several complementary single-drop simulations with the same topographies. A
typical example is presented in Fig. 5, where we compare the two extreme cases, one in which the
distant barrier depth is relatively low (b = 0.099 cm) and another in which it is relatively high (b′ =
0.1033 cm). In these simulations we set a = 0.099 cm, so the overall topography was identical to
that reported in Fig. 4(a) for a pair of drops. We observe that the single-drop trajectories in the two
cases are identical for these values of b and b′, but substantially different from those arising in the
two-particle case. Thus, when only one drop is present, the variation of the measurement setting in
the distant subsystem does not influence its behavior. This indicates that, in the two-droplet case,
the droplets learn about the distant cavity geometry (or "measurement setting") only through their
wave-mediated interactions with their partner drop. This result is consistent with previous findings
on superradiance [24], where for certain topographies the single-droplet tunneling rate was very low,
unless a second drop was introduced into the distant cavity, in which case the tunneling probabilities
could increase dramatically.

IV. CONCLUSION AND DISCUSSION

We have devised a platform for performing static Bell tests on a classical bipartite pilot-wave
system. The maximum violation was found to be 2.49 ± 0.04, and arose when the system ge-
ometries were chosen such that the droplet motion was marked by varying degrees of correlation
between droplets with different measurement settings. A key step in the process was recognizing
that the system geometry may serve as a proxy for analyzer settings in the quantum Bell tests.
The non-Markovian nature of the droplet dynamics is engendered in the system memory [15], the
critical feature in all hydrodynamic quantum analogs [5]. The wave field serves as the memory of the
system, and the correlations reported here may be understood as being rooted in this wave-mediated
memory. We have focused here on the intermediate memory regime (γ0/γF = 0.92), where the
wave-mediated interactions allow for Bell violations. We note that these violations vanish at much
lower memory, when there is insufficient wave coupling between the two subsystems, and at higher
memory, when the droplet dynamics becomes highly disordered.

We proceed by rationalizing the Bell violation achieved in our static test. Specifically, we identify
which of the assumptions made in the derivation of Bell’s inequality are not applicable in our system.
In order to do so, we find it valuable to adopt two distinct perspectives in the form of two fictional
observers. Observer 1 can observe the droplets but not the waves, while observer 2 can observe
both droplets and waves. Observer 1 would infer that the measurements at each subsystem are
influenced by the distant measurement setting, and thus that assumption (i) is invalid. Through
consideration of the wave field, observer 2 could rationalize the violation of assumption (i) in terms
of the wave-mediated coupling between the two subsystems. It would also be apparent to observer
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FIG. 4. Trajectory analysis. (a)–(c) Droplet trajectories for the symmetric case (α, β ) ∈ (a, a′) with a =
a∗ = 0.099 cm. Time evolves in the vertical direction. In (a), a′ = a′∗ = 0.1033 cm (the maximizing value
for S); in (b), a′ = 0.0937 cm; in (c), a′ = 0.11 cm. (a) Trajectories corresponding to the three correlation
functions M(a∗, a∗) = 0.94 (upper panel), M(a∗, a′∗) = 0.84 (middle panel), and M(a′∗, a′∗) = 0.13 (lower
panel). The tunneling events are highly correlated only in the upper and lower panels. (b) Trajectories corre-
sponding to M(a∗, a′) with a′ = 0.0937 cm. When the barrier depth a′ is sufficiently small, the wave-mediated
communication between droplets is diminished, and droplets tend to get trapped in one cavity, leading to
minima of S and M(a∗, a′) ≈ 0 when we average over the droplet’s initial conditions. (c) Another minimum of
M(a∗, a′) and S occurs when one of the barrier depths is too large, in which case one of the droplets tunnels
continuously, unimpeded by the barrier, as if it were in a single cavity. Averaging over all initial conditions
leads to a relatively low value of M(a∗, a′) ≈ 0. Note that the correlation function is deduced by averaging
over all initial conditions in both subsystems.
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FIG. 5. Single drop trajectory analysis. (a) Single droplet trajectory for a relatively shallow distant barrier:
a = 0.099 cm; b = 0.099 cm. Inset: a close-up of the dynamics illustrates the oscillatory motion of the drop
inside the cavity (−). (b) Single droplet trajectory for a relatively deep distant barrier: a = 0.099 cm; b′ =
0.1033 cm. The two trajectories are statistically indistinguishable, indicating that, in the absence of a partner
drop, the droplet motion is not influenced by the distant barrier depth.

2 that the wave field constituting the continuous variable hidden from observer 1 is affected by both
analyzer settings. Observer 2 would thus conclude that both assumptions (i) and (ii) are invalid.

Quantum entanglement requires that the violations of Bell’s inequality persist even when the two
subsytems are spacelike separated. While such entanglement is generally thought to be peculiar to
quantum systems, Bell-violating states have been demonstrated in both classical electromagnetic
[45–47] and acoustic wave systems [49]. They have also been reported in single-particle systems,
through consideration of the internal degrees of freedom of a single neutron [57]. However, neither
the classical wave states nor the internal degrees of freedom in the single-particle system can be
spatially separated [48,58]. We have here demonstrated the possibility of achieving static Bell
violations for spatially separated bipartite states in the pilot-wave hydrodynamic system. We stress
that these violations may be simply rationalized: the wave-mediated coupling between the two
subsystems ensures that both the assumptions (i) and (ii) made in the derivation of Bell’s inequality
are invalid. Nevertheless, the violations exist only in a limited region of parameter space, and so are
relatively difficult to achieve.

Finally, we note that our theoretical framework introduces the possibility of performing more
sophisticated Bell tests. The feasibility of incorporating time-dependent topography into our model
has recently been demonstrated by Nachbin [22], who demonstrated the persistence of correlations
between droplet pairs in single wells even after their topographic isolation. Incorporating dynamic
topography will allow for future Bell tests in which communication between the two subsystems is
eliminated by closing the coupling cavity during the course of a simulation. The dynamic-Bell-test
protocol would then involve changing the analyzer settings after topographic isolation of the two
subsystems. However unlikely, attaining Bell violations in such dynamic tests does not seem entirely
impossible given that the wave field serves as the memory of the system; thus, the mutual memory
of the initial wave-mediated droplet interaction might survive the topographic isolation of the two
subsystems.

The code and the data that generated the data are available upon request from the contact author.
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FIG. 6. Statistical convergence of the Bell parameter. (a) Typical curve showing the convergence of
Smax, the Bell parameter taken at the maximum point of violation (a = b = a∗ = 0.099 cm; a′ = b′ = a′∗ =
0.1033 cm). The error bars indicate ±3 standard deviations. (b) Relative error δSmax/Smax of the estimation of
the Bell parameter S with the number of runs, evaluated for the maximum point of violation (a = b = a∗; a′ =
b′ = a′∗). Inset: log-log scale; the dashed line indicates a −1/2 slope as expected from the convergence of an
ensemble average.

APPENDIX: STATISTICAL CONVERGENCE

To confirm the statistical significance of our results, we performed six runs with durations of
48 000 Faraday periods for each geometrical configuration. We used random initial conditions for
the particle positions, and discarded the first 10% of the runs in order to eliminate any trace of
a transient. To initialize the runs, the wave and velocity fields of the bath are set to zero, and
the particle positions are assigned random, uniformly distributed values. Then, the model runs for
2000 Faraday periods, a measurement is made, and all fields are reset back to zero to initialize the
subsequent run. This cycle is repeated for each set of parameter settings until the relative error in the
running average of M(α = a, β = b) is reduced to an acceptably small value. We set this tolerance
to be 3% for parameters that violate the inequality and 7% for those that do not. While extremely
accurate, this "discrete" technique is computationally intensive; thus we have used it only for the
most critical points of the parameter space, in which the maximal Bell violations occurred.

To explore the parameter space more efficiently, we adopt an alternative, relatively expedient,
"continuous" approach, in which the final conditions of one run serve as the initial conditions of
the next. We demonstrated the statistical equivalence of the two approaches as follows. For specific
selected data points, we performed approximately 30 different runs using the two techniques, and
found the results of the discrete and continuous runs to be in agreement to within 3%. We then
executed continuous runs for 48 000 Faraday periods, during which measurements are performed
frequently at uniformly distributed random times. After a sufficiently long run, the full range
of initial conditions will have been effectively explored. The consistency of the results deduced
with the discrete and continuous approaches demonstrates that the long-time emergent statistics
are independent of the initial conditions. Figures 6(a) and 6(b) show a typical example of the
convergence of the "running average" with the number of runs which determines the relative error
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of our statistics. This approach indicates when our statistics have converged for each M(α, β )
calculation, specifically when the relative error has fallen below the prescribed tolerance.
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Interaction between atomic ensembles and optical resonators: Classical description, in Advances in
Atomic, Molecular, and Optical Physics, edited by E. Arimondo, P. R. Berman, and C. C. Lin (Academics,
New York, 2011), Vol. 60, pp. 201–237.

[30] L. Vervoort, Are hidden-variable theories for pilot-wave systems possible? Found. Phys. 48, 803 (2018).
[31] P. Morgan, Bell inequalities for random fields, J. Phys. A 39, 7441 (2006).
[32] L. De la Peña, A. M. Cetto, and A. Valdés-Hernández, The emerging quantum: The Physics behind

Quantum Mechanics (Springer International Publishing, Cham, 2015).
[33] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964).
[34] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be

considered complete? Phys. Rev. 47, 777 (1935).
[35] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable

theories, Phys. Rev. Lett. 23, 880 (1969).
[36] T. Maudlin, What Bell did, J. Phys. A: Math. Theor. 47, 424010 (2014).
[37] A. Aspect, P. Grangier, and G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm

gedankenexperiment: A new violation of Bell’s inequalities, Phys. Rev. Lett. 49, 91 (1982).
[38] A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using time-varying analyz-

ers, Phys. Rev. Lett. 49, 1804 (1982).
[39] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Violation of Bell’s inequality under

strict Einstein locality conditions, Phys. Rev. Lett. 81, 5039 (1998).
[40] T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X. Ma, T. Herbst, L. Ratschbacher, A. Fedrizzi, N. K.

Langford, T. Jennewein, and A. Zeilinger, Violation of local realism with freedom of choice, Proc. Natl.
Acad. Sci. USA 107, 19708 (2010).

[41] B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen,
R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen,
D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loophole-free Bell inequality violation using
electron spins separated by 1.3 kilometres, Nature (London) 526, 682 (2015).

[42] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86,
419 (2014).

[43] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Violation of Bell inequalities by photons more than 10 km
apart, Phys. Rev. Lett. 81, 3563 (1998).

[44] M. Giustina et al., Significant-loophole-free test of Bell’s theorem with entangled photons, Phys. Rev.
Lett. 115, 250401 (2015).

[45] M. A. Goldin, D. Francisco, and S. Ledesma, Simulating Bell inequality violations with classical optics
encoded qubits, J. Opt. Soc. Am. B 27, 779 (2010).

[46] X. Qian, B. Little, J. C. Howell, and J. H. Eberly, Shifting the quantum-classical boundary: theory and
experiment for statistically classical optical fields, Optica 2, 611 (2015).

[47] X. Song, Y. Sun, P. Li, H. Qin, and X. Zhang, Bell’s measure and implementing quantum Fourier transform
with orbital angular momentum of classical light, Sci. Rep. 5, 14113 (2015).

[48] R. J. C. Spreeuw, A classical analogy of entanglement, Found. Phys. 28, 361 (1998).
[49] M. Arif Hasan, L. Calderin, T. Lata, P. Lucas, K. Runge, and P. A. Deymier, The sound of Bell states,

Commun. Phys. 2, 106 (2019).

084001-13

https://doi.org/10.1103/PhysRevLett.130.064002
https://doi.org/10.1103/PhysRevLett.76.2049
https://doi.org/10.1117/12.560998
https://doi.org/10.1103/PhysRevLett.127.060403
https://doi.org/10.1007/s10701-018-0184-x
https://doi.org/10.1088/0305-4470/39/23/018
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1088/1751-8113/47/42/424010
https://doi.org/10.1103/PhysRevLett.49.91
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.81.5039
https://doi.org/10.1073/pnas.1002780107
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.81.3563
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1364/JOSAB.27.000779
https://doi.org/10.1364/OPTICA.2.000611
https://doi.org/10.1038/srep14113
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1038/s42005-019-0203-z


KONSTANTINOS PAPATRYFONOS et al.

[50] A. Nachbin, P. A. Milewski, and J. W. M. Bush, Tunneling with a hydrodynamic pilot-wave model, Phys.
Rev. Fluids 2, 034801 (2017).
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